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Abstract
Given the unique optical properties of LiF, it is often used as an observation window in high-

temperature and pressure experiments; and, hence, estimates of its transmission properties are

necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF

at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an

empirical potential validated against ab initio phonon density of states, we estimate the thermal

conductivity of LiF at high temperatures (1000–4000K) and pressures (100–400 GPa) with the

Green-Kubo method. We also compare these estimates to those derived directly from ab initio

data. To ascertain the correct phase of LiF at these extreme conditions we calculate the (relative)

phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy.

We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial

stages of compression in high-stress ramp loading experiments and show the degree of anisotropy

induced in the conductivity due to deformation.
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I. INTRODUCTION

LiF is a ionic solid that is particularly transparent to short wavelength radiation due to

its large band gap and hence is commonly used in optics for high-pressure and temperature

experiments, such as those related to the development of pulsed power1. LiF is also a com-

ponent in molten salts frequently employed as high-temperature thermal fluids. Estimates

of the transport properties of LiF are important to both these applications. Specifically, in

dynamic high-pressure experiments, a LiF window maintains the pressure at the sample in-

terface where velocimetry measurements are typically made. Due to the extreme conditions,

the necessary transmission properties are difficult to measure directly. In these experiments,

a shock or a near-shock ramp compression with pressures up to 800 GPa2 is generated by

a variety of means and the material response is measured using velocity interferometry, see,

e.g. , Refs. 2–6. There are many efforts concentrating on estimating the optical properties of

LiF crucial to this measurement, see, e.g. , Refs. 2, 7–9. Due to the short but finite timescale

of dynamic material experiments, the thermal conductivity of LiF windows can significantly

affect the temperature measured at the sample interface. In this work, we focus on calculat-

ing this thermal conductivity at the extreme conditions relevant to these experiments with

the goal of understanding the non-equilibrium energy transfer that governs their behavior.

The material properties of LiF have been explored in experiments and simulation pri-

marily nearer to ambient conditions. For instance, Thacher10 measured the sound velocity

and thermal conductivity of LiF at temperatures less than 100 K. At ambient pressure,

Ref. 10 shows that the thermal conductivity of LiF peaks at about 2 W/m-K near 20 K,

where the quantum increase of heat capacity begins to be dominated by the decrease in

conductivity due to Umklapp scattering. Andersson and Bäckström11 were able to measure

the heat capacity and thermal conductivity of LiF at room temperature up to pressures of 1

GPa. They showed a linear dependence of thermal conductivity on pressure and measured

a conductivity value of 16.3 W/mK at 1 GPa. Phase and other transitions can complicate

measurements at higher temperatures and pressures. Given that the full phase diagram for

LiF is not known, Smirnov12 computed an ab initio phase diagram of LiF over pressures

ranging from 0 to 500 GPa and temperatures ranging from 0 to 12000 K together with the

elastic properties and associated Debye temperatures. Smirnov12 predicted that the struc-

ture of LiF is the NaCl-like arrangement B1 at low temperature and pressure but transitions
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to the CsCl-like arrangement B2 at higher pressures and temperatures. Smirnov correlated

his results with experimental data by Kormer13 and Boehler et al.14. (See Root et al.15

for a similar study of MgO where ab initio molecular dynamics and quantum Monte Carlo

methods were also employed to predict a phase diagram at extreme conditions.) Boehler et

al.14 studied the high pressure melting regime of LiF with diamond anvil experiments and

classical molecular dynamics (MD) fitted to properties at standard temperature and pres-

sure. Clérouin et al. Ref. 16 used ab initio dynamics to estimate the optical properties of LiF

along the shock Hugoniot where it transitions from a transparent solid to a reflective plasma.

Belonoshko et al.17 investigated LiF melting with MD using a potential tuned with ab initio

data and compare to existing diamond anvil and shock experimental data. In particular,

Belonoshko et al. showed that density as a function of pressure and the radial distribution

function computed with their potential compares well with trusted data. They also make

clear the distinction between thermal instability and melting especially for small systems at

high pressures using a phase coexistence method. Also using classical MD, Young18 studied

ion damage of LiF crystals. Related to thermal properties of LiF, Nüsslein and Schröder19

calculated the dispersion and phonon density of states (phDOS) via polarizable model of the

inter-atomic interactions of LiF at 0 K. Dolling et al.20 also calculated the phDOS of LiF

via lattice dynamics and compared it to dispersion data derived from slow neutron inelastic

scattering. In their work, the crystal has phonon content up to 20 THz with most of the

low frequency content attributed to the F ion. Recently, Stegailov21 calculated the phDOS

with density functional theory with the generalized gradient approximation and showed the

onset of mechanical instability, which may lead to defect formation or melting, due to hot

electrons when the electron temperature reaches 37,000 K.

Following this body of work, in this paper we use MD together with the Green-Kubo

(GK) formalism22–27 to estimate the thermal conductivity of LiF at stresses on par with

the elastic moduli and temperatures in excess of the melt temperature at ambient condi-

tions. In particular, we investigate both volumetric and uniaxial deformation modes similar

to (non-Hugoniot) ramp compression experiments. (Ref. 9 makes a corresponding study of

the optical properties of LiF.) Generally speaking, classical MD is well-suited to simulat-

ing ionic solids since essentially all heat propagates via phonons. The related publications,

Refs. 28–34, are the few examples of estimating the thermal conductivity of alkalis with

classical MD and typically focus on the thermal properties of molten salts with applications
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to high temperature thermal transfer fluids. The strong ionic character of LiF leads to the

usual complications due to long range Coulomb interaction, requiring dipole corrections and

large cell sizes; but the main issue is that MD is highly reliant on empirical potentials.

