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We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed
state of single and multigap superconductors. We provide an analytic expression for N(r) based on
deGennes’ relation between DOS and the order parameter that reproduces well Scanning Tunneling
Microscopy (STM) data in several superconducting materials. In the single gap superconductor

β-Bi2Pd, we find that N(r) is governed by a length scale ξH =
√
φ0/2πH, which decreases in

rising fields. The vortex core size C, defined via the slope of the order parameter at the vortex
center, C ∝ (d∆/dr|r→0)−1, differs from ξH by a material dependent numerical factor. For two gap
superconductors 2H-NbSe1.8S0.2 and 2H-NbS2, we find that C is field independent and has the same
value for both bands. We conclude that, independently of the magnetic field induced variation of
the order parameter values in both bands, the spatial variation of the order parameter close to the
vortex core is the same for all bands.

The spatial distribution of the quasiparticles density of
states (DOS) within the vortex lattice (VL) is intimately
related to the spatial distribution of the order parame-
ter. The latter is governed by the coherence length ξ
which sets the size of the vortex core and by the applied
magnetic field which fixes the intervortex spacing.

There are a few definitions of ξ used in literature, ad-
justed to a particular problem at hand, see e.g. Ref. [1].
Within this work, ξ is associated with the vortex core
size C, which is related to the order parameter slope at
the vortex center, d∆/dr|r→0 ∝ 1/ξ ∝ 1/C. It was sug-
gested theoretically that C shrinks with the increasing
magnetic field H [1]. Basically, the coherence length ξ
(along with the core size) are not among the input pa-
rameters of the BCS theory–it should be evaluated and
this is a non-trivial task. The evaluation done on quite
general grounds in Ref. [1] (and in works cited therein)
has shown that in clean isotropic materials the H depen-
dence of C is close to 1/

√
H in large fields.

In fact, interpreting µSR data on various materials,
it was deduced that ξ decreases with increasing fields
following the 1/

√
H dependence [2]. This conclusion was

obtained with the help of London-based models for the
field distribution within VL. In these models, ξ enters as
a cutoff restricting their applicability. For this reason,
extracting ξ(H) from µSR data can hardly be considered
as direct. Similar shortcomings can be attributed to ξ(H)
deduced from the magnetization data [3].

The Scanning Tunneling Microscopy (STM) has the
advantage of directly probing the spatial distribution of
the quasiparticles DOS within the vortex lattice. The

DOS depends on the value of the order parameter ∆(r)
and can be used, in principle, to map |∆(r)| within VL.
This was done within the microscopic quasi-classical for-
malism by U. Klein [4] for clean Nb, by N. Nakai et
al for 2H-NbSe2 [5], and by F. Gygi and M. Schlüter
using Bogolyubov-deGennes formalism [6]. Similar ap-
proaches have been applied to nickel-borocarbides and
pnictide compounds [7–9], requiring detailed knowledge
of the normal phase properties [8–11]. However, extract-
ing a value for ξ or obtaining order parameter variations
in different bands from STM data remains highly non-
trivial. There is thus a need to discuss within a simple
model the spatial distribution of the DOS within vortex
lattices.

Perhaps the most compact and simple result for the
DOS distribution in the mixed state was given by P.G.
deGennes in the work on dirty superconductors [12 and
13]. Following this work, we offer here a phenomenologi-
cal scheme to describe the STM data on zero-energy DOS
for materials with hexagonal vortex lattices. If needed,
the approach can be generalized for other VL symme-
tries and for anisotropic superconductors. We show that
the DOS distribution within VL can be well described by
the model for a single- and two-gap superconductors. For
the single gap case we find that the core size C is propor-
tional to a universal length ξH =

√
φ0/2πH. When H

approaches the upper critical field Hc2, ξH coincides with
the commonly used coherence length ξc2 =

√
φ0/2πHc2.

