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The understanding of out-of-equilibrium physics, especially dynamic instabilities and dynamic phase transi-
tions, is one of the major challenges of contemporary science spanning the broadest wealth of research areas that
range from quantum optics to living organisms. Focusing on non-equilibrium dynamics of an open dissipative
spin system, we introduce a non-Hermitian Hamiltonian approach, in which non-Hermiticity reflects dissipation
and deviation from equilibrium. The imaginary part of the proposed spin Hamiltonian describes the effects
of Gilbert damping and applied Slonczewski spin-transfer torque. In the classical limit, our approach repro-
duces Landau–Lifshitz–Gilbert–Slonczewski dynamics of a large macrospin. We reveal the spin-transfer torque
driven parity-time symmetry breaking phase transition corresponding to a transition from precessional to ex-
ponentially damped spin dynamics. Micromagnetic simulations for nanoscale ferromagnetic disks demonstrate
the predicted effect. Our findings can pave the way to a general quantitative description of out-of-equilibrium
phase transitions driven by spontaneous parity-time symmetry breaking.

I. INTRODUCTION

A seminal idea of parity-time (PT )-symmetric quantum
mechanics [1, 2], that has stated that the condition of Her-
miticity in standard quantum mechanics required for physical
observables and energy spectrum to be real can be replaced
by less restrictive requirement of invariance under combined
parity and time-reversal symmetry, triggered an explosive de-
velopment of a new branch of science. The interpretation of
PT symmetry as “balanced loss and gain” [3] connected PT
symmetry-breaking to transitions between stationary and non-
stationary dynamics and established its importance to under-
standing of the applied field-driven instabilities. Experiments
on diverse variety of strongly correlated systems and phe-
nomena including optics and photonics [4–10], superconduc-
tivity [11–13], Bose-Einstein condensates [14], nuclear mag-
netic resonance quantum systems [15], and coupled electronic
and mechanical oscillators [16–18] revealed PT symmetry-
breaking transitions driven by applied fields. These observa-
tions stimulated theoretical focus on far-from-equilibrium in-
stabilities of many-body systems [12, 13, and 19] that are yet
not thoroughly understood.

Here we demonstrate that non-Hermitian extension of clas-
sical Hamiltonian formalism provides quantitative description
of dissipative dynamics and dynamic phase transitions in out-
of-equilibrium systems. Focusing on the case of spin sys-
tems, we consider the zero-temperature spin dynamics un-
der the action of basic non-conservative forces: phenomeno-
logical Gilbert damping [20] and Slonczewski spin-transfer
torque [21] (STT). The latter serves as the most versatile way
of directly manipulating magnetic textures by external cur-
rents. We propose a general complex spin Hamiltonian, in
which Slonczewski STT emerges from an imaginary magnetic
field. ThePT -symmetric version of the Hamiltonian is shown
to exhibit a phase transition associated with inability of the
system to sustain the balance between ‘loss’ and ‘gain’ above
a certain threshold of external non-conservative field.

In the classical limit of a large spin, our for-
malism reproduces the standard Landau–Lifshitz–Gilbert–
Slonczewski [20–22] (LLGS) equation of spin dynamics and

predicts the PT symmetry-breaking phase transition between
stationary (conservative) and dissipative (non-conservative)
spin dynamics. In this Letter we focus on a single spin, yet
our theory can be extended to coupled spin systems in higher
dimensions. Moreover, as spin physics maps onto a wealth
of strongly correlated systems and phenomena ranging from
superconductivity to cold-atom and two-level systems, our re-
sults provide quantitative perspectives on the nature of phase
transitions associated with PT symmetry-breaking in a broad
class of far-from-equilibrium systems.

We introduce the non-Hermitian Hamiltonian for a single
spin operator Ŝ:

Ĥ =
E
(
Ŝ
)

+ i j · Ŝ
1 − iα

, (1)

where E
(
Ŝ
)

denotes the standard Hermitian spin Hamil-
tonian determined by the applied magnetic field H and
magnetic anisotropy constants ki in the x, y, z -directions:
E
(
Ŝ
)

=
∑

i ki Ŝ 2
i + γH · Ŝ. A schematic system setup is shown

in Fig. 1. The phenomenological constant α > 0 in Eq. (1) de-
scribes damping; the imaginary field i j is responsible for the
applied Slonczewski STT, with j S = ep (~/2e)ηJ being the
spin-angular momentum deposited per second in the direc-
tion ep with spin-polarization η = (J↑ − J↓)/(J↑ + J↓) of the
incident current J; γ = gµB/~ is the absolute value of the gy-
romagnetic ratio; g ' 2, µB is the Bohr magneton; ~ is the
Planck’s constant, and e is the elementary charge. We conjec-
ture that Eq. (1) serves as a fundamental generalization of the
Hamiltonian description of both quantum and classical spin
systems, which constitutes one of our core results. This form
of the Hamiltonian proves extremely useful for the general un-
derstanding of STT-driven dissipative spin dynamics. In this
work we focus primarily on the classical limit of spin dynam-
ics, while the semiclassical limit of finite spin will be consid-
ered elsewhere.

