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Abstract 

 Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, 

through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film 

deposited on the substrate. This spin-wave resonance in the magnetic film creates a time 

dynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric 

and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a 

magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying 

boundary conditions on the SAW. We use acoustical perturbation theory to find closed form 

expressions for the back-action surface stress and strain fields and the resultant SAW velocity 

shifts and attenuation. We demonstrate that the shear stress fields associated with this spin-wave 

back-action also generate effective surface currents on the piezoelectric both in-phase and out-of-

phase with the driving SAW potential.  Characterization of these surface currents and their 

applications in determination of the magnetoelastic coupling are discussed. The perturbative 

calculation is carried out explicitly to first order (a regime corresponding to many experimental 

situations of current interest) and we provide a sketch of the implications of the theory at higher 

order. 
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 A considerable amount of interest has developed in harnessing the interaction between 

gigahertz frequency ultrasound and thin film magnets with appreciable magnetoelastic coupling 

for various technological applications. Among these applications are the acoustic manipulation 

and readout of magnetic memory elements1–4, acoustic driving of magnetic domain walls5, the 

acoustic generation of resonant spin-wave excitations6–14, and magnetic field detectors.15,16 Some 

of the interest rests on the point that acoustical wavelengths range in the sub-micron to micron 

scale at the gigahertz frequencies typical of spin-wave resonance. The coupling of magnetic 

systems to various classes of lateral mode acoustical resonators (e.g., SAW or contour mode 

resonators17,18) might prove useful in generating various two-dimensional magnetic excitation 

patterns with sub-micron features. For many of these applications, a clear physical picture and 

theoretical framework detailing how a magnetic thin film undergoing spin-wave resonance 

affects the acoustical fields pumping the spin-wave resonance might be important.  

In this paper, we calculate this magnetic back-action on the acoustical fields using 

acoustical perturbation theory. We specifically focus on traveling spin-wave resonance in a 

magnetoelastic thin film on a piezoelectric substrate excited by surface acoustic waves (SAWs). 

The acoustical perturbation theory technique and the basic physical picture developed here, 

however, is applicable to thin magnetic films excited by bulk acoustic waves (BAWs), contour 

mode resonators, acoustical waveguides, etc. We treat the case of a magnetic thin film of 

thickness h  strained by a SAW of wavelength SAWλ  traveling on the piezoelectric substrate as 

shown in Figure 1. We restrict ourselves to situations where h  << SAWλ where the penetration 

depth of the SAW into the piezoelectric solid is ~ SAWλ . To the lowest order in the perturbation 

theory, the strain fields are uniform through the thickness of the film and equal to the SAW strain 

fields at the surface of the piezoelectric. These strain fields then drive spin-wave resonance in the 
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film. The leading effect that this spin-wave resonance has on the driving elastic field is to 

generate time-dynamic, thickness-dependent shear and normal stresses of magnetoelastic origin 

within the film that exert mechanical forces on the top boundary of the piezoelectric. These 

forces are directly responsible for measured velocity shifts and attenuation of the SAW elastic 

field.  

The physical picture developed here differs from previous analyses of acoustically driven 

resonance back-action9,19,20 which treat the spin-wave excitation and SAW as a magnon-phonon 

polariton propagating in a magnetoelastic semi-infinite solid with magnoelastic coupling effB . 

An ad-hoc filling factor F = / SAWh λ  is used to modify the effective coupling of the magnetic to 

elastic degrees of freedom in the polariton excitation. This is meant to account for the fact that 

approximately a fraction F of the entire film/substrate volume excited by the SAW is occupied 

by the magnetoelastic film. It is only this volume fraction that is responsible for SAW 

attenuation and velocity shifts induced by spin-wave resonance. This method essentially 

averages over the excited volume of the film/substrate and is reasonable for an estimation of the 

SAW wave-vector shifts caused by the elastically driven spin-wave resonance. However, it can 

be shown that the procedure maps to the propagation of a magnon-SAW phonon polariton on the 

surface of a magnetoelastic semi-infinite solid with weakened magnetoelastic coupling effF B  

and thus neglects the details of the mechanics at the film/substrate interface. We argue that it is 

precisely the back-action stress and strain fields at the film-substrate interface responsible for 