This behavior agrees with predictions [1] for clean ma-
terials. For the two-gap samples, we find nearly field
independent and equal core sizes, C1 = C2.
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We have chosen β-Bi2Pd for a single gap superconduc-
tor, and 2H-NbSe1.8S0.2 and 2H-NbS2 which are multi-
gap superconductors with no in-plane anisotropy. The
tunneling conductance and VL in 2H-NbSe1.8S0.2 is first
reported here whereas the data for β−Bi2Pd and 2H-
NbS2 are taken from our previous work [14 and 15]. De-
tails of the sample preparation and of DOS measurements
are given in Appendices A and C. Superconducting pa-
rameters of the compounds are given in Table I, and
their zero-field tunneling conductance curves are shown
in Fig. 1. Note that the critical temperatures of the three
compounds are similar, although ξc2 obtained from the
upper critical fields vary by a factor of three. Mean
free paths have been estimated from resistivity measure-
ments, yielding values slightly above or comparable to
the coherence lengths. β−Bi2Pd is clearly a single gap
superconductor (∆ = 0.76meV, Fig. 1) with a zero field
conductance following s-wave BCS theory and shows a
hexagonal VL [14]. The zero-field conductance of both
2H-NbSe1.8S0.2 and 2H-NbS2 can be fitted using BCS
theory (red lines in Fig. 1) with two gaps (see Table I)
[10, 11, and 16].

Compound Tc (K) Hc2 (T) ξc2 (nm) ∆ (meV)
β-Bi2Pd 5 0.6 23 0.8

2H-NbSe1.8S0.2 7 7 7 0.8; 1
2H-NbS2 5.7 2.5 12 0.5; 1

TABLE I. Superconducting parameters of the compounds
studied. The gap values are obtained from the fits (red lines
in Fig. 1), see the table II in Appendix A.

To obtain tunneling conductance vs distance from the
vortex center, we select single vortices out of zero-bias
conductance images and evaluate angular averages of the
normalized conductance σ0 for each r. We define σ as:

σ =
σ0(r)− σ0(r∗)

σ0(0)− σ0(r∗)
. (1)

where r∗ is the distance from the vortex center to the
point where the tunneling conductance is minimum (in
the hexagonal lattice, the center of an equilateral vortex
triangle).

The zero-bias DOS, N(r), in large fields of the mixed
state at low temperatures and in the dirty limit was given
by P.G. deGennes [12 and 17]:

N(r)

Nn
= 1− |∆(r)|2

∆2
0

, (2)

Nn is DOS in the normal phase. Note that this rela-
tion does not account for possible core states [18], in
other words, we disregard the effect of these states on
the shape of |∆(r)|, which acts as an effective potential
due to which the bound core states are formed. When
∆ → 0, as e.g. at Hc2 or at vortex centers, N → Nn as
it should. This remarkable relation expresses the local
DOS in terms of the order parameter at the same point.
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FIG. 1. Zero field tunneling conductance for β-Bi2Pd (upper
panel), 2H-NbSe1.8S0.2 (middle panel) and 2H-NbS2 (lower
panel). Fits to BCS theory are given by red lines (see also
Table II in Appendix A). Temperatures at which the data
were taken are given in each panel. Insets show VL images
obtained from the zero-bias conductance at, from top to bot-
tom, 0.05 T, 0.1 T, and 0.15 T (lateral sizes of of the images
are 450 nm, 360 nm, and 290 nm, respectively).

Precise value of the constant ∆0 (on the order of zero-T
BCS gap) will not affect our analysis.

One can argue that N(r) depends only on even powers
of ∆. Within the Eilenberger version of the BCS the-
ory [19] the superconductivity is described by Gor’kov
Green’s functions integrated over energy, f, f+ and g,
which depend on Matsubara frequencies ω and are re-
lated by g2 = 1− ff+. The DOS as a function of energy
ε is given by N = NnRe[g(ω → iε)], where f and f+ are
∝ |∆|. Hence, g depends only on |∆|2 and so does N .

In large fields of the mixed state the order parameter
is suppressed relative to the zero-field value ∆0 in be-
tween vortices. The ratio ∆2(r)/∆2

0 is small and terms
correcting Eq. (2) of the order ∆4(r)/∆4

0 are smaller yet.
Hence, Eq. (2) is likely to hold not only in the dirty limit
[20] and we take it is a basis of our phenomenological
model.

The order parameter for a single vortex in isotropic



3

superconductors can be approximated by [21 and 22]:

∆(r)

∆0(T )
=

r√
r2 + C2

, (3)

where the core size C is of the order of ξ. This func-
tion reproduces the expected behavior for r → 0, where
d∆/dr|r→0 = ∆0/C; for r � C, ∆ → ∆0, the order
parameter of uniform zero-field state. Minimizing the
Ginzburg-Landau energy functional, Z. Hao and J. Clem
deduced C = ξ

√
2 to fit magnetization data in large fields

[23].
For the hexagonal VL of our samples, the unit cell can

be taken as a hexagon centered at the vortex. Hence,
we can use Wigner-Seitz approximation and consider the
unit cell as a circle of a radius a such that πa2 = φ0/B, φ0
is the flux quantum and B is the magnetic induction. For
plate-like samples we work with, in fields perpendicular
to plates faces, B is close to the applied field H. The
cell radius a is close to the half of intervortex distance L:
2a/L = (2

√
3/π)1/2 ≈ 1.05.

