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A micro-electro-mechanical system vibrating in its shear mode was used to study the viscosity
of normal liquid 3He from 20mK to 770mK at 3 bar, 21 bar, and 29 bar. The damping coefficient
of the oscillator was determined by frequency sweeps through its resonance at each temperature.
Using a slide film damping model, the viscosity of the fluid was obtained. Our viscosity values are
compared with previous measurements and with calculated values from Fermi liquid theory. The
crossover from the classical to the Fermi liquid regime is manifest in the temperature dependence
of viscosity. In the Fermi liquid regime, the temperature dependence of viscosity changes from T−1

to T−2 on cooling, indicating a transition from the Stokes flow to the Couette flow regime.

I. INTRODUCTION

Liquid 3He has been one of the most important
systems on which the foundations of Fermi liquid theory
is studied. As a highly pure Fermi system, the low
temperature behavior of its transport properties is tied
to the strong temperature dependence in the inelastic
quasiparticle scattering time.1,2 In the fully degenerate
Fermi liquid regime, approximate solutions to the col-
lision integral in the quasiparticle transport equation
were first proposed by Abrikosov and Khalatnikov,3 and
further extended by Hone.4 Since then, it has been
widely established that the leading term in the viscous
relaxation time has a temperature dependence given by
1/τ ∝ T−2. Extensions to these models to account for
higher temperature corrections were later proposed by
Emery,5 Rice,6,7 and others.8,9

The viscosity of liquid 3He has been experimentally
studied using various measurement techniques, from
the zero sound attenuation10,11 to the damping on a
moving object immersed in the liquid, such as magnetic
vibrating wires12 and torsional pendulum oscillators.13,14

These mechanical oscillators have proven instrumental in
accurately determining the transport coefficients of the
normal liquid 3He system. However, while an extended
body of studies on its viscous properties can be found
in the literature, to date there has not been one where
a single viscometer is used to cover a wide temperature
and pressure range, and where the crossover between the
classical to quantum fluid behavior, i.e. the onset of the
Fermi liquid behavior, is clearly observed.

Recently, miniature piezoelectric tuning fork oscilla-
tors have become a very valuable tool in the study
of liquid helium.15,16 Additionally, other miniature os-
cillators based on micro and nano-electro-mechanical
systems (MEMS and NEMS) have been recently devel-
oped by various groups.17–20 These devices allow the
custom engineering of mechanical structures capable
of systematically probing quantum fluids at length
scales determined by either their transport properties,
topological structures such as quantum vortices, or, in

the case of the different phases of superfluid 3He, their
Cooper pair coherence length. For example, there has
been recent interest in the properties of both normal
liquid 3He and superfluid 3He confined in a quasi-two-
dimensional film.21,22

The MEMS oscillator used in this work consists of a
plate suspended above the substrate by four serpentine
springs. The device is actuated by the electrostatic
interaction between interdigitated electrodes.17 The gap
between the top oscillating plate and the substrate
was designed to have a fixed thickness. The MEMS
device is functional without a magnetic field. The
unique yet simple geometry of the oscillator ensures
that all the electro-mechanical parameters can be ob-
tained analytically and the damping, experienced when
oscillating in a fluid, can be fully modeled. The gap
between the movable plate and the substrate facilitates
the investigation of the entrained liquid film, and
makes it possible to examine the behavior of the fluid
in a quasi-two-dimensional environment. The large
plate size and its one-dimensional movement induce a
uniform velocity profile of the moving object preventing
additional complications in the analysis often found in
other types of oscillators.
The data presented here are extracted from sweeping

the excitation frequency through the resonance of the
MEMS oscillator from 20mK to 770mK at 3 bar, 21 bar,
and 29 bar. The data are analyzed to give the leading
term of the temperature dependent viscosity of liquid 3He
and then compared with the viscosity values measured in
other works as well as the theoretical predictions.

