
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Thermalization after photoexcitation from the perspective
of optical spectroscopy

Jan Kogoj, Lev Vidmar, Marcin Mierzejewski, Stuart A. Trugman, and Janez Bonča
Phys. Rev. B 94, 014304 — Published  7 July 2016

DOI: 10.1103/PhysRevB.94.014304

http://dx.doi.org/10.1103/PhysRevB.94.014304


Thermalization after photoexcitation from the perspective of optical spectroscopy

Jan Kogoj,1 Lev Vidmar,2, 1 Marcin Mierzejewski,3 Stuart A. Trugman,4 and Janez Bonča1, 5
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We analyze thermalization of a photoexcited charge carrier coupled to a single branch of quantum
phonons within the Holstein model. To this end, we calculate the far-from-equilibrium time evolution
of a pure many-body state and compare it with predictions of the thermal Gibbs ensemble. We
show that at strong enough carrier excitation, the nonequilibrium system evolves towards a thermal
steady state. Our analysis is based on two classes of observables. First, the occupations of fermionic
momenta, which are the eigenvalues of the one-particle density matrix, match the values in the
corresponding Gibbs ensemble. This indicates thermalization of static fermionic correlations on
the entire lattice. Second, the dynamical current-current correlations, including the time-resolved
optical conductivity, also take the form of their thermal counterparts. Remarkably, both static and
dynamic fermionic correlations thermalize with identical temperatures. Our results suggest that the
subsequent relaxation processes, observed in time-resolved ultrafast spectroscopy, may be efficiently
described by applying quasithermal approaches, e.g., multi-temperature models.

I. INTRODUCTION

Equilibration and thermalization of closed quantum
many-body systems [1–3] are central topics in a broad
and very active field of quantum physics far from equi-
librium. Generic systems are expected to thermalize on
a level of eigenstates [3, 4] and the reduced density ma-
trices of their subsystems approach the Gibbs form [5].
In solids, charge carriers are always coupled to other de-
grees of freedom that represent their environment. This
assures that, at sufficiently long times after perturbation,
the system thermalizes.

Time-resolved optical experiments may, however, pho-
toexcite charge carriers on extremely short time scales [6–
12]. A state-of-the-art example is the recent work by
Dal Conte et al [7] that studied the time evolution of a
cuprate superconductor, photoexcited and probed within
10-20 fs. This time scale, which is only a fraction of a
typical phonon oscillation period, implies that the pho-
toexcitation can be, to a good approximation, considered
as a quantum quench, generating nonthermal states of
photoexcited carriers on short times.

The dynamics in a short time window is usually gov-
erned by excitations that couple most strongly to carri-
ers (we denote this time regime as primary relaxation).
On the other hand, the full equilibration process requires
redistribution of the excess energy over the whole en-
vironment, which is significantly slower than the pri-
mary relaxation time. A natural question thus arises,
at which time scale is one justified in describing the dy-
namics by using theories that rely on the assumption of
(quasi)equilibrium distributions (e.g., the so-called multi-
temperature models [13, 14]), and on which time scale are
genuinely nonequilibrium concepts required?

The part of the environment responsible for the pri-
mary relaxation may depend on a particular mate-

rial. The dominant relaxation channels are usually
phonons [15–31], bosons of electronic origin [7, 32–35], a
combination of the latter two [36, 37] or a direct carrier-
carrier interaction [38–41]. In this work, we are inter-
ested into systems where the primary relaxation channel
of photoexcited electrons are bosons of local origin. The
relevance of such a relaxation mechanism has been high-
lighted, e.g., in pump-probe experiments on optimally
doped cuprates [7, 10].

The goal of this work is to study efficiency of thermal-
ization in the primary relaxation regime, which is mod-
eled by a closed quantum system of a single electron (de-

scribed by Ĥkin) coupled to bosons. For simplicity, we

model the bosons as optical phonons (described by Ĥph)
and study the Holstein model with the general form

Ĥsys = Ĥkin + Ĥph + Ĥe−ph, (1)

where the last term is the electron-phonon interaction
[we define the terms of Eq. (1) below].