To satisfy the periodicity condition, the normal deriva-
tive of |∆| should vanish at the unit cell bound-
ary. Within circular approximation this translates to
d∆/dr = 0 at the boundary r = a. The function (3)
does not satisfy this condition, although for a � C this
derivative is small. To correct this, we modify the form
(3) to

∆(r)

∆0(B, T )
=

r√
r2 + C2

exp

[
− r2C2

2a2(C2 + a2)

]
(4)

which satisfies d∆/dr = 0 at r = a; for a � C it ap-
proaches the maximum at the cell boundary exponen-
tially slow. Expressions (3) and (4) practically coin-
cide within the core r < C, for larger r the new func-
tion varies slower than for a single vortex. The slope
d∆/dr|r→0 = ∆0/C, so that C can still be taken as the
core size.

Next, we observe that the normalizing constant
∆0(B, T ) drops off the measured quantity

σ =
N(r)−N(a)

N(0)−N(a)
=

∆2(a)−∆2(r)

∆2(a)−∆2(0)
= 1− ∆2(r)

∆2(a)
(5)

since ∆(0) = 0. We now take a as a unit length to obtain:

σ = 1 − ρ2(1 + η2)

ρ2 + η2
exp

η2(1− ρ2)

1 + η2
,

ρ = r/a , η = C/a . (6)

Let us first focus on β-Bi2Pd (Fig. 2). Fitting the data
to Eq. (6) and treating η as a fit-parameter we can extract
the core size C. The good quality of the fit validates our
model as able to provide quantitative description of the
STM data. The fits yield values of η around 0.50± 0.08
in a field range where H changes by a factor of 4. Since
η ≈ const, we have

C = ηa = η

√
φ0
πH

. (7)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00



 r/a

 

 0.1 T

 0.2 T

 0.3 T 

 0.4 T

-Bi2Pd

0.0 0.2 0.4 0.6

20

30

40

 

 

C
  
(n

m
)

H (T)

FIG. 2. The left panel: the tunneling conductance σ of Eq. (5)
vs distance r from the vortex center, normalized to the cell
radius a, for β-Bi2Pd and in fields indicated. Data are taken
at 0.15 K and have been obtained from images of vortices
averaged over the angle for each r and normalized as described
in the text. The right panel: the core size C of Eq. (7) vs H.
Dots are the values of C = η a obtained from the fits of the
left panel with a being the Wigner-Seitz cell size. The line is
C calculated with η ≈ 0.5 found in the fits.

Hence, the core size C varies with applied field as 1/
√
H,

the dependence deduced from the µSR data on many
materials [2]. This is highlighted by the red points in the
right panel of Fig.2, which provide C vs magnetic field.

The theory of Ref. [1] suggests that in large fields the
coherence length as a function of field should behave as
ξ ≈ A/

√
H (except in the extreme dirty limit or at high

temperatures). In particular, this relation should hold
at the upper critical field Hc2. This gives the constant
A =

√
φ0/2π so that we have

ξ =

√
φ0

2πH
≡ ξH . (8)

The core size, therefore, is

C = ηa = η

√
φ0
πH

= η
√

2 ξH . (9)

Using η ≈ 0.5 obtained by the fits, we find C ≈ 0.7 ξH .
Eq. (9) implies that the order parameter and DOS distri-
butions within VL in large fields of one-band isotropic
materials are governed by a universal length ξH of
Eq. (8). As H → Hc2, ξH reaches the value of the

standard coherence length ξc2 =
√
φ0/2πHc2. Our re-

sults suggest that by a proper rescaling, distributions of
zero-bias DOS in large-field vortex lattices in one-band
isotropic superconductors can be reduced to a nearly uni-
versal form.