II. ANALYTICAL DESCRIPTION OF THE

MEMS DEVICE

A. Device characteristics and slid film damping

model

The movable part of the oscillator can be divided
into six types of structures, as shown in Fig. 1. Each
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FIG. 1. A CAD image of the movable part on the MEMS
oscillator. The oscillating direction of the plate in the shear
mode is marked by the double arrow in the middle. The
movable part is composed of six structures labeled on the
figure. Structure six is called the oscillating plate and has
the largest surface area. Colors show the amplitudes of
displacement of various structures. The red movable parts are
oscillating with the largest amplitude. The four blue squares
are fixed on the substrate, representing the anchors of the four
serpentine springs.

one contributes differently to the damping due to their
difference in size, aspect ratio with respect to the
oscillation direction, and different gap distance from
the substrate. A film of liquid 3He is formed in the
gap beneath these structures. Additional information
about the device and the measurement scheme can be
found in reference [17, 23]. In vacuum, at least four
well-separated eigenfrequencies were identified in the
oscillator through COMSOL multiphysics simulations.
Each one corresponds to a different oscillation mode of
the movable plate: the trampoline mode with vertical
motions, two pivot modes with rotational oscillations
around the x-axis and the y-axis, respectively, and the
shear mode with horizontal oscillations along the x-axis
as shown in Fig. 1. When the device is immersed in
liquid, only the shear mode can be observed due to the
high damping in all the other modes.
The steady flow of an incompressible fluid can be

described by the Navier-Stokes equation. It describes the
most general case of a steady flow of an incompressible
fluid:24

ρ

[

∂v

∂t
+ (v · ∇)v

]

= F −∇p+ η∇2
v, (1)

where v is the velocity field, ρ is the fluid density, F is
the external force, p is the pressure of the liquid, and η
is the dynamic viscosity. In our experiment, the plate is

submerged in a fluid and in relative tangential motion to
a fixed substrate. The direction of the one-dimensional
oscillation of the plate is defined as the x-direction. In
the absence of F and ∇p, Eq. (1) reduces to

∂vx
∂t

+ vx
∂vx
∂x

=
η

ρ

∂2vx
∂z2

. (2)

Here, z is the direction perpendicular to the substrate
surface with the origin at the substrate. In the real
experimental system, the length scale of the plate is
much larger than both the gap size and the amplitude
of oscillation. Therefore, the velocity can be taken to be
translationally invariant in the x-direction, and Eq. (2)
can be further simplified by eliminating the ∂vx/∂x term:

∂vx
∂t

=
η

ρ

∂2vx
∂z2

. (3)

Equation (3) is a one-dimensional diffusion equation,
which can be solved in two different flow regimes: the
Couette and the Stokes flow regimes.
When the gap size, d, is much smaller than the viscous

penetration depth δ =
√

2η/ρω, referred to as the
Couette regime, Eq. (3) can be approximated to

∂2vx
∂z2

= 0. (4)

If the boundary condition is non-slip, Eq. (4) has a simple
solution:

vx(z) = vp
z

d
(5)

where vp is the velocity of the oscillating plate. The
solution represents a simple linear velocity profile inside
the gap. From this solution, the viscous force on the
plate can be calculated as F = Apηvp/d, where Ap is
the contact surface area of the plate to the liquid. The
damping coefficient is then simply γ = Apη/d.
On the other hand, in the Stokes limit where the

condition δ ≫ d is not satisfied, no approximation can be
made in Eq. (3). By implementing the non-slip boundary
conditions again, the flow field is given by25

vx(z) = vp
sinh(qz)

sinh(qd)
, (6)

where q =
√

iω/ν and ν = η/ρ. The damping
admittance can be calculated in a similar way as above:

γ̄ =
F

vp
= Ap

η

vp

∂vx
∂z

|z=d =
Apqη

tanh(qd)
. (7)