We contrast the outcome of unitary quantum time
evolution with predictions of statistical mechanics. If
the electron excitation is strong enough, the system ap-
proaches a steady state. Observables in the steady state
are, at a given total energy, independent of initial condi-
tions. We show that the eigenvalues of the electronic one-
particle density matrix (i.e., the occupations of fermionic
momenta) approach the ones in the Gibbs ensemble. This
result is consistent with thermalization of static elec-
tronic observables. We test thermalization separately
using the nonequilibrium optical conductivity (and more
generally, dynamical current-current correlations), which
in the steady state as well approach a thermal form. Our
results indicate that, for photoexcited systems at small
photodoping, it is very likely that the subsequent (sec-
ondary) relaxation processes can be efficiently described
by applying quasithermal approaches.



2

The paper is organized as follows. In Sec. II we in-
troduce the model, numerical methods, and the quench
protocols to study relaxation and thermalization. Ther-
malization of electronic one-particle observables is stud-
ied in Sec. III. In Sec. IV we study dynamical correlation
functions and their approach to a thermal form. We con-
clude in Sec. V. Details of the numerical methods and
definitions of dynamical correlation functions are given
in Appendices A-B and C-D, respectively.

II. MODEL AND QUENCH PROTOCOLS

We consider an electron on a periodic one-dimensional
lattice with L sites

Ĥkin = −t0
∑
j

(
eiφ(t)ĉ†j ĉj+1 + h.c.

)
=
∑
k

εk(t)ĉ
†
k ĉk,

(2)
where t0 is the nearest-neighbor hopping amplitude and
ĉj is a fermion annihilation operator on site j. We use the
Peierls substitution to couple the electron to an external
electric field F , as defined in Ref. [42], by introducing
the time-dependent phase φ(t) = −Ft. We measure time
in units of τ = ~/t0, and set ~ = 1 throughout the pa-
per. The momentum-space representation is evoked by
a discrete Fourier transformation ĉk =

∑
j e
−ijak ĉj/

√
L

leading to εk(t) = −2t0 cos (k − φ(t)). The lattice con-
stant a is set to unity hereafter. Quantum phonons are
described by a single frequency ω0,

Ĥph = ω0

∑
j

b̂†j b̂j , (3)

where b̂j is the phonon annihilation operator. The elec-
tron is coupled to phonons via a Holstein-type interaction
of strength g,

Ĥe−ph = −g
∑
j

ĉ†j ĉj(b̂
†
j + b̂j). (4)

If not specified otherwise, we set L = 16. The dimension-
less electron-phonon coupling is given by λ = g2/(2t0ω0).

We construct two qualitatively distinct initial states,
which are not eigenstates of Ĥsys. In the first case, the
initial state at t = 0 consists of an electron at momentum
k=π and no phonons. By suddenly switching on a finite
value of electron-phonon interaction, we time evolve the
system under Ĥsys. Here, φ(t)=0 for all times. Such
a state initially possesses the maximal electron kinetic
energy Ekin(t=0) = 〈Ĥkin(t=0)〉 = 2t0, which equals

the total energy Esys = 〈Ĥsys〉. We refer to this setup
as the interaction quench, and the relaxation dynamics
emerging from this initial state has been recently studied
in [27].

The second initial state is prepared by switching on
a uniform DC electric field F in a time window [−ti, 0].
We refer to this setup as the field quench. At t = −ti,

we set φ(t=−ti) = 0, switch on F and propagate the

ground state of Ĥsys with φ(t) = −F (t+ ti) at chosen λ,
ω0 and the total momentum K=0 [43, 44]. We choose ti
such that at t=0 when F is switched off, the total energy
reaches a desired targeted value Esys. The latter state is
our initial state and we study its equilibration at t > 0
in the absence of electric field, i.e., at the constant value
φ(t) = −Fti. The inset of Fig. 1(b) displays an example
where the system is driven in the time interval [−ti, 0]
by a DC electric field F = 1.0, until the target value
Esys = 2t0 is reached.

In all cases under consideration, the system energy
is conserved for t > 0 (Ĥsys is time independent) and
the dynamics is described by the pure state |ψ(t)〉 =

e−iĤsyst|ψ0〉, where |ψ0〉 is the initial state. Results from
the time propagation are compared with the predictions
of the thermal Gibbs ensemble, described by the density
matrix

ρ̂sys = Z−1 exp[−Ĥsys/(kBT )], (5)

with the partition function Z = Tr{exp[−Ĥsys/(kBT )]}.
We set the Boltzman constant kB = 1 hereafter.