We now turn to multigap superconductors 2H-
NbSe1.8S0.2 and 2H-NbS2. To generalize our model to
the two-gap situation we assume that the order parame-
ter takes values ∆1 and ∆2 on two bands and write the
spatially dependent density of states as

N(r)

Nn
= 1− n1

∆2
1(r)

∆2
10

− n2
∆2

2(r)

∆2
20

(10)
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where n1,2 are partial DOS in the normal state, n1+n2 =
1. Each ∆ν (ν = 1, 2) satisfies the boundary condition
d∆ν/dr = 0 at the cell boundary r = a because each one
should be periodic in the vortex lattice:

∆ν(r)

∆0ν
= δν =

ρ√
ρ2 + η2ν

exp

[
− ρ2η2ν

2(η2ν + 1)

]
, (11)

ην = Cν/a, ν = 1, 2. Note that δν are normalized to cor-
responding ∆0ν . Substituting this in Eq. (10), we obtain:

σ = 1− δ21(ρ) + γ δ22(ρ)

δ21(1) + γ δ22(1)
, γ =

n2
n1
. (12)

Fitting the data for σ(r) we extract η1 and η2. Fig. 3
shows results of such a fitting. The good quality of the
fits is remarkable. Thus, the expression (12) describes
well the spatial distribution of the DOS in two-gap sys-
tems. Using Eq. (10), we calculate the core sizes from
the fitting parameters and find–within accuracy of our
procedure–nearly equal and field independent core sizes
C1 and C2. The spatial dependence of the conductance
curves in 2H-NbSe1.8S0.2 and in 2H-NbS2, plotted vs r/a
is clearly H dependent (Fig. 3). The density of states
spreads considerably when applying magnetic field, i.e.
the parameters ην increase with the magnetic field. This
means that C = η a no longer shrinks with the increas-
ing vortex density, in fact the fits show that C are field
independent. What is more, the slopes of the order pa-
rameter values in the vortex center, C1 and C2, in each of
two bands, remain the same.
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FIG. 3. Normalized conductance σ for 2H-NbSe1.8S0.2 (left
panel) and for 2H-NbS2 (right panel). Lines are fits as de-
scribed in the text. Insets give the core size vs magnetic field
C1,2 (red and black points respectively) and the line is C cal-
culated with η ≈ 0.5 for comparison.

Let us now discuss the magnetic field independence of
C. This is expected for superconductors in the dirty limit
[1]. In 2H-NbSe1.8S0.2, there is a remarkable increase of
Hc2 by a factor of two with respect to pure 2H-NbSe2,
and the zero bias peak at the vortex core is considerably
suppressed (see Appendix B). The Fermi velocities range

from 105 m/s to well above 106 m/s, leading to BCS zero-
T coherence length values that range between 10 nm and
50 nm, in any case above the values ξc2 ≈ 7 nm obtained
from Hc2 (see Table I) [24 and 25]. This suggests that
the influence of scattering is strong in 2H-NbSe1.8S0.2.

In 2H-NbS2, the residual resistivity is the lowest among
the compounds discussed here (see Appendix D) and
there is a clear zero-bias peak at the vortex core, com-
parable to the peak observed in pure 2H-NbSe2[15]. The
observed magnetic field independence of C is therefore
unexpected in this material and requires more careful
band dependent calculations. Probably, the scattering is
band dependent, giving different sensitivities to scatter-
ing on the zero-bias peak and the spatial dependence of
the order parameter in vortex cores.

On the other hand, our model applied to STM data
on two-gap 2H-NbSe1.8S0.2 and 2H-NbS2 shows that the
length scales on which the order parameter changes in the
two bands are, in fact, the same. This outcome is unex-
pected, one would think that at low temperatures the
length scales at which order parameters change should
be close to the BCS coherence lengths of the two bands,
ξ0ν ∝ vν/Tc. However, it has been shown time ago by
B. Geilikman, R. Zaitsev, and V. Kresin [27] and “redis-
covered” recently [28 and 29] that near Tc the two-gap
Ginzburg-Landau theory yields the same length scales
for variation of both ∆1 and ∆2. Our conclusion that
the same is true for low temperatures in materials ex-
amined is, of course, based on phenomenological model.
The model, however, should not be far from reality since
we are able to reproduce low temperature STM data
quite well. On the theoretical side, calculations based
on Bogolyubov-deGennes formalism showed different low
temperature ξ’s in two bands for a weak inter-band cou-
pling [30]. This suggests that in materials examined here,
the inter-band coupling is not weak. Altogether, the
question of the microscopic conditions for having ξ1 = ξ2
at low temperatures is still open.