The real part of this complex admittance gives the
damping coefficient

Re(γ̄) =
ηAp

δ

sinh(2d/δ) + sin(2d/δ)

cosh(2d/δ)− cos(2d/δ)
, (8)
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TABLE I. Values of gap sizes and areas of various structures of the movable part. The labels from 1 to 6 are the same as those
in Fig. 1

Structure i d̃i (µm) di (µm) Ai (µm
2)

S1 2 0.90 2× 398× 14=11144

S2 2 1.39 2× 39× 24=1872

S3 2 0.90 2× 400× 14=11200

S4 2 1.60 4× 67× 22=5896

S5 2.75 1.27 4× 20× 13=1040

S6 0.75 0.72 178× 178=31684

and the imaginary part is responsible for the frequency
shift due to mass loading

Im(γ̄) =
ηAp

δ

sinh(2d/δ)− sin(2d/δ)

cosh(2d/δ)− cos(2d/δ)
. (9)

Taking into account all six structures of the movable
part of the MEMS oscillator (see Fig. 1), the dependence
of damping coefficient on the viscosity can be expressed
as

γtot =
η

δ

[

6
∑

i=1

Ai

sinh(2di

δ
) + sin(2di

δ
) + k1i

cosh(2di

δ
)− cos(2di

δ
) + k2i

+At

]

,

(10)
where γtot is the total damping coefficient on the moving
plate, di is the effective gap size and Ai is the area of
the ith structure of the movable part in contact with the
confined liquid film or the top/bottom side of the movable
part, k1i and k2i are two parameters that arise when

first order slip boundary conditions are considered. At =
∑6

i=1 Ai is the total area of the movable part in contact
with the bulk fluid and this term in Eq. (10) accounts
for the damping contribution from the bulk fluid above
the movable part. The effective gap size, di, accounts
for the effect of the finite size of the structures on the
MEMS oscillator. It was calculated from the real gap
size d̃i and the length l of the corresponding structure in
the direction of oscillation:25

di =
d̃i

1 + 8.5 d̃i

l

. (11)

The di and Ai values are taken from the design with
an error of 5%, listed in Table I. The value 8.5 is
a phenomenological value estimated in reference [25]
through simulations and experiments for the shear plate
geometry.
The forms of k1i and k2i are

25

k1i = 4r[(1 + r2) cosh(2d
δ
) + (1 − r2) cos(2d

δ
)] + 6r2[sinh(2d

δ
)− sin(2d

δ
)], (12)

k2i = 4r[(1 + 2r2) sinh(2d
δ
) + (1− 2r2) sin(2d

δ
)] + 4r2[(2 + r2) cosh(2d

δ
) + (2− r2) cos(2d

δ
)]. (13)

Here, r = ζ/δ is the ratio of slip length to the penetration
depth. The slip length is a phenomenological param-
eter introduced as a correction to the hydrodynamic
boundary condition and is of the order of the mean
free path.26,27 Around 100mK, the slip length is ∼10nm
and the penetration depth is ∼1µm. Therefore in this
experiment r ∼ 10−2 ≪ 1 and k1i and k2i are at least
two orders of magnitude smaller than the other terms
in Eq. (10), therefore negligible. In the limit δ ≪ d,
Eq. (10) reduces to γ = Apη/δ, where Ap = 2At now
includes both the top and the bottom sides of the plate.

In this experiment, the thickness d of the gap and the
penetration depth δ are comparable. Therefore, the full
expression Eq. (10) should be applied. This then enables
us to study the temperature dependence of the viscosity
in normal fluid 3He by applying Khalatnikov’s prediction

for the viscosity at low temperatures:3

1

ηT 2
= a, (14)

where a is a function of pressure. One can recast Eq. (10)

in a form more suitable for analysis by using P1 =
√

1/a

and P2 =
√

2/ρω:

γtot =
P1

P2T

[

6
∑

i=1

Ai

sinh( 2diT
P1P2

) + sin( 2diT
P1P2

)

cosh( 2diT
P1P2

)− cos( 2diT
P1P2

)
+At

]

+ P3.