We apply the Lanczos-based diagonalization [45] in a
limited functional space (LFS) for the ground-state cal-
culation, the time evolution as well as to calculate equi-
librium properties at finite temperature. The generation
of the LFS is described in Appendix A. It efficiently se-
lects states with different phonon configurations around
the electron [46], and is well-designed to describe systems
with large phonon fluctutations that are not accessible
by exact diagonalization. The ground-state properties
of the Holstein polaron have been calculated within the
LFS with high numerical precision [46, 47]. The method
has been recently extended to treat nonequilibrium prob-
lems [43] and was shown to provide numerically precise
quantum evolution of a closed many-body system [27].
In this work, we also use the LFS to calculate equi-
librium properties in the Gibbs ensemble (5) using the
Finite-Temperature Lanczos method (FTLM) [48]. In
Appendix B, we present details of the latter method as
well as study finite-size effects in Fig. 7.

III. ELECTRONIC SUBSYSTEM

We first study equilibration of the electron kinetic en-
ergy Ekin for different initial states and electron-phonon
coupling strengths. Figure 1(a) shows the time evolution
at λ = 0.5 and ω0/t0 = 0.75 after distinct quench proto-
cols that generate the same energy Esys = 2t0. We ob-
serve in the steady state a nearly indistinguishable value
of Ekin ' −1.35t0. Other observables such as 〈Ĥph〉 and

〈Ĥe−ph〉 show qualitatively the same behavior (not shown
here). In the steady state and for the parameter regime
under investigation, tiny oscillations around the average
vanish in the limit L→∞ [27].
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FIG. 1. Time evolution of the electron kinetic energy at
λ = 0.5 and ω0/t0 = 0.75. (a) Ekin for different initial states
and the same total energy Esys = 2t0. The quench protocols
are the interaction quench (i-Q) and the field quench (f-Q) for
different values of the electric field F . (b) Ekin for the field
quench at F = 1.0, corresponding to different total energies
Esys. Inset: Ekin and Esys versus t for the field quench at
F = 1.0. The data is shown during the driving (t < 0) and
during equilibration (t > 0), such that at t = 0 we reach the
target energy Esys = 2t0.

On the other hand, quench protocols that generate
distinct total energy lead to distinct steady-state val-
ues. Figure 1(b) shows results for the field quench with
F = 1.0, but distinct target energies Esys = 0, 2t0, 4t0.
Interestingly, even though in all cases Ekin at t = 0 is al-
most identical, the curves clearly deviate at later times.

If the observed collapse of the data in Fig. 1(a) for dif-
ferent initial states and the same total energy is generic,
it should also be observed for other parameters of the
model. In Figs. 2(a) and 2(b) we show results for the elec-
tron kinetic energy at two other values of the electron-
phonon coupling λ = 0.2 and 0.7, respectively. When
the steady state is reached, the data approach the same
value, in a similar manner as in Fig. 1(a) for λ = 0.5.
This indicates that at both weak and moderate couplings,
observables in the steady states may be characterized
only by the total energy (and, as discussed in the fol-
lowing, described by the Gibbs ensemble ρ̂sys). It is also
well known that the Holstein model exhibits the strong-
coupling regime for λ >∼ 1, where a narrow polaronic
band induces gaps in the many-body spectrum. This
does not necessarily exclude a possible thermal character
of the steady states. Nevertheless, large phonon fluctu-
ations in the latter regime make the numerical compari-
son between the nonequilibrium and thermal equilibrium
properties less accurate and will not be discussed in de-
tail here. Another interesting feature of the model is the
influence of the phonon energy ω0. We are going to dis-
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FIG. 2. Time evolution of the electron kinetic energy Ekin at
ω0/t0 = 0.75 and two values of the electron-phonon coupling
strength λ = 0.2 (a) and λ = 0.7 (b). The quench protocols
are the interaction quench (i-Q) and the field quench (f-Q)
for two values of the electric field F = 1.0 and 1.5. The total
energy is Esys = 2t0 in both panels.

cuss differences in the cases ω0 < t0 and ω0 > t0 in the
context of Fig. 3.