To summarize, we argue that deGennes formula for the
zero-bias DOS N(r) in the mixed state [12] can be used
out of the dirty limit. Combining this with the Wigner-
Seitz approximation for the order parameter within the
VL unit cell and the known approximation for the order
parameter distribution, we are able to reproduce the ex-
perimental N(r) for one- and two-gap materials. This
allows us to extract the vortex core size C not as an
imaginary boundary separating the “normal” core from
superconducting environment, but as a parameter char-
acterizing the DOS distribution in the vortex lattice. We
find that the core size in the isotropic material β-Bi2Pd
shrinks as 1/

√
H as predicted in [1] for the clean limit,

whereas it remains H independent in multigap cases of
2H-NbSe1.8S0.2 and 2H-NbS2. In 2H-NbSe1.8S0.2, scat-
tering leads to theH independent core size expected in [1]
for the dirty limit. The result in 2H-NbS2 suggests that
the band dependence of electronic scattering is important
to understand details of the density of states of multigap
superconductors. Furthermore, in the latter two com-



5

pounds, there is no difference between the magnetic field
dependence of the core size in both bands.
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Appendix A: Vortex lattice of 2H-NbSe1.8S0.2

The experiment consists of home built low-noise di-
lution refrigerator STM system as described in Refs. [31
and 32]. The tunneling conductance curves are taken
with an energy resolution of about 15 µeV [33 and 34].
We use an Au tip, which is cleaned by repeated inden-
tation onto the Au cleaning pad [35]. The samples were
cleaved in-situ to obtain fresh surfaces. Atomic resolution
was consistently achieved in all compounds discussed in
this work. The magnetic field is applied perpendicular to
the plate-like samples. At the measurement temperature
(of 0.15 K for β−Bi2Pd, 0.1 K for 2H-NbS2 and 0.8 K for
2H-NbSe1.8S0.2) we can safely assume that the local con-
ductance is proportional to the local DOS, so that we can
replace the measured conductance σ0 with the DOS N ’s.

To make the fits shown in the main text (red lines of
Fig. 1), we use a single gap fit for β−Bi2Pd and two gaps
∆1,2 for the rest of the samples with a Gaussian smearing
of the DOS having a width of Γ1,2 (see Table I).

A few images of isolated vortices and of the vortex
lattice in 2H-NbSe1.8S0.2 are shown in left panels of Fig.
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FIG. 4. Left panels: the zero-bias conductance maps in 2H-
NbSe1.8S0.2 at T = 0.8 K at fields indicated. Right panels:
conductance maps of an isolated vortex for bias voltages in-
dicated and a magnetic field of 0.3 T.

Compound ∆1,2(meV ) Γ1,2 (meV)
β-Bi2Pd 0.76, - -,-

2H-NbSe1.8S0.2 0.78, 1 0.12, 0.12
2H-NbS2 0.5, 1 0.16, 0.22

TABLE II. Superconducting parameters of the compounds
studied used to obtain the red lines in Fig. 1, Γ’s are the
broadening parameters.

4 for a set of magnetic fields. The right panels show
the evolution of the images with changing bias voltage
at H = 0.3 T. Note that, contrary to the much discussed
case of star-shaped vortices in 2H-NbSe2, the vortices
here are round due to scattering by the S impurities. As
shown in the tunneling conductance curves, at different
distances from the core center (Fig. 5), there is a zero bias
peak. The zero bias peak is smeared due to scattering by
the S substitution with respect to the pure compound as
shown previously by [36]. Nevertheless, it is still clearly
measurable.

We have also measured spatial distributions N(r, ε) at
finite bias energies ε. In Fig. 6 we show the angular av-
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eraged N(r, ε) for all three compounds. Note that the
shape of the conductance vs bias voltage remains roughly
the same in increasing fields in β−Bi2Pd, whereas for the
other two compounds the conductance tends to increase
away from the core with increasing H. This tendency
is seen by comparing the curves obtained from the zero
bias data in Figs. 2 and 3 of the main text.
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FIG. 5. Tunneling conductance vs position at H = 0.02 T in
2H-NbSe1.8S0.2 along the line given by the black arrow in the
inset, which is a zero-bias conductance map of a vortex.
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FIG. 6. The angular averaged conductance normalized at its
value at high bias voltages plotted as a function of distance
r/a (with a being the half intervortex distance) and the bias
voltage at magnetic fields marked in the figure.

Appendix B: Vortex core states

The tunneling conductance within the vortex core
shows zero-bias peaks in 2H-NbSe1.8S0.2 and in 2H-NbS2

due to Caroli-deGennes-Matricon core bound states. We
do not take these peaks into account in our model. The
core states provide a zero-bias conductance slightly above
one (see Fig. 5 for 2H-NbSe1.8S0.2 and Ref.[15] for 2H-
NbS2). The shape of the vortex core is not significantly
affected by these peaks. Note that, in the paper we cal-
culate σ according to Eq. (1). Hence, the magnetic field
dependence of σ0(0) and of σ0(r∗) do not influence σ.