There has been some work on suitable potentials for ionic solids like LiF, typically of the

Buckingham18,35 or Born/Tosi-Fumi36–38 forms. A high quality potential parameterization

for LiF of another form was developed by Ishii et al.31 but focussed on the properties of

molten mixtures, see also Refs. 32–34. On the other-hand, Belonoshko et al.17 carefully

constructed a Tosi-Fumi/Born-Mayer-Huggins potential to suit high-pressure and tempera-

ture conditions by dropping the unstable terms in the full Tosi-Fumi form, and compared its

behavior to literature and their own density functional theory (DFT) results. Given the find-

ings in Ref. 17, it was evident that the MD potential may not transition to the most stable

phase with changes in pressure and temperature but instead becomes stuck in a metastable

state. We used this fact together with a phase diagram independently calculated with DFT

to estimate thermal conductivity over pressures ranging from 100 to 400 GPa and temper-

atures ranging from 1000 to 4000 K. To compute the phase diagram, we follow Smirnov’s

work12 and others39–41 and use plane augmented wave (PAW) DFT with the local density

approximation (LDA) instead of the linear muffin tin orbital method Smirnov employed to

estimate the zero temperature enthalpy and entropy of the phonon population. From a

dynamical matrix calculated with DFT, we are able to estimate the entropy component of

the free energy with a quasi-harmonic model. The range of the free energy estimated with

the quasi-harmonic model limited by the mechanical stability which we also estimated with

the ab initio bond stiffnesses governing the phonon propagation. In addition, we use the

ab initio phDOS to validate and recalibrate the Belonoshko parameterization for thermal

conductivity estimates.

II. THEORY

Given a definition of the heat flux J, the thermal conductivity tensor κ can be obtained

from the Green-Kubo formula dependent on the time-correlation of J with itself:

κ =
V

kBT 2

∫ ∞
0

〈
J(0)⊗ J(t)

〉
dt , (1)
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where V is the system volume, T is the temperature, kB is the Boltzmann constant. The

bracket 〈·〉 denotes the appropriate ensemble average, where it is important to note that

〈J〉 = 0 in equilibrium. A microscopic formula42,43 for the heat flux J is

J =
1

V

∑
α

(
εαI + νTα

)
vα , (2)

where the per-atom energy εα is formed from the kinetic energy of the atom α and a reason-

able partition of the total potential energy comprised of short-range bonds and long-range

Coulomb interactions to individual atoms44, and the virial stress να for atom α in terms of

fundamental quantities (which is given in App.A). Classical molecular dynamics (MD) pro-

vides the necessary positions xα, velocities vα, and forces fα, from the trajectories obtained

by integrating Newton’s equations of motion, mαẍα = fα, given an initial configuration

{xα(0)} and atomic masses mα. The total force fα on an atom α is the sum of interatomic

forces derived from an empirical potential Φ({xα}). For ionic solids like LiF, explicit charges

qα are typically constant and located at ion cores.

A widely-used potential for ionic materials is the Tosi-Fumi/Born-Mayer-Huggins (TF/BMH)

potential37,45–47. It is a combination of long-range Coulomb and short-range ϕ (repulsion)

pair-wise interactions

Φ =
∑
a≤b

α6=β∑
α∈Aa
β∈Ab

φab(rαβ) where φab(r) =
zazbe

2

εr
+ Aab exp(−Babr)−

Cab
r6
− Dab

r8︸ ︷︷ ︸
ϕab(r)

(3)

for species a,b with associated groups of atoms Aa,Ab; inter-atomic distance rαβ = ‖xα−xβ‖;

and charge qα = zae for α ∈ Aa. Here, ε is the (vacuum) permittivity and e is the elementary

charge. Of the empirical parameters: Aab, Bab, Cab andDab, the last two are related to dipole

interactions and are set to zero for high pressure stability considerations by Belonoshko et

al.17 in their model of LiF. The periodic images participating in the Coulomb forces on

the atoms in the system extend well beyond the explicitly represented periodic box. For

efficiency, the energy Φ is decomposed into long (reciprocal k-space) and short (real x-space)

components. This decomposition is the essence of Ewald summation and the Particle-

Particle Particle-Mesh (PPPM) method48–52 (see App.A for more details).

To validate an empirical potential for calculation of thermal conductivity ideally all the

properties related to the phonon population and propagation would be compared with ex-

perimental or ab initio data. In lieu of a full comparison of the dispersion relationship for
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harmonic waves and related properties for anharmonic interactions, we follow others in com-

paring the elastic constants and phonon density of states related to the phonon dispersion

and wave speeds. As derived from the dispersion relationship of the material, the phonon

density of states (phDOS) is linked to the thermal conductivity of the material. The dis-

persion relationship is determined by the matrix of bond stiffnesses K, which is composed

of sub-matrices of linearized force constants:

[K]αβ =
∂2Φ

∂xα∂xβ

∣∣∣∣
xα=yα

= − ∂fα
∂xβ

∣∣∣∣
xα=yα

(4)

referenced to a given lattice configuration yα
53–55. The dynamical matrix, a Fourier trans-

form of K, results from applying a plane wave ansatz for the motion of the atoms about

lattice positions yα:

[D(k)]αβ =
∑
`

1
√
mαmβ

Kαβ exp (−ık · (xα − xβ − `)) , (5)

where ` ranges across all periodic images of the unit cell including the original one. The dy-

namical matrix determines the eigenvalues ω2
i for a given propagation direction (wave vector)

k and polarization. The phDOS is constructed by sampling the eigenvalues ω2
i of Eq. (5)

throughout the Brillouin zone. The same procedure can be used in the context of an ab

initio density functional model of the material where the forces fα are the Hellman-Feynman

forces. The dynamical matrix also determines the (linear) phonon and long-wavelength

elastic stability. The elastic moduli tensor

[B]iAjB =

[
∂2Φ

∂F∂F

]
iAjB

=
1

V0

[∑
α,β

∂2Φ

∂xα∂xβ
:
∂xα
∂F

∂xβ
∂F

]
iAjB

=
1

V0

∑
α,β

[
[K]αβ

]
ij

[Xα]A [Xβ]B

(6)

is related to the tensor of bond stiffnesses K and determines the stability in the continuum

limit. Here, F = ∂x
∂X

is the deformation gradient, Xα are the stress-free lattice sites, and

yα = FXα. See App.B for more details.

LiF can change phase over a range of temperatures and pressures. To determine the

relatively stable phase as a function of temperature T and stress P, estimates of the Gibbs

free energy G:

G(P, T ) = F (F(P, T ), T ) + P · F(P, T ) , (7)

a Legendre transform of Helmholtz free energy F , needs to be calculated for both B1 and

B2 structures. Here, P = ∂FF |T is the first Piola-Kirchhoff stress. Assuming positive
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frequencies ωi, the Helmholtz free energy F is commonly estimated with a quasi-harmonic

(QH) model:

F (F, T ) = Ec(F) +
1

2

∑
~ωi(F) + kBT

∑
i

ln

(
1− exp

(
~ωi(F)

kBT

))
, (8)

which is based on the partition function of independent oscillators (see e.g.Ref. 56(Chap.

5)). This model is composed of two zero temperature components: (a) the cohesive energy

(referenced to an infinitely dispersed state) which can be equated with Ec(F) = Φ({FXα}),

and (b) the (non-classical) zero point/ground state energy of the phonons 1
2

∑
~ωi(F) =

1
2
~ tr
√
D; together with a third term: the temperature-entropy product approximated by

the harmonic oscillator model. Given the wide band-gap of LiF which is still in excess

of 10 eV at the pressures we consider9, we neglect the thermal electron contribution in

this approximate model. Clearly, an equation of state (EOS) P = P(F, T ) is necessary to

transform the Helmholtz free energy F to the Gibbs free energy G. At zero temperature the

data needed to construct an accurate EOS can be calculated with DFT. The change of stress

with temperature can be estimated with the QH model Eq. (8)57 or from MD simulations.

Assuming a first order dependence of stress on temperature, we can use

P = P0(F) + MT (9)

to form the necessary inverse F = P−1
0 (P −MT ). Since the systems of interest are cubic,

the thermal expansion tensor M ≡ ∂2F
∂T∂F

= ηI, and hence only one coefficient η needs to be

determined to effect thermal expansion.

III. METHODS

As discussed in the introduction, we have based this study on the potential by Belonoshko

et al.17. This potential was specifically parameterized for high pressure states where the Cab

and Dab parameters of the TF/BMH potential in Eq. (3), which cause instability, are set

to zero. Since Belonoshko et al.17 were primarily concerned with investigating phase dia-

gram and mechanical properties and we are employing the potential to estimate thermal

conductivity, we compared the phDOS resulting from the TF/BMH potential with the Be-

lonoshko et al. parameters to that from an ab initio calculation as a measure of the validity

of phonon transmission. For the DFT calculations, we employed the local density approx-

imation (LDA), a plane wave basis with cutoff 800 eV with standard pseudo-potentials58,
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A [eV] B [Å−1] A’ [eV] B’ [Å−1]

Li-Li 98.933 3.3445 " "

Li-F 401.319 3.6900 521.714 "

Li-Li 420.463 3.3445 " "

TABLE I. Potential parameters of the Tosi-Fumi/Born-Mayer-Huggins style potential Eq. (3): A,B

from Ref. 17 and modified A’, B’ based on matching an ab initio phDOS, see Fig. 2. Note in Ref. 17

the short-range parameters C and D are set to zero for high pressure stability. Also unit charges

are assigned to Li (zLi =+1) and F (zF = -1).

and 20×20×20 k-point Monkhorst-Pack grid, which were arrived at via convergence studies

for the dynamical matrix and elastic moduli.

Fig. 1 shows that the phDOS (calculated via the DFT code VASP58,59 and the phonopypackage60,61)

is quite sensitive to compression and hence pressure. The presence of negative frequencies

in the phDOS of compressed B2 structures also indicates that the B2 phase is unstable for

lattice constant a > 2.1 Å (and number density n = N/V < 0.215 Å3). We compared

the phDOS for simulations with 2×2×2, 3×3×3, and 4×4×4 unit cells with the correc-

tion based on Born effective charges61 and found results essentially indistinguishable and

hence we employed systems with 2×2×2 for the remainder of the calculations. For the

comparison of the phDOS derived from the Belonoshko potential and that from DFT, we

picked the compressed B1 configuration with a= 3.285 Å (corresponding to 2000 K, 200

GPa lattice constant based on the Belonoshko parameterization) as representative of our

pressure-temperature region of interest. Given the poor match shown in Fig. 2, we re-tuned

the potential to achieve a better correspondence, particularly of the peaks in the phDOS,

which is also shown in Fig. 2. Note that only changing Li-F well depth resulted in stable

modifications of the crystal that maintained a reasonably representative lattice constant:

B1: 4.051 Å (original) vs. 4.206 Å (modified), and B2: 2.514 Å (original) vs. 2.588 Å

(modified), at zero temperature. The resulting and original parameters are given in Table I.