(15)
Here P3 is an unknown constant background term due
to instrinsic losses in the device.28 P2 is a constant that
can be directly calculated. At a given pressure, one can
use the tabulated molar volume of liquid 3He to find
its density, ρ.29 And ω can be taken as the averaged
resonance frequency over the whole temperature range
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FIG. 2. (a) Signal amplitude vs frequency at 25mK, 21 bar.
The full fit is plotted along with the fitted Lorentzian
component and the background. (b) Signal amplitude vs
frequency at 758mK, 21 bar.

since the shift is typically only within 3%. Hence, we get
the values of P2 as listed in Table II.

B. Resonance model

The pressure of the liquid was maintained at three
different values: 3 bar, 21 bar, and 29 bar. Frequency
sweeps near 23 kHz were carried out to obtain a reso-
nance Lorentzian peak proportional to the amplitude of
displacement of the moving plate. The MEMS device is
driven by a periodic external force, Fe = F0e

−iωt. The
experiment was performed in the hydrodynamic limit,
ωτ ≪ 1, where ω is the driving frequency and τ is
the quasi-particle relaxation time. The oscillation of the
center plate of the device can be described by

mẍ(t) + γẋ(t) + kx(t) = Fe. (16)

Here, m is the total mass of the movable part of the
MEMS device, γ is the damping coefficient, k is the
total spring constant of the system, and x(t) is the
displacement of the center plate measured from its rest
position. The solution to Eq. (16) gives the magnitude
of displacement as

|x| = F0

m

1

4π2
√

(f2
0 − f2)2 + w2f2

, (17)
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FIG. 3. Another way of formulating the fitting model is to
introduce a complex damping coefficient γ = m(α2 + iα1),
where the imaginary term, α1f/2π, explicitly represents the
shift in the resonance frequency from the natural frequency
(fn). Both real and imaginary damping coefficient methods
are shown here. (a) Frequency shift vs Temperature from two
models at 3 bar. The frequency shift with a real damping is
calculated as f0 − fn. The frequency shift with a complex
damping is calculated as α1/4π. (�): include the imaginary
part of the damping coefficient. Shift for this curve is α1/4π.
(⋄): only include the real damping coefficient. Shift for this
curve is f0−fn. (b) Width vs Temperature. (�): include the
imaginary part of the damping coefficient. (⋄): only include
the real damping coefficient. (©): width(�)-width(⋄)

where w = γ/2πm. This solution establishes that |x| is a
peaked function of center frequency f and with a width
w.
Given the knowledge of m and w, one can calculate the

damping coefficient γ = 2πmw. w is obtained from the
fitting of this function. Details about the measurement
circuit and the detection scheme can be found in the
reference [17, 23]. |x| (R-channel) is usually measured
through two components, the quadrature component (X-
channel),

xx =
F0

m

wf

4π2((f2
0 − f2)2 + w2f2)

, (18)

and the in-phase component (Y-channel),

xy =
F0

m

f2
0 − f2

4π2((f2
0 − f2)2 + w2f2)

. (19)
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TABLE II. Values of molar volumes, densities, and P2 at various pressures.

Pressure (bar) Molar volume (cm3/mol) ρ (kg/m3) f (Hz) P2 (×10−4(m3·s/kg)
1

2 )

3 33.9 88.9 23103 3.93

21 27.5 110 22999 3.56

29 26.3 115 22958 3.48
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FIG. 4. (a) to (c) The frequency spectra measured at different temperatures at 29 bar. Both the resonance frequency shift and
the width increase can be observed. (d) The Nyquist diagram: a plot of the Y-channel signal vs the X-channel signal. It shows
a frequency dependent ellipse consistent with the model and can be utilized as a guide for phase adjustment.