SAW attenuation and velocity shifts. These fields and their effect on SAW propagation can be 

calculated using the perturbation formalism without manually inserting a filling factor F or 

additional fitting parameters (e.g., the ratio of shear to longitudinal strain in the film that might 

become relevant in thicker films) into the theory.  
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The formalism for acoustical perturbation theory is developed within the well-established 

treatises on physical acoustics21. Here we go through only the relevant parts of the theory. The 

starting point is the complex reciprocity relationship for an acoustical wave within a 

piezoelectric solid 

 ( ) ( ){ }* * * *
2 1 1 2 2 1 1 2 0i iω ω∇ ⋅ − ⋅ − ⋅ + Φ + Φ =v T v T D D  

 
(1) 

where all free charges and external forces on the piezoelectric solid are zero and where the 

electromagnetic quasi-static approximation applies. The quasi-static approximation is justified in 

SAW experiments as / SAWc f λ>>  where c  is the speed of light. We then define 1 →v v , 

1 →T T as the particle velocity field, stress tensor, etc. arising from solid deformations of the 

unperturbed SAW propagating on the surface of the piezoelectric substrate (i.e. the velocity field 

of the SAW substrate without the magnetic film on top). The fields 2 ′→v v , 2 ′→T T , etc. are 

the perturbed fields within the piezoelectric substrate due to the presence of the magnetoelastic 

film at the surface. The complex reciprocity theorem holds between the two field solutions and 

their source terms (in this case source terms are zero) provided that the piezoelectric substrate is 

considered lossless. The reciprocity is correct even in the presence of a lossy perturbation at the 

surface. The perturbed and unperturbed velocity field, stress fields, etc of a SAW traveling in the 

z  direction are: 
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  In order to find the shift in the wavenumber β , Eqn. (1) is integrated over the thickness of the 

piezoelectric substrate and we have assumed that there is no x  dependence in the fields as 
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appropriate for plane-wave SAW propagation. It follows from Eqns. (1) and (2) that the wave-

vector shift can be expressed as 
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Given that the perturbed solutions are assumed to be close to the unperturbed solutions, it is 

reasonable to set the perturbed field equal to the unperturbed fields in the denominator. The 

denominator then becomes { }
0

ˆ2 * ( )* 4
b

SAWi dy Pω− ⋅ + Φ ⋅ =∫ v T D z where SAWP  is the power flow 

of the SAW. The numerator is additive in the contributions from mechanical and electrical 

components. We are only considering contributions from the elastic and magnetoelastic part of 

the dynamics and thus exclude the wavenumber shifts in Eqn. (3) arising from the electric 

displacement field and charge dynamics on the surface of the ferromagnetic film that would be 

present if the magnetic film were conductive. For SAW propagation, we need only concern 

ourselves with the top surface at y = 0 where the perturbing film is situated. Eqn. (3) then 

reduces to  

 0
ˆ*

4
y

SAW

i
P

β β β =
′⋅ ⋅

′Δ = − = −
v T y

  
 

(4) 

 

The shifts in the wavenumber of the SAW is thus directly related to stress at the surface of the 

piezoelectric caused by the perturbing magnetoelastic thin film (the unperturbed traction force 

0
ˆ 0

y=
⋅ =T y  due to stress-free boundary conditions at the substrate surface).  
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A calculation of the traction force acting at the interface requires a solution to the stress 

fields within the magnetoelastic film. We express these stress fields in terms of the unperturbed 

particle velocities of the SAW at y  = 0 and solve for βΔ  to lowest order. The first field 

equation governing dynamics in the magnetoelastic thin film is d
dt

ρ ′ ′= ∇ ⋅v T . Component-wise 

this yields: 

 

x yx zx

y yy zy

z yz zz

i v T i T
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i v T i T
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i v T i T
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ωρ β

ωρ β

ωρ β
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∂′ ′ ′= −
∂
∂′ ′ ′= −
∂