Regarding the possibility that LiF can have B1, B2, and liquid phases over the pressure–

temperature range of interest and these structural changes can influence the thermal con-

ductivity, we adopted the approach to: (a) use DFT to predict the appropriate phase for

given stress and temperatures conditions, and (b) use this phase to initialize the MD sim-
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FIG. 1. Dependence of the phonon density of states on deformation cf. Ref. 20 (Fig. 6). The

phDOS peak location is sensitive to strain through the dynamical matrix. Also note that the

fact that the phDOS is non-zero at zero frequency for B2:F indicates the existence of modes with

negative frequencies and hence mechanical instability at T=0 K. For reference, B1: lattice constants

a=3.2, 3.4, 4.0 Å, correspond to atomic densities n = 0.24, 0.20, 0.13 atom/Å3, and B2: a=2.0,

2.2, 2.4 Å, correspond to n = 0.25, 0.19, 0.14 atom/Å3, where aB1 = 3
√

4aB2 gives the same density

n.

ulation which generally stays in this phase even if it is only meta-stable with respect to

the empirical potential. We did observe some deviations from this assumption, including

defect formation and melting, which are noted in the Results section. To this end, the QH

model (8) derived from the same dynamical matrix used to generate phDOS was employed

to estimate the relative free energy ∆G = GB2−GB1 and thus the thermodynamic stability

of the B2 phase relative to B1. This model is built upon direct ab initio estimates of the

zero temperature enthalpy and limited in its range of validity by the mechanical stability of

the phonon population at each particular deformation state.

To construct the B1–B2 phase diagram, first we constructed an equation of state. We

interpolated the function P0 for B1 and B2 directly from DFT data and estimated the ther-

mal expansion coefficient η from MD data (as opposed to from the QH model) due to its full

representation of anharmonic effects and its good correlation with measured values. Fig. 3

shows the relevant pressure versus density curves for a range of temperatures. Clearly, the

finite-temperature MD pressure curves are offset from the zero-temperature DFT data so

that positive thermal expansion coefficients are obtained and the bulk modulus for the MD
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FIG. 2. Comparison of MD and DFT phonon partial density of states for the B1 structure with

lattice constant a=3.285 Å which corresponds to 200 GPa and 2000 K (based on the Belonoshko

potential). In the lower phDOS the solid lines are the results for the modified TS/BMH potential

where the well-depth parameter for the Li-F interaction has been increased by 30% (refer to Table I)

relative to the original Belonoshko parameterization (dashed lines) and compare well to the upper

ab initio phDOS.

model are effectively the same as for the DFT; however, the zero-temperature equilibrium

lattice constants do differ slightly. Our estimates of the expansion coefficient η employed

in Eq. (9) are: B1: 0.008056 GPa/K, B2: 0.01164 GPa/K, for the original Belonoshko

parameterization, and B1: 0.007411 GPa/K, B2: 0.01082 GPa/K, for the modified param-

eterization. For reference, the measured coefficient of thermal expansion (η divided by the

bulk modulus) is 37 × 10−6 /K62 at ambient conditions which corresponds to our estimate,

30 × 10−6 /K, for the unmodified B1 potential. Also apparent is the fact that the B1 and B2

phase have similar mechanical responses with B2 being slightly, but distinctly softer than

B1 at the same (number) density n.

Next, we ascertained the mechanical stability of the B1 and B2 phases through the ab

initio estimates of the elastic moduli and phDOS. Fig. 4 shows the pressure and elastic

moduli calculated from the DFT data, and the derived stability moduli (see App.B for

details). The results: (a) B1 is stable over the high pressure range we consider, and (b)

B2 is only conditionally stable (a < 2.15 Å, n > 0.2 atoms/Å3) based on linearized, long-

wavelength elastic stability considerations, are comparable to the findings in Ref. 12(Fig.

2).63 Examining phonon spectrum corresponding to the phDOS data in Fig. 1 gives a more
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detailed account of stability since each mode can be examined independently (see App.B for

a discussion of the connection between the two stability criteria). From the phDOS data,

B2 is apparently stable for a < 2.1 Å, which corresponds approximately to pressure p ≈

120-130 GPa for the temperatures we consider. (Coincidently, Belonoshko17 speculates that

a B1–B2 transition occurs at approximately 130 GPa, which is in the neighborhood of n =

0.2 atoms/Å3 given Fig. 3.)

Finally, we evaluated the free energy difference. The zero-temperature energy (en-

thalpy) differences between B2 and B1 shown in Fig. 5 display trends similar those shown

in Ref. 12(Fig.1). Using the QH model Eq. (8), we calculate the zero point energy differ-

ence ∆F0, omitted in Ref. 12, to be nearly uniformly 0.02 eV/atom over the pressure range

we examined, and, hence, has no significant effect on the resulting B1-B2 phase separator.

In fact, the change in zero-temperature enthalpy difference between the two phases over

the given pressure range is dominated by the pressure-volume work.64 Unlike Ref. 12(Fig.6)

which shows a transition to B2 at temperatures and pressures as low as 1500 K and 150

GPa, we estimate that ∆G > 0.1 eV over the given T and p range so B1 is always relatively

thermodynamically stable. The contours of ∆G resemble the slope of B1-B2 separator in

Ref. 12(Fig.6), and the elastic moduli as a function of pressure and phase are similar. The

QH model of the free-energy difference is arguably better than Debye model tuned by linear

muffin tin data employed in Ref. 12 since the QH model does not make assumptions about

form of the dispersion relation; however, its validity at these temperatures is suspect. As

Fig. 6 shows, the thermal displacements predicted by the QH model are large, but still much

smaller than those given by MD with similar elastic properties. This data gives credence

to the notion of thermal stabilization of apparently mechanically unstable phases. In this

form of non-linear stability, at high temperatures atoms primarily reside outside the zero-

temperature minimum state which may be mechanically unstable and in nearby regions of

the energy surface with positive curvature65,66.