On the other hand, in the previous work [15] we
have demonstrated that the absence of the core star-like
anisotropy in 2H-NbS2 is due to the absence of charge
density waves (CDW) in this compound. Thus, CDW
causes the in-plane anisotropy of the vortex core in 2H-
NbSe2 [15]. Here, we observe the CDW also in 2H-
NbSe1.8S0.2 (Fig. 7). The loss of the in-plane anisotropy
of vortex cores is due to scattering on S impurities, as
discussed in Ref. [36].

 2.08 nm

 0.00 nm

0.12 nm

0 nm

FIG. 7. Atomic resolution topography of 2H-NbSe1.8S0.2

showing the CDW in area with a lateral size of 20 nm. The
Fourier transform is shown in the inset. The CDW wave vec-
tors are indistinguishable, within experimental error, from the
pure compound. The modulation is three-fold, with q=0.29
1/Å for the atomic lattice and 0.085 1/Åfor the CDW, within
an error of 20%. The CDW is located at a distance of 34%
of the atomic lattice, i.e. 1/3 within accuracy of the relative
values, which we estimate to be around 5% from the width
of the Fourier transform peaks. Note also that there are size-
able variations in topographic contrast that are certainly due
to scattering by S defects.
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Appendix C: Sample growth of 2H-NbSe1.8S0.2
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FIG. 8. XRPD experimental pattern of 2H-NbSe1.8S0.2 single
crystal (black) and corresponding fit (peaks in blue and back-
ground in green). The fit gives: a = b = 3.4323(3) Å and
c = 12.513(1) Å, hexagonal crystal system with P63/mmc
space group, X2 = 2.2210−5 and a Snyder’s figure of merit of
44.3158. Inset: view of the grown single crystal.

The synthesis of 2H-NbSe1.8S0.2 was performed in a
typical solid state reaction. The elements were mixed in
a stoichiometric ratio, sealed inside the evacuated quartz
ampoule and heated from room temperature up to 900◦C
at 1.5◦C/min. The sample was kept at constant temper-
ature during 14 days and then was slowly cooled down
(0.07◦C/min). To obtain large single crystals, we mixed
four mmol with I2 as a transport agent ([I2] ≈ 5 mg/cm3)
in evacuated quartz tube, which was placed inside a
three-zone furnace. We placed the material in the left-
most zone and heated the other two zones for three hours
up to 700◦C and kept them at this temperature for one
day. After that, the leftmost zone was heated to 750◦C
within three hours and we established temperature gra-
dients as 750◦C / 700◦C / 725◦C. These temperatures
were kept for 22 days after which the oven was switched

off for cooling.
The crystals so formed were analyzed by inductively

coupled plasma spectrometry and by powder X-ray
diffraction (Fig. 8). The elements content was Nb:36.9
±1.0%,Se:58.8 ±1.5 % and S:2.4±0.2 % in good agree-
ment with the expected values for 2H-NbSe1.8S0.2.
Refinement of the X-ray pattern revealed a hexagonal
lattice with a P63/mmc space group and a unit cell of
a = b = 3.4323(3) Å, c = 12.513(1) Å, α = β = 90◦

and γ = 120◦. These results are only slightly different
from those for pure 2H-NbSe2 (a = b = 3.4425(5) Å,
c = 12.547(3) Å, α = β = 90◦ and γ = 120◦) [39].

Appendix D: Resistivity of β-Bi2Pd, 2H-NbSe1.8S0.2,
and 2H-NbS2

In the Fig. 9 we provide the temperature dependence of
the resistivities normalized to the ambient temperature
value for the three compounds studied in this work.
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FIG. 9. Temperature dependence of the resistivity for β-
Bi2Pd, 2H-NbSe1.8S0.2 and 2H-NbS2 normalized to the am-
bient temperature value.

1 V.G. Kogan and N.V. Zhelezina, Field dependence of the
vortex core size, Phys. Rev. B, 71, 134505 (2005).

2 J. E. Sonier, Investigations of the Core Structure of Mag-
netic Vortices in Type-II Superconductors Using Muon
Spin Rotation, J. Phys.: Condens. Matter 16, S4499
(2004).

3 V. G. Kogan, R. Prozorov, S. L. Bud’ko, P. C. Can-
field, J. R. Thompson, J. Karpinski, N.D. Zhigadlo, P.
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