The frequency dependence of |x|2 = x2
x + x2

y is fitted

with a background BG = a1f + a0 + c1/f + c2/f
2. This

background originates from the measurement circuit.
One can combine F0 and m into one parameter A =

F0/m to obtain the finalized fitting model:

|x|2 =
A2

16π4

1

(f2
0 − f2)2 + (w2f2)2

+BG. (20)

There are seven fitting parameters in the model: A, f0,
w, a1, a0, c1, and c2. Typical fittings at high and low
temperatures are depicted in Fig. 2.
At a given temperature, we performed four frequency

sweeps. Their fitting results are averaged to give the
fitted parameters at this temperature. Due to the
sensitivity of the model to its initial input parameters,
a regression fitting issue arises where a set of four fitted
parameters may have a variance larger than expected.
This happens even though all four sweeps have very
similar curve shapes. An outlier curve can be spotted
from the four fitted backgrounds. The problem is solved
by manually fixing the outlier’s background to be the
average of the others and fit the Lorentzian part of the
curve after subtracting the background. Fig. 3 shows the
obtained fitting parameters for 3 bar.
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FIG. 5. Damping vs Temperature at 3, 21 and 29 bar. The
dashed curves are fitted with the instrumental weight 1/σ2,
where σ is the standard deviation of the width based on the
four sweeps at each temperature. The solid lines are 1/T
and 1/T 2 guidelines. There is a crossing point at 200mK. At
temperatures higher than this point, higher pressures give
larger damping. Below this point, the order in pressure
dependence is reversed. The damping values correspond to
the Lorentzian widths ranging from ∼ 600Hz at the highest
temperature to ∼ 10000Hz at the lowest.

It is worth mentioning that in our fitting model, f0
represents the resonance frequency of the resonance peak
and it is different from the natural frequency of the center
plate, fn. Another way of formulating the fitting model is
to introduce a complex damping coefficient γ = m(α2 +
iα1). The solution to Eq. (16) becomes

|x|2 =
A2

16π4

1

(f2
n − f2 + α1

2π
f)2 + (w′2f2)2

+BG. (21)

Here, w′ = α2/2π = Re(γ)/2πm corresponds to the real
part of the damping coefficient. The imaginary damping
coefficient generates the term α1f/2π which contributes
to the shift of the resonance frequency from the natural
frequency.
The two fitting models essentially produce the same

fitting results as shown in Fig. 3 for 3 bar. This verifies
that the two methods are indistinguishable. Therefore,
applying the first fitting model alone is sufficient.

III. MEASUREMENTS AND RESULTS

Four sweeps were performed at a given temperature:
two sweeps were done with increasing frequency and two
with decreasing frequency. Some of the measured fre-
quency spectra are plotted in Fig. 4. As the temperature
is lowered, the viscosity is expected to follow a 1/T 2

relation, increasing the damping force. As a result, the
Lorentzian peak broadens. The R-channel also shows
that the resonance frequency decreases. As temperature
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FIG. 6. Damping contribution from the individual structures
in the MEMS device as a function of temperature at 3 bar.
These were calculated from Eq. (15) using fitted P1 and
calculated P2 values. The film contribution is the sum
of the terms S1 through S6. It shows that the major
damping contribution comes from the film; and that the major
contribution to the film damping comes from the moving plate
S6. Data for the other two pressures behave very similarly.

drops, the viscous penetration depth increases, resulting
in a larger effective mass of the oscillator and a decrease
in the resonance frequency.
The values of P1 are determined by fitting Eq. (15) in

the Fermi liquid regime. The fit was done below 100mK
at all pressures. It was performed with an instrumental
weight κ = 1/σ2 where σ is the standard deviation of the
four damping coefficients obtained at each temperature.
Our data and the fitted curves are plotted in Fig. 5.
The fitted values of P1, P3, and 1/a = P 2