After these validation and phase determination procedures, we thermalized and pres-

surized LiF lattices with a Nosé-Hoover thermo-barostat (using the classical MD code

LAMMPS67) in order to obtain the equilibrium flux correlations necessary to estimate ther-

mal conductivity. After 20 ps of equilibration, we used 10 replica systems with initial condi-

tions selected from the constant temperature-pressure equilibration simulations of constant

energy dynamics to compute the average flux correlation. After transients due to the re-
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laxation from constant temperature dynamics subsided, 100,000 samples of the correlations

contributing to the average 〈J(0) ⊗ J(t)〉 were collected every ten 0.5 fs time-steps. As a

last preliminary, given the spatial decomposition employed by PPPM, we checked for finite

size effects in the flux correlations. Fig. 7 shows that they are negligible with respect to the

inherent noise even for periodic systems as small as 4×4×4 unit cells; hence, in the following

studies we used 4×4×4 systems and a real space/k-space decomposition cutoff 1 nm for the

PPPM electrostatic solver.
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FIG. 3. Pressure as a function of (volumetric) compression and temperature for B1 (solid lines) and

B2 (dashed lines) phases. The 0K (grey) contours are extrapolated from the higher temperature

data using the linear thermal expansion model, Eq. (9). This extrapolation is parallel but not

coincident with the DFT data (black) which implies that the MD and DFT models of LiF have

similar elastic elastic properties but different zero-temperature equilibrium lattice constants. The

inset shows corresponding data for the modified MD potential. For reference, the Rose-Vinet fits

to the DFT data are: B1: K= 83.93 GPa, K ′= 4.594 GPa, a= 3.905 Å, and B2: K= 78.42

GPa, K ′= 4.818 GPa, a= 2.464 Å, where K is the zero-temperature bulk modulus, and a is the

corresponding lattice constant. For reference, the measured, ambient lattice constant is 4.03 Å68;

IV. RESULTS

Using the Green-Kubo (GK) method described in Sec. II and the preliminaries given

in Sec. III, we compute the thermal conductivity for compressed states in two studies for

different deformations of the lattice: (a) volumetric compression over a range of pressures
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point of B2 instability. Here Ec denotes cohesive energy, F0 the zero-point phonon energy, pV

pressure-volume work and G the Gibbs free energy.
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p = 100–400 GPa and temperatures T= 1000–4000 K, and (b) uniaxial compression with

normal stress 1–50 GPa to simulate conditions at the initiation of a ramp experiment. Since,

at ambient pressure the measured Debye temperature for LiF is 732 K69 (Table 12.1) and

the melt is temperature 1121 K70, our conditions are well within the classical regime and

some of the states may melt.

In preliminary studies, we found the difference in the estimated conductivity with the

modified vs. the original Belonoshko parameters was at most 10% over the range of interest

and typically only 3%. Since these differences were comparable to the error in κ (< 5 %) es-
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timated from 10 replicas, we report conductivities derived from the original parameters. We

attribute these small differences between parameterizations with distinct phDOS, and hence

dispersion characteristics, to the observation that low frequency/long wavelength phonons

carry most of the heat and in that range the phDOS of the two parameterizations agree

fairly well. In fact, G. Chen and co-authors Refs. 71, 72 showed that 90% of the heat in Si at

ambient conditions is carried by phonons with frequencies less than about 2 THz (estimated

from the reported 2-5 nm wavelength and the given elastic moduli).

A. Volumetric compression

First, we compared the conductivity κ estimated with MD GK and a method directly

employing ab initio data for B1 LiF at constant volume (a= 3.2 Å) over the temperature

range T=1000–4000 K. Specifically, in the second method the Boltzmann transport equation

(BTE) was parameterized with ab initio second and third order force constants derived from

2×2×2, and 4×4×4 unit cell systems respectively and solved in the single mode relaxation

time approximation using the phono3pypackage with a 21 × 21 × 21 Monkhorst-Pack grid.

See Refs. 73, 74 for details, and the similar approach in Ref. 75. Given the differences in the

resulting thermal conductivity, shown in Fig. 8, we also calculated κ using the BTE with the

second and third order force constants from the empirical potential, Eq. (3). These results

lie essentially halfway between the Green-Kubo and ab initio BTE κ(T ) curves. Examining

the ab initio and empirical second and third-order force constants it appears the majority

of the differences are in the third order constants determining the Umklapp processes (as

opposed to the second order which determine the phonon wave speeds). This is consistent

with the elastic moduli of the empirical potential nearly matching that of the DFT. In

addition, the MD estimates are uniformly lower than those of the BTE, which is consistent

with fact that the MD has a complete, albeit less exact, Hamiltonian with no truncation of

the phonon scattering interactions and the temperature is high enough for higher order and

non-linear mechanisms beyond those captured by a single relaxation time to be significant.

So roughly half the difference in the MD GK and ab initio BTE results can be attributed to

the differences in the higher order force constants and the remainder due to the differences

in the GK and BTE methods used. Also noteworthy, the thermal conductivity derived

from the BTE model displays perfect T−1 scaling, whereas the MD estimates show slightly
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stronger decay with temperature.
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Fig. 9 shows the thermal conductivity estimated with MD GK for pressures in the range

1–400 GPa and temperatures 1000–4000 K, and Table II gives the corresponding data for

both the B1 and B2 phases. In Fig. 9 the phase of the samples used to create the contour

plot are marked and a few of the high temperature, relatively low pressure systems melted.