The dynamics of Ekin in the weak-coupling regime
displays two distinct time regimes, see Fig. 2(a). Af-
ter an initial fast decay, a slowing down in relaxation is
observed when the electron kinetic energy becomes less
than ω0 above the long-time steady-state value. This ef-
fect has already been observed in single-electron [15] and
many-electron [20] systems coupled to optical phonons.
In contrast, such distinction of time regimes is less ob-
vious for intermediate electron-phonon couplings shown
in Figs. 1(a) and 2(b), where the characteristic times
to reach the steady state become shorter [27, 28]. This
regime is going to be the main focus in the rest of the
study.

To gain additional insight into the steady-state prop-
erties beyond the information gained from calculating a
few selected observables [49–51], we calculate the reduced
density matrix of a small subsystem. We focus on λ = 0.5
furtheron. In the Holstein model, it is a straightforward
choice to take the subsystem consisting of electronic de-
grees of freedom only, while phonon degrees of freedom
act as an environment. The reduced density matrix is
hence defined as ρ̂ele = Trph{ρ̂tot}, where ρ̂tot denotes
the density matrix of the total system. (Note that ρ̂tot

may be obtained from the pure state, ρ̂tot = |ψ(t)〉〈ψ(t)|,
or from the Gibbs ensemble, ρ̂tot = ρ̂sys.) This selec-
tion of ρ̂ele is different from the one where the subsys-
tem is physically separated from the environment. In the
case of a single electron studied here, ρ̂ele is equivalent to
the one-particle density matrix with the matrix elements

ĉ†j ĉl. Due to translational invariance, ρ̂ele is diagonal in
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FIG. 3. (a) and (b): Eigenvalues of the one-particle den-
sity matrix 〈k|ρ̂ele|k〉 = nk at the total energy Esys = 2t0
and λ = 0.5. For the time-evolved pure state, we plot log n̄k
for different initial states. The data is averaged in the time
interval t ∈ [50τ, 100τ ]. Error bars equal three times tem-
poral standard deviation. The thermal prediction lognk(T )
is obtained from the Gibbs ensemble (5). (a) Results for
ω0/t0 = 0.75. We compare log n̄k after the interaction quench
(i-Q) and the field quench (f-Q), with lognk(T ) at tempera-
ture T = 0.68. For the field quench, we shift k → k−φ0, where
φ0 = −Fti and ti defines the time interval when F is switched
on, as explained in Sec. II. (b) Results for ω0/t0 = 2.0. We
compare log n̄k after the interaction quench with lognk(T ) at
T = 1.36. (c) Ekin versus t after the interaction quench for
ω0/t0 = 2.0 and 0.75.

the momentum representation and its eigenvalues are oc-
cupations of the momentum states 〈k|ρ̂ele|q〉 = nkδk,q.
In the nonequilibrium calculation, we therefore need to
calculate the average value of nk(t) in the steady state
n̄k = 〈nk(t)〉t, where

nk(t) = 1/L
∑
j,l

e−i(l−j)k〈ψ(t)|ĉ†j ĉl|ψ(t)〉 (6)

is the time-dependent momentum distribution function
and 〈...〉t denotes the time averaging.

A necessary criterion for thermalization requires a sin-
gle set of n̄k for all initial states with equal energy [5]. In
Fig. 3(a) we plot log n̄k for different initial states at the
energy Esys = 2t0. We observe a collapse of the data in
the entire Brillouin zone.

We also present a comparison of log n̄k with the equi-
librium results log nk(T ) in the Gibbs ensemble (5) ob-
tained using the FTLM. We have chosen the time-
averaged electron kinetic energy in the steady state
〈Ekin〉t to determine the temperature T in the Gibbs

ensemble through the equation 〈Ekin〉t = Tr{ρ̂sysĤkin}.
(The reason for this choice is that within the FTLM,
finite-size effects due to the limited number of phonon
configurations affect Ekin less than Esys. See also Fig. 7 in
Appendix B.) The striking similarity between the eigen-

values of one-particle density matrices in Fig. 3(a), ob-
tained from the time propagation and from the FTLM,
carries important information. In general, agreement be-
tween the eigenvalues (i.e., the vanishing trace distance
between the two matrices) implies the absence of any ex-

tensive set of one-body observables ĉ†j ĉl that would not
thermalize. In addition, for our particular setup with
a single electron, all multi-particle observables can be
expressed by the one-particle operators. The results in
Fig. 3(a) therefore suggest that all static properties of the
electronic subsystem in the steady state are almost the
same as in the Gibbs ensemble with temperature T . As a
consequence, T also becomes a well-defined temperature
of the electronic subsystem. A perfect agreement and
strict thermalization is nevertheless expected only when
the total system approaches the thermodynamic limit.