Spin dynamics in the classical limit is conveniently
obtained by studying expectation value of the Hamilto-
nian (1) with respect to SU(2) spin-coherent states [23, 24]:
|z〉 = ezŜ + |S ,−S 〉, where Ŝ ± ≡ Ŝ x ± iŜ y, and z ∈ C is the stan-
dard stereographic projection of the spin direction on a unit
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FIG. 1. Schematic representation of the system setup. Ferromagnetic
cylinder (blue) is placed in magnetic field H applied along the x-axis,
STT-inducing electric current J is polarized in the direction ep along
the y-axis. Spin-polarized current passes through a non-magnetic
metallic spacer and induces torque (Slonczewski STT, shown by the
small red arrow) on the total spin S.

sphere, z = (sx + isy)/(1 − sz), with si ≡ S i/S . Note that such
parametrization of the phase space for a classical single spin
system (i.e. in the limit S → ∞) guarantees the invariance of
the traditional equation of motion [24] under generalization to
non-Hermitian Hamiltonians (see Supplemental Material):

ż = i
(1 + z̄z)2

2S
∂H

∂z̄
, (2)

where z and z̄ form a complex conjugate pair of stereographic
projection coordinates, and

H(z, z̄) =
〈z|Ĥ |z〉
〈z|z〉

(3)

is the expectation value of the Hamiltonian (1) in spin-
coherent states (for a detailed review see, e.g., Ref. [25]). In
this formulation, the eigenstates of Ĥ correspond to the fixed
points zi of the equation of motion for H , while the eigen-
values (i.e. energy values) are equal to H evaluated at the
corresponding fixed points, Ei = H(zi, z̄i).

Assuming a constant magnitude of the total spin, Ṡ = 0,
Eq. (2) reduces to the following equation of spin dynamics in
the classical limit:

Ṡ = ∇S(ReH) × S +
1
S

[
∇S(ImH) × S

]
× S . (4)

Here we refer to the real and imaginary parts of the Hamil-
tonian function H written in the spin S-representation. For
the non-Hermitian Hamiltonian (1), Eq. (4) reproduces the
LLGS equation describing dissipative STT-driven dynamics

of a macrospin:(
1 + α2

)
Ṡ = γHeff×S +

αγ

S
[γHeff×S]×S +

1
S

S×[S× j]

+ αS× j , (5)
γHeff = ∇SE(S) . (6)

The first two terms in Eq. (5) describe the standard Landau–
Lifshitz torque and dissipation, while the last two are re-
sponsible for the dissipative (‘anti-damping’) and conserva-
tive (‘effective field’) Slonczewski STT contributions, corre-
spondingly, both of which appear naturally from the imagi-
nary magnetic field term in the Hamiltonian (1).

PT -SYMMETRIC HAMILTONIAN

Slonczewski STT turns the total spin-angular momentum,
S, in the direction of spin-current polarization, ep, without
changing its magnitude. On the S-sphere this can be repre-
sented by a vector field converging in the direction of ep and
originating from the antipodal point. It is the imaginary mag-
netic field i j that produces exactly the same effect on spin dy-
namics, according to Eq. (2). The action of STT is invariant
under the simultaneous operations of time-reversal and reflec-
tion with respect to the direction ep, which is the underly-
ing reason behind the inherent PT symmetry of certain STT-
driven magnetic systems, including the one considered below.

Before turning to the PT -symmetric form of Hamilto-
nian (1), we note that PT -symmetric systems play an im-
portant role in the studies of non-equilibrium phenomena
and provide a unique non-perturbative tool for examining the
phase transition between stationary and non-stationary out-
of-equilibrium dynamics. We show that despite being non-
Hermitian, such systems can exhibit both of the above types
of behavior, depending on the magnitude of the external non-
conservative force. In the parametric regime of unbroken
PT symmetry, systems exhibit physical properties seemingly
equivalent [26] to those of Hermitian systems: real energy
spectrum, existence of integrals of motion (see Supplemental
Material), and, notably, the validity of the quantum Jarzyn-
ski equality [27]. However, in the regime of broken PT
symmetry, one observes complex energy spectrum and non-
conservative dynamics. Therefore, the ‘true’ transition be-
tween stationary and non-stationary dynamics can be identi-
fied as the PT symmetry-breaking phase transition.