As can be seen in Table II, the estimated thermal conductivity for the B1 and B2 phases

have comparable values and same trends. This is plausible given that the elastic properties

of the two phases are similar and a simple kinetic model of thermal transport indicates

that the resulting comparable sound speeds should lead to similar conductivities. The same

basic kinetic interpretation is consistent with the observations that the thermal conductivity

increases with increased pressure due to higher wave speeds and with lower temperature due

to relatively less scattering and longer phonon mean free path. These trends are monotonic

and have decreasing effect on the thermal conductivity.

Although the Belonoshko potential was tuned to high pressure conditions, we also calcu-

lated the thermal conductivity nearer ambient conditions. The values we obtain, e.g. 2.8±0.2

W/mK at 1 GPa, 1000 K and 1.8±0.2 W/mK at 1 atm, 1200 K (melt, refer to Table II) are

roughly comparable to the value 1.5 W/mK at 1 atm, 1150 K (melt) given by Ishi et al.31

using a different empirical potential and the experimental measurements: 15.7 W/mK at

0.1 GPa, 16.3 W/mK at 1.0 GPa, 300 K11, and 4.0 W/mK at 1 atm, 314 K62 of solid LiF.
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FIG. 9. Volumetric deformation: thermal conductivity κ [W/K-m] as a function of pressure P

[GPa] and temperature T [K], and crystal structure. The phase of each sample is indicated by the

color of the square data points: B1:blue, B2:red, melt:black. The red dashed line corresponding to

the B1-B2 transition calculated by Smirnov12 is shown for reference.

B. Uniaxial compression

For this study, we compressed one direction of a B1 LiF crystal while fixing the lateral

dimension to a 4.02 Å lattice spacing to mimic initial phases of ramp compression with

inertial confinement and examine the resulting differences in the thermal conductivity re-

sulting from unequal principal strains. The compression direction was chosen to be 110,

since this direction lacks surface polarization. The lateral directions were 11̄0 (equivalent to

110) and 001, respectively. The compressions λ ∈ {0.8, 0.9, 1.0} examined corresponded to

normal stresses 1–50 GPa in the compressed dimension (note that 75 GPa MD crystal was

unstable and a dislocation formed) and temperature range 1000–3000 K. It was not possible

to predict which phases were thermodynamically stable over this deformation–temperature

range since we predicted that B2 has unstable phonons over the range we examined. The

phDOS for B1, Fig. 10, shows that the compressed direction becomes stiffer (the sound speed

is roughly inversely proportional to slope of phDOS) and higher frequency content is added

to the phonon spectrum.
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(a)

p T κB1 κB2

1 1000 2.83 -

2000 5.13 -

3000 3.15 -

4000 2.01 -

(b)

p T κB1 κB2

100 1000 27.29 15.42∗

2000 12.93 8.52∗

3000 7.19 6.04

4000 5.20 5.54

(c)

p T κB1 κB2

200 1000 45.20 40.45

2000 19.16 19.67

3000 11.60 12.34

4000 8.47 6.45

(d)

p T κB1 κB2

300 1000 57.23 61.79

2000 24.38 28.36

3000 15.37 18.04

4000 10.96 7.82

(e)

p T κB1 κB2

400 1000 68.18 74.88

2000 29.43 34.20

3000 27.28 22.69

4000 13.06 8.71

TABLE II. Volumetric compression: thermal conductivity κ [W/K-m] as a function of pressure

P [GPa] and temperature T [K], and crystal structure (values in italics are for melted crystals).

Errors in estimated κ are < 5 % based on predictions from 10 replicas. ∗ Note for B2 at 100 GPa,

1000-2000 K approximately half of the replicas transform to twinned B2 structures in initialization.

Fig. 11 shows stress response to these conditions and corresponding anisotropy of the

thermal conductivity of the B1 structure. Note that the initial lattice constant is not equi-

librium at the given temperatures which immediately induces the anisotropy shown. Also

the lateral stresses become nearly equal but distinct from the normal stress in the com-

pressed direction as the structure loses perfect crystallinity. Fig. 12 shows that the normal

conductivity follows similar trends with temperature and pressure as in the volumetric com-

pression case, namely in this state the highest conductivities are at the highest pressures

and lowest temperatures. The data for this study is tabulated in Table III.

V. DISCUSSION

In summary, we found that the thermal conductivity of LiF at high temperatures and

pressures is only marginally dependent on phase and ranged from about 5 W/mK to 70

W/mK over the range 1000–4000 K and 100–400 GPa. For our purposes, the fact that
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the two expected phases (B1 and B2) have similar conductivity offsets the difficulties in

determining their mechanical and thermodynamic stability. Our estimates are corroborated

by the limited experimental data available as well as direct ab initio estimates of thermal

conductivity. We also found that the uniaxial deformation expected to result from inertia

confinement of the targeted ramp compression experiments may lead to significant anisotropy

in the thermal conductivity. More rigorous treatment of the relative phase stability exist

in the literature than the method we selected, notably Ref. 66 which focussed on the in-

fluence of the anharmonic phonon energy and Ref. 76 which adapts the phase coexistence
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FIG. 12. Uniaxial compression: thermal conductivity in the compressed 110 direction.