Our results for other parameters indicate that ther-
malization is visible as long as the system energy relative
to the ground state considerably exceeds the phonon en-
ergy ω0. An example where this is not fulfilled is shown
in Fig. 3(b) for ω0/t0 = 2.0 and Esys = 2t0 (here, the
ground state energy is Egs = −2.596t0). In this case the
system energy is located close to the bottom of many-
body eigenenergy spectrum, where the density of states
is low. As a consequence, the time evolution is gov-
erned by strong temporal fluctuations. [See Fig. 3(c) and
also Fig. 6 of Appendix A, which demonstrates that the
temporal fluctuations are not an artifact of the numer-
ical method]. Therefore, much longer time scales (but
then also much larger systems) are needed to observe
possible thermal behavior. Note, however, that even for
ω0/t0 = 2.0 the difference between log nk(T ) and log n̄k
(obtained from the FTLM and from the time averaging,
respectively) stays within 3σk, where σk is the standard
deviation characterizing time fluctuations of log nk(t).

IV. NONEQUILIBRIUM DYNAMICAL
CORRELATION FUNCTIONS

Thermalization of electronic one-particle density ma-
trix implies thermalization of all observables defined in
terms of fermionic operators. This, however, does not im-
mediately extend to dynamical two-particle observables
like the optical conductivity σ(ω). The latter quantity
is defined as a Fourier transform of the current-current
correlation function 〈̂(t)̂(0)〉 [52], with ̂ to be defined
in Eq. (10). Even if ̂(0) is purely fermionic, the ex-
plicit form of ̂(t) contains both fermionic and bosonic
operators since the time evolution takes place under the
Hamiltonian of the total system. Hence, σ(ω) cannot
be obtained from the one-particle density matrix only.
We therefore complement our study by calculating the
time-resolved optical conductivity σ(ω, t) [34, 53–61]. In
addition, we invoke a simple criterium to test whether
dynamical correlation functions in the time-evolved pure
state match the thermal form.
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A. Time-resolved optical conductivity

The time-resolved optical conductivity provides access
to the dynamical properties that are measured in pump-
probe experiments [7, 10]. In addition, by means of a sum
rule, it also provides access to a few static properties such
as the electronic kinetic energy Ekin, shown in Figs. 1
and 2. Note that the optical sum rule∫ ∞

−∞
dω σ′(ω, t) = −πEkin(t), (7)

where σ′(ω, t) = <[σ(ω, t)], also holds far from equilib-
rium [59]. We calculate σ′(ω, t) at arbitrary time t af-
ter the quench without applying time-translation invari-
ance [59], i.e., as a Fourier transform of the two-time
correlation

σ(t′, t) = −[Ekin(t′) +

∫ t′

t

dt′′χ(t′, t′′)], (8)

where the nonequilibrium dynamical susceptibility is de-
fined as

χ(t′, t′′) = iθ(t′ − t′′)〈ψ0|[̂(t′), ̂(t′′)]|ψ0〉 (9)

and ̂ denotes the current operator

̂ = it0
∑
j

(eiφ(t)ĉ†j+1ĉj − h.c.). (10)

Details of the calculation are presented in Appendix D.
We mimic the probe pulse of pump-probe experiments by
a gaussian envelope with a width comparable to current
experiments [7].