Spin systems are generally subject to various non-linear
magnetic fields including ones originating from shape, ex-
change, magnetocrystalline and magnetoelastic anisotropies.
Restricting ourselves for simplicity to a second-order
anisotropy term, we arrive at the following Hamiltonian for
non-linear magnetic system with uniaxial anisotropy and ap-
plied Slonczewski STT:

ĤPT = γH0

(
kzŜ 2

z + hxŜ x + iβŜ y

)
, (7)

where the applied magnetic field hx is measured in units of
some characteristic magnetic field H0, and β is a dimension-
less STT parameter determining the relative to S amount of
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FIG. 2. Real (a) and imaginary (b) parts of energy spectrum of the Hamiltonian (7) as a function of the STT parameter β for hx = 1 and
D = 20. Blue and red lines correspond to the eigenvalues E1,2 and E3−6, respectively. The first PT symmetry-breaking transition occurs at
|β| = β1 ≈ 4.5.

angular momentum transfered in time τ ≡ (γH0)−1 (character-
istic timescale of the dynamics, used as a unit of dimension-
less time in what follows). The Hamiltonian (7) modeling the
dynamics of the free magnetic layer in a typical nanopillar de-
vice with fixed polarizer layer (see Fig. 1) is PT -symmetric:
it is invariant under simultaneous action of parity and time-
reversal operators (y→ −y, t → −t, i→ −i). Because the
Hamiltonian ĤPT commutes with an anti-linear operator PT ,
its eigenvalues are guaranteed to appear in complex conjugate
pairs. Notice that PT -symmetric Hamiltonian (7) does not
contain damping, which is assumed to be negligibly small, as
is the case in many experimental systems.

CLASSICAL SPIN SYSTEM

In order to best illustrate the mechanism of PT symmetry-
breaking, we focus on the classical limit, S → ∞ and
kz S → D/2, where D is the dimensionless uniaxial anisotropy
constant. Formula (2) then yields the following equation of
motion for the Hamiltonian (7):

ż(t) = −
i(hx + β)

2

(
z2−

hx−β

hx+β

)
−iD z

1−|z|2

1+|z|2
, (8)

with up to six fixed points zk, k = 1, . . . , 6.
Shown in Fig. 2 are the real and imaginary parts of the en-

ergy spectrum E1−6 as functions of the STT amplitude β. It
reveals that in a system with strong anisotropy, D � 1, PT
symmetry breaking occurs in three separate transitions, with

the first one at |β| = β1 = |hx|

√[
1 +

√
1 + (2D/|hx|)2 ]

/2,
which corresponds to the smallest amplitude of STT at which
Im(E) , 0. Therefore, PT symmetry is not broken in the en-
tire phase space of initial spin directions simultaneously, at
variance to the linear spin system with D = 0 (see Supplemen-
tal Material). Instead, the regions of broken and unbrokenPT
symmetry may coexist in the phase diagram of a non-linear
spin system.

In what follows we consider a system described by
the Hamiltonian (7) with hx = 1 and D = 20. For all

|β| < β1 ≈ 4.5, PT symmetry is unbroken and the character
of spin (magnetization) dynamics is oscillatory in the entire
phase diagram, i.e. for all possible initial conditions z. At
|β| = β1 the phase transition (first of the three, see Fig. 2) oc-
curs sharply in a wide region around the easy plane, |z| = 1,
i.e. near the equator of the unit S-sphere, shown in gray in
Fig. 3a, b in Cartesian and stereographic projection coordi-
nates, correspondingly. It this region the nature of spin dy-
namics becomes fundamentally different – all spin trajectories
follow the lines connecting the fixed points z1 and z2, where
z1,2 = −

(
Dhx ± i

√
β4 − β2h2

x − D2h2
x
)
/(hx + β)β, and no closed

trajectories are possible, see Fig. (3)b.
As |β| is increased further, the region of brokenPT symme-

try expands until it eventually closes around the fixed point z5
at β2 ≈ 9.3 (second bifurcation in Fig. 2) and, eventually, the
last region of unbroken PT symmetry near z3 disappears at
β3 ≈ 10.8. The second and third phase transitions are less rel-
evant experimentally as they occur in the vicinity of the least
favorable spin directions (parallel and anti-parallel to the hard
axis z) and at considerably higher applied currents.

The predicted transition from precessional dynamics (un-
broken PT symmetry) to exponentially fast saturation in the
direction z1(hx, β) for any initial spin position around the easy
plane (broken PT symmetry) occurs in the setup with mu-
tually perpendicular applied magnetic field and Slonczewski
STT. Such a transition in nanoscale magnetic structures can
be used for STT- or magnetic field-controlled magnetization
switching in spin valves and a variety of other experimental
systems. This effect can further be used for direct measure-
ments of the amplitude of the applied STT, which, unlike the
applied current, can be hard to quantify experimentally.