 
 

(5) 

 

The second set of field equations define the stress tensor ij
ij T

FT
ε

⎛ ⎞∂′ = ⎜ ⎟⎜ ⎟∂⎝ ⎠
  in the magnetoelastic 

thin film, where ijε  is the mechanical strain tensor and F  is the free energy of the 

magnetoelastic solid, is: 

 ( )2 2 22mech app
ij ij ij i j ij u z s i i s yF E TS B m m K m M m H M K mσ ε ε π ⊥

′ ′ ′= − = + + − + −   
 

(6) 

 

The stress mech
ij ijkl klcσ ε=  is the mechanical stress generated by linear elasticity, ijB  is the 

magnetoelastic coupling, uK  is the in-plane anisotropy energy density, sM  is the saturation 

magnetization, im  and app
iH  are the components of the applied field and components of the 

magnetization normalized to the unit sphere respectively, and K⊥  is the perpendicular 

anisotropy energy density. We assume for the remainder of the paper that the film is in-plane 
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magnetized with K⊥  < 22 sMπ  and appH  in the film plane, and that 0uK >  implying that x  is the 

film’s magnetic easy axis. The total stress tensor is ij ijkl kl ij i jT c B m mε′ ′ ′ ′= + . An inversion of this 

equation to solve for klε  and using the relation 
t

∂ = ∇
∂
ε v  between the strain and particle velocity 

fields yields the second set of field equations 

 
v1 l

klij ij klij ij i j
k

s T s B m m
i xω

⎛ ⎞∂ = −⎜ ⎟∂⎝ ⎠
  

 
(7) 

 

where klijs  are elements of the elastic compliance tensor. If the magnetoelastic part of the free 

energy MEF   has symmetry in the xz  plane and the shear terms are all governed by the same 

coupling term 2B , then MEF  reduces to: 

 2 2 2
11 11 12 2 2 2 .ME x xx z y yy y z yz x y yx x z zxF B m B m zz B m B m m B m m B m mε ε ε ε ε ε= + + + + +  

 
(8) 

 

Since none of the field quantities can have a dependence on x , we use xxε  = 0 to eliminate 

2
11xx xT B m−  from the remaining equations. The resulting component-wise expression for the 

second set of field equations is: 
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(9) 

 

We now use Eqns. (5) and (9) to solve for the stress fields to first order and expand the velocity 

and stress tensor fields in a power series in film thickness: 

 
(0) (1) (2) 2
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(y ) ( ) ...
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T T T T

 
 

(10) 

 

The stress tensor at y h= −  (the top surface of the film) is such that ˆ' 0
y h=−

⋅ =T y  due to stress-

free boundary conditions implying the zeroth order contribution to the traction force at the 

film/substrate interface 
0

ˆ' 0
y=

⋅ =T y . We thus solve for the stress tensor (1) ˆ′ ⋅T y  at first order. 

Eqn. (5)  and the first two formulas in Eqn. (10) provide the sufficient equations that can be used 

to solve for the three components of (1) ˆ′ ⋅T y . We drop the term of the magnetoelastic stress 

going as 2
12 yB m  given that we are restricting ourselves to in-plane magnetized films. The 

equations then become: 
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(11) 

 

The term (0) 0zyT ′ = vanishes as (0)

0
ˆ 0

y=
⋅ =T y  (i.e. at lowest order surface shear stress vanishes) 

and the stress tensor is symmetric. The components of the magnetoelastic stresses 44 2 z xs B m m′  and 

2 2
211 12

11
11

z
s s B m

s
⎛ ⎞′ ′−
⎜ ⎟′⎝ ⎠

 of Eqn. (11) causing back-action traction forces on the SAW at order (1)T  are 

( )(0) (0)
44 2 z x x zs B m m m mδ δ′ +  and 

2 2
(0)11 12

11
11

2 z z
s s B m m

s
δ

⎛ ⎞′ ′−
⎜ ⎟′⎝ ⎠

 respectively. We define (0)
xm  and xmδ (

(0)
zm and zmδ ) as the x ( z ) component of the in-plane equilibrium magnetization and the excited 

spin-wave amplitude respectively. The xz  magnetoelastic shear back-action stresses are present 

at lowest order for shear horizontal SAWs (SH-SAWs) and Love waves. Here we focus on the 