1 are listed
in Table III.
Our results of 1/a are comparable to the theoretical

estimation made by Abrikosov and Khalatnikov which is
∼1–10poise·mK2 and also to previous results found in
reference [30]. The result from the zero-sound data of
Ketterson et al. gives a similar value of 1.04poise·mK2

at 29.3 bar.31

We can compare the damping contributions from
different structures of the oscillator. The temperature
dependence of the individual damping coefficients are
plotted in Fig. 6. The damping values are calculated
using Eq. (15) with the fitted P1 and calculated P2

values. The film damping dominates at all pressures.
The background damping coefficient, P3 (see Table III)
is negligible at the lowest temperatures studied compared
with the damping from the film and bulk contributions.
In Fig. 5, the damping coefficient exhibits a clear

crossover from 1/T to 1/T 2 behavior as the liquid
cools down. Much like the Hagen-Poiseuille to Knudsen
crossover observed in nanoholes and aerogel,32,33 this
phenomenon is closely related to the length scales in the



7

TABLE III. Fitted values of P1, P3 and 1/a directly obtained from P1. Results from Wheatley30 are also presented. Note that
Wheatley’s third 1/a value, 0.99 Poise·mK2, was obtained at 30 bar instead of 29 bar.

Pressure P1 P3 1/a Wheatley’s result

(bar) (×10−4 (Pa· s)
1

2K) (×10−6 (kg/s)) (Poise·mK2) (Poise·mK2)

3 4.40 1.38 1.93 1.73

21 3.45 1.57 1.19 1.22

29 3.05 1.42 0.93 0.99

MEMS-liquid system.34 In the high temperature limit
where δ ≪ d, γ ∝ η/δ ∝ √

η ∝ 1/T ; and in the low

temperature limit where δ ≫ d, γ ∝ η/d ∝ 1/T 2. Thus,
the temperature dependence of the damping coefficient
agrees with expectations.

It is interesting to observe that the damping curves
for the three pressures intersect at around 200mK (see
Fig. 5), indicating a reversal in the pressure dependence
of the viscosity. This inversion of pressure dependence
implies a crossover from classical to quantum fluid. In
the classical regime, the viscosity generally increases with
pressure. While in the Fermi liquid regime, the dominant
pressure dependence arises from the velocity, which is
the Fermi velocity that decreases with pressure. To our
knowledge there is no theoretical representation to fully
describe the cross-over behavior.

IV. SUMMARY

The damping of a shear actuated MEMS oscillator
submerged in liquid 3He was studied. The device moves
parallel to the substrate and maintains a constant gap of
0.75 µm. The parallel plate geometry of the device allows
for a full analytical description of its interaction with
the fluid through the so-called slide film damping model.
The resonance properties were studied through a wide
range of temperatures, from 20 to 800 mK, and at three
different pressures: 3 bar, 21 bar, and 29 bar. As the
liquid is cooled, a crossover in the pressure dependence
of the damping occurs around T= 200 mK. Below this
temperature, the damping decreases with pressure as
opposed to increasing with pressure. This indicates a
transition from a classical to a quantum fluid behavior,

where the dominant pressure dependence of the viscosity
is determined by the Fermi velocity. To the best of
our knowledge, this is the first time this transition is
discernibly captured with a single viscometer.
An extensive analysis was performed to determine the

different contributions to the damping from the different
structures of the device. Relative to the length scales
set by the viscous penetration depth and the gap size of
the device, transitions from a Couette to a Stokes flow
regime were seen as the viscosity changes from a 1/T to
1/T 2 behavior at lower temperatures. Our findings show
the potential of using these devices to test fundamental
fluid mechanical problems by exploiting both the strong
temperature dependence of the transport properties of
liquid 3He and the tunability of the characteristic length
scales through the engineering of the device geometry.
For instance, at temperatures lower than the ones
presented in this work, where the mean free path becomes
comparable to the gap size, these devices could be used
to study the so-called Knudsen regime. Furthermore, in
the superfluid state of liquid 3He, the devices could be
used to study the effects of confining liquid 3He to a 2D
geometry, where the thickness of the entrained fluid film
is comparable to the coherence length of the superfluid
phase. This would enable the exploration of novel phase
transitions and topological phenomena in unconventional
superfluids.
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