NUMERICAL SIMULATIONS OF PT SYMMETRY
BREAKING

Here we present the results of numerical simulations con-
firming the PT symmetry-breaking phase transition in the
classical single spin system (7) by modeling magnetization
dynamics of a ferromagnetic disk 100nm in diameter and
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FIG. 3. a, b. Spin dynamics described by Eq. (8) with hx = 1, β = 4.7, and D = 20. PT symmetry is broken in the shaded region around
the easy plane |z| = 1 (dashed line), encompassing two fixed points, z1,2 (blue dots), appearing as source and sink nodes. The green line
depicts a typical non-oscillatory spin trajectory in the region of broken PT symmetry. Red dots represent the fixed points z3−6. c. Results of
micromagnetic simulations for β∗ as a function of stereographic projection of the initial spin direction z. In the blue region, 4.6 . β∗ . 4.8,
the PT symmetry is broken at all |β| < β∗, and the spin takes under 0.5ns to saturate in the direction of z1, which is in full agreement with the
analytical result.

d = 5nm thick, which is consistent with the anisotropy con-
stant D = 20 in Eq. (8). We used the following typical
permalloy material parameters: damping constant α = 0.01,
exchange constant Aex = 13 × 10−12J/m and saturation mag-
netization Msat = 800 × 103A/m. The simulations were car-
ried out using the open-source GPU-accelerated micromag-
netic simulation program MuMax3 [28] based on the LLGS
equation (5) discretized in space. We used a cubic discretiza-
tion cell of 5nm in size, which is smaller than the exchange
length in permalloy, lex = (2Aex/µ0M2

sat)
1/2 ≈ 5.7nm.

The permalloy disk was simulated in external magnetic
field applied along the x-axis, H0 = 400 Oe, which corre-
sponds to the characteristic time τ ≈ 0.14ns. The STT was
produced by applying electric current perpendicular to the
disk in the z-direction with spin polarization η = 0.7 along
ep = ŷ (see Fig. 1) and current density β measured in dimen-
sionless units of 2eH0Msatd/η~ ≈ 0.7×108A/cm2. While such
current density is comparable to typical switching current den-
sities in STT-RAM devices [29, 30], its magnitude can be op-
timized for various practical applications by changing H0 and
adjusting the size, shape and material of the ferromagnetic el-
ement.

For all possible initial spin directions z, we calculated the
critical amplitude of the applied STT, β∗, for which the char-
acter of spin dynamics changes from oscillatory (at |β| < β∗) to
exponential saturation. Shown in Fig. 3c is the color map of β∗

as a function of z in complex stereographic coordinates. The
region shown in the shades of blue corresponds to the initial
conditions z, for which the minimum values of β that would
guarantee saturation of spin dynamics in the direction of z1 in
under 0.5ns are between 4.6 and 4.8. This is in full agreement
with the region of broken PT symmetry at β = 4.7 calculated
analytically, i.e. the shaded area in Fig. 3b (the outline is re-
peated in Fig. 3c for comparison). Outside of this region, a
considerably larger magnitude of the applied STT is required
to break PT symmetry.

The agreement between theoretical results and micromag-

netic simulations is remarkable considering the non-zero
Gilbert damping parameter (α = 0.01) and non-linear effects
(demagnetizing field, finite size/boundary effects, etc.) in-
herently present in the micromagnetic simulations but not in-
cluded in the model Hamiltonian (7).

CONCLUSION

The presented non-Hermitian Hamiltonian formulation of
dissipative non-equilibrium spin dynamics generalizes the
previous result [31], where the classical Landau–Lifshitz
equation was derived from a non-Hermitian Hamilton oper-
ator, to open STT-driven spin systems. The introduction of
Slonczewski STT in the imaginary part of the Hamiltonian re-
vealed the possibility of STT-driven PT symmetry-breaking
phase transition. Micromagnetic simulations confirm the
PT symmetry-breaking phenomenon in realistic mesoscopic
magnetic systems and its robustness against weak dissipation,
indicating high potential for impacting spin-based informa-
tion technology. The way STT enters the complex Hamilto-
nian (1), i.e. as imaginary magnetic field, provides a unique
tool for studying Lee-Yang zeros [32] in ferromagnetic Ising
and Heisenberg models and, more generally, dynamics and
thermodynamics in the complex plane of physical parame-
ters. We envision further realizations of the PT symmetry-
breaking phase transitions in diverse many-body condensed-
matter systems and the expansion of practical implementa-
tions of the PT symmetry beyond the present realm of op-
tics [33] and acoustics [34].
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