Rayleigh SAW for the sake of comparison with previous studies. The Rayleigh SAW contains 

particle velocity components in the y and z  directions only ( (0)
xv  = 0).  Rearranging of terms in 

Eqn. (11) yields expressions for the first order stress tensor causing the perturbing surface 

traction on the SAW: 
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  (12) 

 

The magnetoelastic terms in the expression for (1)
yxT ′  are ignored as they can be shown to be 

proportional to (0)
xv . The spin-wave amplitude zmδ  is excited by an internal RF field arising from 

the dynamic strain in the film caused by the Rayleigh SAW propagating on the piezoelectric 

substrate. To lowest order in the perturbation theory, this internal effective magnetoelastic pump 

field can be expressed in terms of the unperturbed particle velocity field present at the surface of 

the piezoelectric substrate. The driven spin-wave amplitude can then be solved for in terms of 

these unperturbed SAW velocity fields. This is accomplished by a linearization of the Landau-

Lifshitz-Gilbert (LLG) equations for spin-wave dynamics about the equilibrium magnetization 

0m  

 
( ) ( )( ) ( ) ( , ) ( )d d

dt dt
δ δγδ δ= − × + Γ ×eff 0

m r m rm r H r β m m r , (13) 

 

where γ  is the effective gyromagetic ratio (for the remainder of the paper taken to be the free 

electron value appropriate to metallic transition ferromagnets), ( , )Γ 0β m  is the spin-wave 

damping at propagation vector β  at equilibrium magnetization orientation 0m , and where 

( )effH r  is the spatially varying effective magnetic field acting on the magnetization. The 

effective magnetic field contains terms arising from the applied field, internal anisotropy fields, 

the magnetoelastic interaction, and leading order spin-spin interactions (i.e., dipolar field and 
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exchange contributions). We define a new coordinate system ηζξ  specified in Figure 2 where 

0m  lies along ξ  making an angle 0ϕ  with respect to the z  axis. The ζ axis is out of the film 

plane and η  defines the axis orthogonal to 0m in the film-plane. The Rayleigh SAW creates a 

time-varying effective magnetic pump field  

 ( ) (0)11
0 0

2 ˆ(r, ) / / sin cos i z i t
rf ME s z

s

Bt F M v e
M

β ωβ φ φ
ω

− +⎛ ⎞⎛ ⎞= − ∂ ∂ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

h m η , (14) 

where the only term in MEF  that is non-zero in the in-plane magnetized case goes as 2
11 z zzB m ε . 

The final form of Eqn. (14)  has been derived in other work6,19 and the only difference is that we 

have substituted the unperturbed strain field (0)
zzε  for the unperturbed particle velocity field (0)

zv   

at the substrate surface. The pump field then drives a spin-wave resonance ( , ) i z i tz t e β ωδ δ − +=m m  

where ˆˆm mη ζδ δ δ= +m η ζ . A solution of the components of the spin-wave amplitude requires a 

self-consistent solution of the LLG equation along with the magnetostatic equations for long-

range dipolar fields. We point out that the amplitude δm is a thickness-averaged spin-wave 

amplitude. Even under the influence of a magnetoelastic pump field (r, )rf th  that is uniform in y , 

boundary conditions on magnetostatic potentials and considerations of surface spin pinning will 

create a spin-wave amplitude profile in the y  direction going as hβ  << 1.22  Effects of this y

magnetization profile will show up directly in the stress tensor at second order. The relationship 

between these thickness-averaged spin-wave amplitudes and the driving magnetoelastic pump 

field is given by the Polder susceptibility χ : 

 
0
RFm h

i
m

η ηη ηζ ηη ηζ

ζ ζη ζζ ζη ζζ

δ χ χ χ χ
δ χ χ χ χ

′ ′ ′′ ′′⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪= +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ ′′ ′′⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
, (15) 
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The susceptibility components ′χ  and ′′χ  are the relevant real and imaginary components of the 

traveling spin-wave susceptibility excited about equilibrium 0m  with propagation vector β . We 

emphasize that the y dependence of the spin-wave amplitudes, while not directly affecting stress 

fields at first order, will create appreciable modifications to χ and thus impact (1)T  through χ . 