technique of Ref. 77 to finite temperature DFT calculations, which may shed light on phase

transitions from B1 at high temperatures and pressures. Since our findings indicate that

these transitions are unlikely over our temperature and pressure range of interest, whereas

the formation of defects appear at relatively low uniaxial compression we intend to pursue

investigation of the influence of defects on the thermal conductivity of solid LiF next.
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(a)

σ11 σ22 σ33 T κ11 κ22 κ33

1 8 5 1000 3.50 3.78 3.61

1 1 2000 4.94 5.16 5.27

1 1 3000 3.04 3.20 3.34

(b)

σ11 σ22 σ33 T κ11 κ22 κ33

25 14 15 1000 7.99 7.20 6.00

19 20 2000 4.11 4.11 3.48

25 25 3000 5.98 5.58 5.84

(c)

σ11 σ22 σ33 T κ11 κ22 κ33

50 21 24 1000 11.59 9.04 6.51

50 28 2000 5.96 4.67 3.93

50 50 3000 5.64 5.51 5.60

TABLE III. Uniaxial compression: thermal conductivity κ [W/K-m] as a function of normal stresses

σ11, σ22, σ33 [GPa] and temperature T [K], for the B1 crystal structure (values in italics are for

melted crystals). Errors in estimated κ are < 5 % based on predictions from 10 replicas. Lateral

dimension set at 4.02 Å lattice.
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Appendix A: Virial stress with Coulomb interactions

Although we employ the PPPM method in Sec. IV the gist of how the virial stress and,

hence, the heat flux is obtained is easier to explain in the context of the Ewald sum50 (Eq.

7):

Φ =
1

2

∑
α 6=β

ϕ(rαβ) +
qαqβ
εrαβ

(
erfc

(rαβ
`

)
+ erf

(rαβ
`

))
=

1

2

∑
α 6=β

ϕ(rαβ) +
qαqβ
εrαβ

erfc
(rαβ
`

)
︸ ︷︷ ︸

real: Φ̄({xα})

+
2π

εV

∑
k 6=0

1

‖k‖2
exp

(
−1

4
‖k‖2`2

)
Re
∑
α 6=β

qαqβ exp (ık · xαβ)︸ ︷︷ ︸
reciprocal: Φ̃k({xα})

(A.1)

where the error function, erf(r/`), and its complement, erfc(r/`) = 1−erf(r/`), play the role

of a blending/cutoff function with parameter ` ∼ 3
√
V , and xαβ = xα−xβ is a relative position

vector. Note we have used the Fourier transforms Fx→k [
∑

α qαδ(x− xα)] =
∑

α exp ık ·

xα and Fx→k

[
1
r

erf(r/`)
]

= 1
‖k‖2 exp

(
−1

4
‖k‖2`2

)
. It follows, after dropping the species

subscripts a, b for clarity, that the per-atom energy for pair potentials is

εα =
1

2
mαvα · vα +

1

2

∑
β 6=α

(
ϕ(rαβ) +

qαqβ
εrαβ

erfc
(rαβ
`

))
+

2π

εV

∑
k 6=0

1

‖k‖2
exp

(
−1

4
‖k‖2`2

)
Re
∑
β 6=α

qαqβ exp (ık · xαβ)

(A.2)

cf. Ref. 51(Eq. 8). Thus, the expression for the per-atom virial stress να50–52 is:

να =− 1

2V

∑
β

[
− d

dr
ϕ(rαβ) + qαqβ

∑
k 6=0

2√
π`
rαβ exp

(
−
r2
αβ

`2

)
+ erfc

(
r2
αβ

`2

)]
1

r3
αβ

xαβ ⊗ xαβ

− 2π

εV

∑
k 6=0

∣∣∣∣∣∑
α

qα exp ık · xα
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2

1

‖k‖2
exp

(
−1

4
‖k‖2`2

)[
I−

(
2

‖k‖2
+

1

2
`2

)
k⊗ k

]
(A.3)

where I is the identity tensor and d
dr

erf(r/`) = 2√
π`

exp (−r2/`2), cf. Ref. 51(Eq. 22).
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Appendix B: Elastic moduli and stability

Many versions of the elastic moduli tensor exist at finite deformations like those inves-

tigated in this study and the elastic stability of crystal lattices and elastic materials has

been well studied, see, e.g. , Refs. 78–92. To connect continuum, elastic stability to atomic,

phonon stability, we will assume the current positions xα are given by small time-varying dis-

placements uα due to phonon modes superposed on large, static deformations characterized

by a homogeneous deformation of the zero temperature, equilibrium lattice FXα

xα(t) = FXα + uα(t) (B.1)

Since a homogeneous deformation maintains equilibrium, fα(FXα) = 0, and hence the

(linearized) Newton equation governing the phonon modes is

mαüα =
∑
β

Kαβuβ (B.2)

Likewise, in the continuum limit, such that x = FX+u, the linearized balance of momentum

ρ0ü = ∇X · (B∇Xu) =
∑
AjB

BiAjBuj,ABei (B.3)

governs the long-wavelength elastic waves. Here, ρ0 is the mass density in reference con-

figuration X. Since background stress P̄ = P(F) is homogeneous the system is also in

equilibrium at the continuum level. The elasticity tensor B of the first Piola-Kirchoff stress