The only component of the traveling spin-wave that contributes to (1) ˆ′ ⋅T y in Eqn. (12) is 

0sinzm mηδ δ φ= −  in the stress tensor component (1)
yzT ′ . It can be shown that Eqns. (12), (14), 

and (15) yield an expression for (1)
yzT ′ in terms of the unperturbed SAW particle velocity field: 

 

2
(1) 2 2 (0)11 11

0 02 2 2 2
11 12

41 1 sin cosyz z
SAW s SAW

s BT i i v
s s V M V ηη ηηω ρ φ φ χ χ

⎧ ⎫⎡ ⎤′⎪ ⎪′ ′ ′ ′′ ′⎡ ⎤= − ⋅ − ⋅ +⎨ ⎬⎢ ⎥ ⎣ ⎦′ ′−⎪ ⎪⎣ ⎦⎩ ⎭
, 

(16) 

where /SAWV β ω=  and (0)
0coszm φ= . The real part ηηχ ′  and imaginary part ηηχ ′′  can be shown to 

be: 
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[ ]

22 2
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ω ω ωγ

⎡ ⎤− ϒ + Γ Ψ + ϒ⎣ ⎦′ =
⎡ ⎤− + Γ Ψ + ϒ⎣ ⎦

β m

β m
 

( )
[ ]

2 2 2
0

2 22 2
0
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ω ω ωγ
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(17) 

 

The traveling spin-wave resonance frequency resω γ= Ψϒ  and the quantities Ψ  and ϒ  are: 
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( )

2 2
0 0 0

2 2
0 0

2cos(2 ) cos 2 sin
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2
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s
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M
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⎛ ⎞ ⎛ ⎞ϒ = + − + + − −⎜ ⎟ ⎜ ⎟
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(18) 
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where exA  is the magnetic exchange stiffness, 2 /k u sH K M=  is the in-plane anisotropy field with 

the in-plane anisotropy along the x  axis. The quantities 2
02 sinsM hπ β φ  and 4

2s
hM βπ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 in Ψ

and ϒ are terms of long-range dipolar origin and arise due to the y dependence of the spin-wave 

profile. In the mid sub-micron (500 nm) to micron regime, these quantities create appreciable 

corrections toχ .11 

The wavenumber shift βΔ  in Eqn. (4) is then: 

 

0

2 2(0) (0)11
2 2 20 0

11 12

2 22 2 (0)11
0 02 0

ˆ*

4

1

4 4 1 sin cos

y

SAW

y zy y
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z y
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i
P

sv v
s s Vh

P B i v
M V ηη ηη

β

ρ ρ
ω

φ φ χ χ

=

= =

=

′⋅ ⋅
Δ = − =

⎧ ⎫⎛ ⎞′′ ′+ − ⋅⎪ ⎪⎜ ⎟′ ′−⎪ ⎪⎝ ⎠
⎨ ⎬
⎪ ⎪′ ′′⎡ ⎤− ⋅ +⎣ ⎦⎪ ⎪⎩ ⎭

v T y

 (19) 

 

The quantities 
2(0)

0
/y SAWy

v P
=

, and 
2(0)

0
/z SAWy

v P
=

 can be expressed analytically as 
2

yc ω  and 

2
zc ω  where 

2

yc  and 2
zc  have units of [ ] 1g/cm −  and depend on the electromechanical 

properties of the substrate. Values for SAWV , 2
xc , 

2

yc  and 2
zc  for some SAW substrates are 

provided in Table 1. 

SAW Substrate and Cut 
(Propagation Direction) 

SAWV  (105 
cm/s) 

2
xc  (10-13 
cm/g) 

2

yc  (10-13 
cm/g) 

2
zc  (10-13 cm/g)

YZ-Cut LiNbO3, Z-prop 3.488 0 6.891 3.158 
[001]-cut Bi12GeO20, [110]-
prop 

1.680 0 17.331 6.436 

Y-cut Quartz, X-prop 3.158 2.062 18.809 8.422 
Table 1. Propagation characteristics for a few SAW substrates/cuts and propagation directions. 
Adapted from Auld.21 
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The first two terms in Eqn. (19) are shifts due to the standard mass loading of the SAW by a 

lossless isotropic thin film of thickness h  given a certain mass density ρ′  and compliance tensor 

′s . The last term is due to the mechanical back-action of the elastically driven traveling spin-

wave resonance on the Rayleigh SAW and we isolate it from the rest of Eqn. (19): 

 
2

2 22 2 211
0 02

1 sin cosRayleigh Rayleigh
ME z ME z

s SAW

Bh i c Z c
M V ηη ηηβ ω φ φ χ χ ω′ ′′⎡ ⎤Δ = − ⋅ + =⎣ ⎦  (20) 

 

 
2

2 211
0 02

1 sin cosRayleigh
ME

s SAW

BZ h i
M V ηη ηηω φ φ χ χ′ ′′⎡ ⎤= − ⋅ +⎣ ⎦  (21) 

 

where Rayleigh
MEZ  is the SAW electromechanical transmission line impedance due to spin-wave 

backaction. The wavenumber shift Rayleigh
MEβΔ  is complex and thus the elastic excitation of the 

traveling spin-wave resonance modifies the velocity of the SAW and cause an exponential 

attenuation. The attenuation of the SAW has a rather simple physical interpretation. The SAW, 

under the right external field conditions, drives a spin-wave resonance via the magnetoelastic 

interaction in the magnetic film. Part of this response will be out of phase with the SAW elastic 

drive field due to the spin-wave damping. Thus a thickness-dependent and time-varying yz  

magnetoelastic shear stress develops in the film and generates a back-action traction force at the 

surface of the piezoelectric out of phase with the driving Rayleigh SAW field. This out-of-phase 

traction force dampens the SAW. This also implies, through Eqn. (20), an electromechanical 

transmission line current that is generated out of phase with the SAW surface potential Φ  due to 
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the spin-wave back action. The power of the Rayleigh SAW per unit width attenuates under the 

magnetic film due to magnetoelastic back-action as 

 2 2
22 211

0 02

( ) exp[2Im( ) ]

2 1exp sin cos

Rayleigh
SAW ME

SAW z
s SAW

P z P z

hBP c z
M V ηη

β

ω χ φ φ

= Δ

⎛ ⎞′′= − ⋅⎜ ⎟
⎝ ⎠

 (22) 

 

and the power attenuation of the SAW per unit width and unit length, as calculated by back-

action, is given by: 

 
2 2

22 211
0 02

2 1 sin cosSAW
abs z SAW

s SAW

hBdP c P
M V ηη

ω χ φ φ′′= − ⋅  (23) 

 

The magnetic oscillation power absorbed by the magnetic damping during spin-wave 

resonance per unit volume, is †

2
mag
abs s RF RFp Mω χ′′= ⋅ ⋅h h .19,23 By energy conservation, the power 

absorbed by the magnet should equal the SAW power dissipation. The SAW power dissipation is 

often calculated using this so-called effective field approach. Using Eqn. (14), we express the 

absorbed magnetic power explicitly as 
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2 2
2(0) 2 2

0 0

2
22 2 2

0 02

2
sin cos

21 sin cos
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abs z

s

z SAW
SAW s

B
p v

M

B
c P

V M

ηη

ηη

βωχ ϕ ϕ
ω

ω χ ϕ ϕ

⎛ ⎞⎛ ⎞′′= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪′′= ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 (24) 

 

The spin-wave power dissipated by the magnetic damping per unit width and per unit length is 

mag mag
abs absdP p h=  and thus equals: 
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 11