P with respect to the deformation gradient has an atomic-level definition

B =
∂

∂F
P =

1

V0

∂2Φ

∂F∂F
=

1

V0

∑
α,β

[
∂2Φ

∂xα∂xβ

]
ij

ei ⊗Xα ⊗ ej ⊗Xβ =
1

V0

∑
α,β

[Kαβ]ij ei ⊗Xα ⊗ ej ⊗Xβ

(B.4)

where Xαβ ≡ Xα −Xβ. Further manipulation leads to

B =
1

V0

∑
α,β

[
1

‖FXαβ‖2

(
∂2Φ

∂x2
αβ

− 1

‖FXαβ‖
∂Φ

∂xαβ

)
FXαβ ⊗Xαβ ⊗ FXαβ ⊗Xαβ

+
1

‖FXαβ‖
∂Φ

∂xαβ

3∑
i=1

ei ⊗Xαβ ⊗ ei ⊗Xαβ

]

=
1

V0

3∑
A,B,C,D,i,j=1

[CABCDFiAFjC + SBDδij] ei ⊗ EB ⊗ ej ⊗ ED

(B.5)
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relating B to the more familiar elasticity tensor

C =
∂

∂E
S =

∂2Φ

∂E∂E
=

1

4

∑
(αβ),(γν)

∂2Φ̂

∂r2
αβ∂r

2
γν

Xαβ ⊗Xαβ ⊗Xγν ⊗Xγν (B.6)

of the symmetric second Piola-Kirchoff stress S with respect to the Lagrange strain E =

1
2

(
FTF− I

)
cf. Ref. 93(Eq. 4.6.11). Using the chain rule uj,AB = FkAFlBuj,kl, Eq. (B.3) can

be written as:

ρü =
∑
A,j,B

bikjluj,klei (B.7)

based on the push-forward of B94 (Eq. 4.2.34):

[b]ijkl =
1

det(F)

∑
J,L

[B]iJkL [F]jJ [F]lL = [c]ijkl + [σ]ik δjl (B.8)

where c is the push-forward of C by the deformation gradient:

[c]ijkl =
1

det(F)

∑
I,J,K,L

[C]ijkl [F]iI [F]jJ [F]kK [F]lL (B.9)

The Legendre-Hadamard criterion for dynamic stability requires that all infinitesimal

plane waves

u = a cos(k · x + ωt) (B.10)

have real-valued wave speeds. Here, a and p are the amplitude and polarization of the

displacement (such that a = ap ), and k and n are the wave number and propagation

direction (such that k = kn). This leads to an eigenvalue problem for the dyad n ⊗ p and

the strong ellipticity condition

(n⊗ p)T : b (n⊗ p) = [b]ijkl nipjnkpl > 0 (B.11)

This condition is satisfied when all the eigenvalues of the square matrix b(ij)(kl) are all real

and positive.

The moduli that VASP and other codes calculate are derivatives of the current, Cauchy

stress with respect to small strains about a given configuration, which is not c. To connect b

to the moduli obtained from perturbing the system about a given (not necessarily stress-free

reference) configuration, we start with the derivative of the Cauchy stress with respect to a
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displacement u about a deformed state F̄

∂xσ|F̄ · u = ∂x

(
1

det(F)
FSFT

)∣∣∣∣
F̄

· u

= − 1

det2(F̄)
det F̄ [tr ∂xu] F̄S̄F̄T +

1

det(F)
[∂xu] F̄S̄F̄T (B.12)

+
1

det(F)
F̄ ∂ES̄F̄

T 1

2

[
∂Txu + ∂Txu

]
F̄F̄T +

1

det(F)
F̄S̄F̄T (∂Txu)

formed from the basic Gâteaux derivatives in Ref. 95(Eqs. 3.69, 3.71, and 3.76). We recog-

nize that the third term on the right-hand side is c and σ̄ in the other terms, so that we can

form the Fréchet derivative of the Cauchy stress with respect to the small strain measure

ε = 1
2

(
∂xu + ∂Txu

)
as:

[∂εσ|F̄]ijkl = −σ̄ijδkl + δilσ̄jk + δjkσ̄il + cijkl (B.13)

which is the typical moduli calculated by finite differences or perturbation in terms of the

current stress σ̄ and push-forward of the tensor of the traditional elasticities C to the current

state. Eq. (B.13) is identical in form to corresponding equations in the often cited Ref. 83,

and in the independently derived Ref. 96, but differs in the interpretation as moduli about

a deformed state finitely far from the relaxed, stress-free material.

When Eq. (B.13) is combined with Eq. (B.8), the stability requirement (B.11) can be

applied to:

bijkl = δklσij − δilσjk − δjkσil + δjlσik + [∂εσ|F̄]ijkl (B.14)

For our purposes it suffices to find the stability conditions for an orthotropic modulus tensor

∂εσ|F̄ and a diagonal stress tensor σ =
∑

i σiiei ⊗ ei. Following Ref. 92, we obtain:

C̃ii >0, i ∈ 1, 6 (B.15)

C̃iiC̃jj >C̃
2
ij, i 6= j ∈ 1, 3 (B.16)

C̃11C̃22C̃33 + 2C̃12C̃23C̃13 >C̃11C̃
2
23 + C̃22C̃

2
13 + C̃33C̃

2
12 (B.17)

where C̃ij = Cij + 1
2

(σii + σjj), i 6= j ∈ 1, 3; C̃ij = Cij−σkk, i 6= j ∈ 4, 6, k−3 6= i, j; and we

have used Cij to denote the components of [∂εσ|F̄] using traditional Voigt notation. This

reduces to

C11 + 2C12 + 3p > 0, C11 − C12 > 0, C44 > 0 (B.18)

for cubic symmetry and a hydrostatic pressure σ = −pI. These stability criteria differ

from those in Ref. 83 and Ref. 96 in that the shear conditions are unaffected by the pressure
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and the volumetric instability criterion on the bulk modulus 1
3

(C11 + 2C12) is offset by the

pressure only.