2 2
22 2

0 02

2 1 sin cosmag
abs z SAW

s SAW

hB
dP c P

M V ηη

ω
χ ϕ ϕ′′= ⋅  (25) 

 

Thus SAW
absdP + mag

absdP  = 0 as required by energy conversation (which must be satisfied at all orders 

of the perturbation theory). The effective field approach and the back-action approach are, in 

fact, one and the same. The velocity shifts arising from the spin-wave back-action are given by 

the real part of Rayleigh
MEβΔ and is the Hilbert transform of the imaginary part of Rayleigh

MEβΔ . This 

must be the case or else causality is violated. There are, however, other field-dependent effects 

that can become convolved with measured wave-number shifts due to spin-wave back-action. 

These effects will be relevant at lower SAW pump frequencies and at low fields below the in-

plane anisotropy field. In this regime there can be domain wall motion and magnetization 

rotation as a function of appH . As a result, EΔ  effect induced changes to the velocity24 and 

Anisotropic Magnetoresistance (AMR) induced changes to the attenuation25 will not be 

negligible. At higher pump frequencies and in films with low in-plane anisotropy, the 

magnetization will be saturated along the field direction across the spin-wave resonance field. In 

such cases, we expect that field dependent contributions to βΔ  are due to Rayleigh
MEβΔ and that the 

relation between the field-dependent part of the velocity shift and attenuation are given by Eqn. 

(20) at first order. 

In order to get an estimate of the magnitude of these back-action effects, we calculate 

both real and imaginary part of Rayleigh
MEβΔ  vs. appH  for a Rayleigh SAW propagating in the Z-

direction on a YZ-cut LiNbO3 substrate with SAWV  = 3.488×105 cm/s and 
2
ω
π

 = 4.5 GHz 

(implying β  = 8.1×104 cm-1). This is a regime where hβ  = 0.08 and perturbation solutions to 
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first order are often reasonable. The applied field is swept at an angle Hφ  = 45º with respect to 

the SAW propagation axis. The magnetoelastic perturbation is a Ni film with h  = 10 nm. We 

have assumed that the properties of the Ni film are 0kH = , K⊥ = 5.5×105 ergs/cm3, sM  = 485 

emu/cm3, an isotropic and wave-vector independent spin-wave damping Γ  = 0.1, 11B  = +5×107  

ergs/cm3, and exA  = 8×10-7 erg/cm. The results of the calculation are shown in Figure 3. The 

maximum relative shifts due to spin-wave magnetoelastic back-action are Re SAW

SAW

V
V

β
β

ΔΔ ≅  ~ 

.015% and Im β
β
Δ  ~.03%. In a 300 μm long Ni film, this implies a phase shift from one end to 

the other of ϕΔ  ~  25º and a SAW attentuation ~ -6 dB (or a power attenuation per unit length of 

~ -20 dB/mm). These numbers are in accord with various experiments.6,11,12 It is instructive to 

compare these wave-number shifts to those that are associated with mass loading in the Ni film. 

We have assumed Niρ′  = 8.908 g/cm3, a Poisson ratio 0.31ν = , and a Young’s modulus Y  = 

190×1010 dyn/cm2 and where 11
2 2

11 12

s
s s

′
′ ′−

= 21
Y
ν−

. Based on these values, mass loading predicts 

wavenumber shifts of ~0.8%. The effects on the SAW due to spin-wave back-action are thus 

typically an order of magnitude lower than mass-loading.  

As film thickness h  increases, Eqn. (21) predicts that Rayleigh
MEβΔ increases linearly with h

and depends only on the z  component of the particle velocity.  But as the film becomes thicker, 

we expect that yz shear strains and their impact on the stress fields within the piezoelectric will 

become non-negligible. Thus there will be y  dependent particle velocity fields at order (1)′v  in 

the film that can be expressed in terms of the unperturbed particle fields (0)
yv′ and (0)

zv′ . These (1)′v  
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fields will generate y -dependent components of ( , )RF th r  that will then drive thickness 

dependent spin-wave amplitudes (1)δm . These spin-wave amplitudes (1)δm  will contribute to 

magnetoelastic traction forces on the SAW at second order (2)

0
ˆ

y=
′ ⋅T y  arising from the term 

2 z yB m m  in the stress tensor. Such stresses create back-action forces on the SAW that reverse sign 

depending on whether the projection of 0m  onto the z  axis is aligned or anti-aligned with the 

wave-vector β  . Such effects have been observed clearly in angular dependent SAW attenuation 

measurements with thicker Ni films where h  = 50 nm and where hβ  > 0.15.19  Perturbation 

theory predicts that, at least initially, these effects must scale as 2h  as they result from back-

action forces of second order.  

 We do not go through the calculation of these second order effects here. Our main point 

is that the perturbation theory enables one to programmatically calculate SAW attenuation and 

velocity shifts arising from spin-wave magnetoelastic back-action, determine at what order 

various effects appear, how they scale with film thickness, and what their strength is without 

resorting to various ad-hoc fitting parameters. Furthermore, the perturbation theory allows for a 

clear physical picture and realistic computational framework for how spin-wave back-action 

modifies time-dynamic and thickness-dependent stress/strain fields and electromechanical 

transmission line currents/potentials at the thin film/piezoelectric interface. Knowledge of the 

interfacial stress/strain fields and currents/potentials allow for extraction of various physical 

quantities such as the magnetoelastic coupling in the film or the magnetoelectric coupling at the 

magnetic/piezoelectric interface. For example, measurement of the transmission line current out 

of phase with the SAW potential (related by the imaginary part of Rayleigh
MEZ  in Eqn. (21)) along 

with knowledge of kH , sM , and K⊥  enables extraction of the magnetoelastic coupling effB  in a 
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way that is separable from other phenomena affecting the transmission line impedance (e.g., 

mass/capacitive loading and ΔE effects).  

The calculation of the various fields at the interface may also be important for a matter 

that we have ignored throughout the paper – the magnitude of the spin-wave damping Γ . 

Typical values of damping in Ni under uniform-mode ferromagnetic resonance are of order ~ 

0.04.26 However, values extracted from SAW-driven spin-wave resonance experiments are 

considerably larger with Γ  ~ 0.1- 0.2.6,11,19 The spin-wave damping Γ  is, in fact, the only fitted 

quantity in the theory and parametrizes all the irreversible energy transfer out of the SAW/spin 

wave system to other degrees of freedom. It is quite plausible that this enhanced spin-wave 

damping Γ  is related to the back-action stress and strain fields generated by the elastically-

driven spin-wave resonance (with the typical smaller magnetic damping of order 0
NiΓ   ~ 0.04) 

and the irreversible transfer of energy out of these fields into substrate modes. Thus a 

perturbative calculation of the elastic back-action fields and computation of the coupling of these 

surface fields to bulk modes might lead to an explanation of the how the spin-wave damping 0
NiΓ  

becomes dressed and leads to the enhanced damping Γ  as observed in experiment. This could 

provide a framework for understanding dissipation of elastically-driven magnetic resonance 

processes and energy transfer in magnetic thin film/acoustic actuator hybrids. 
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Figure 1. Coordinate system for SAW propagation and schematic of magnetic film with 
thickness h  on top of piezoelectric substrate. The film is elastically strained by a SAW traveling 
in the substrate with wavelength SAWλ  and with a penetration depth of order SAWλ into the 
piezoelectric. 

 

Figure 2. The ηζξ  coordinate system used in LLG linearization with +ξ  defined to be along the 
equilibrium 0m  direction. The angles 0φ  and Hφ  that the equilibrium magnetization and applied 
field make with respect to z+  (the SAW propagation direction) have also been defined. 

 

Figure 3. Calculated shifts in the wave-number Rayleigh
MEβΔ  of a Z-propagating Rayleigh SAW on 

YZ-cut LiNbO3 vs. appH  due to the magnetoelastic backaction of a  spin-wave resonance in a 10 

nm thick Ni film. The field is swept at Hφ  = 45º with respect to the Z axis. 