Figure 4 displays the time evolution of σ′(ω, t) for
quenches at the total energy Esys = 2t0. For the in-
teraction quench shown in Fig. 4(a), the states with pos-
itive single-particle energies εk(t) > 0 are initially more
occupied than the low-energy states with εk(t) < 0. It
leads to a positive sign of the kinetic energy Ekin(t) =∑
k εk(t)nk(t) [see Fig. 1(a)] and hence to the negative

optical sum rule −πEkin(t). This results in negative val-
ues of the response function σ′(ω, t) that in turn repre-
sent the frequency range where photoemission may oc-
cur. At later times σ′(ω, t) becomes positive, it develops
a well-defined peak around zero frequency corresponding
to the Drude peak, and the side peaks reflecting multiple
phonon excitations. For the field quench at F = 1.0 pre-
sented in Fig. 4(b), σ′(ω, t) remains positive for all times,
in strong contrast with the interaction quench discussed
before. Nevertheless, when entering the steady state at
longer times, optical conductivities for different initial
states display a very similar frequency dependence.

B. Thermal form of dynamical correlations

The results from Sec. IV A give rise to an obvious ques-
tion: to what extent does σ′(ω, t) resemble the linear
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response of a system in thermal equilibrium? To an-
swer this question, one could in principle follow the same
procedure as in Sec. III, i.e., construct the correspond-
ing Gibbs ensemble and compare the resulting thermal
σ′(ω) with the time-resolved σ′(ω, t) in the steady state.
Instead, we show in the following that a simple manip-
ulation of the dynamical correlations allows one to test
whether their form is thermal without explicitly carrying
out calculation in the Gibbs ensemble. If the answer is
affirmative, one can also extract the corresponding tem-
perature of the Gibbs ensemble.

To demonstrate this idea we first note that in thermal
equilibrium, the regular part of the optical conductivity
can be expressed from the standard linear-response the-
ory [52] as

σ′reg(ω) =
1− e−ω/T

ω
C(ω), (11)

where the dynamical current-current correlations are de-
fined as

C(ω) = <
∫ ∞

0

dteiω
+tTr{ρ̂syŝ(t)̂(0)}. (12)

As a central step, one can manipulate C(ω) to construct
the function

R(ω) =
C(ω)− C(−ω)

C(ω) + C(−ω)
= tanh

( ω
2T

)
, (13)

which allows for a direct extraction of the temperature.
Here, C(ω) is derived by using the Gibbs density ma-
trix (5) [see Appendix C for details of derivation]. We
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panels represent R̄(ω) ≡ 〈R(ω, t)〉t, where 〈...〉t denotes time
averaging in the interval t ∈ [50τ, 100τ ]. Panel (c) compares
R̄(ω) with the thermal form R(ω) = tanh[ω/(2T )] (TH) at
T = 0.68. Panel (d) shows comparison of the temperatures.
Tele is the temperature in the Gibbs ensemble obtained such
that its electron kinetic energy matches the one in the steady
state of the time-evolved state (as explained in Sec. III). T is
the temperature, obtained by fitting R̄(ω) with the thermal
form R(ω) = tanh[ω/(2T )] from Eq. (13). The time evolution
is in both cases performed after the field quench at F = 1.0.

use the coefficient R(ω) = tanh[ω/(2T )] only as a mea-
sure for thermalization and do not explicitly calculate
C(ω).

Our goal is to calculate a coefficient similar to the one
in Eq. (13), but calculated in the time-evolved wave func-
tion. For this purpose, we define

R(ω, t) =
C(ω, t)− C(−ω, t)
C(ω, t) + C(−ω, t)

, (14)

where the Fourier transform of the time-resolved current-
current correlation is defined as

C(ω, t) = <
∫ ∞

0

dseiω
+s〈ψ0|̂(t+ s)̂(t)|ψ0〉. (15)

We calculate C(ω, t) numerically with the same method
as the time-resolved optical conductivity σ′(ω, t) (see also
Appendix D for details).

Figures 5(a) and 5(b) display R(ω, t) for two differ-
ent initial states |ψ0〉 at equal total energy Esys = 2t0.
While the behavior of R(ω, t) at short times clearly de-
pends on the initial state, the differences are washed
out at longer times. In Fig. 5(c) we compare the time-
averaged 〈R(ω, t)〉t in the steady state and show its in-
dependence of the initial state. Remarkably, the form

of 〈R(ω, t)〉t perfectly agrees with the thermal functional
form tanh[ω/(2T )].

It is plausible, but by no means obvious that (i)
the temperature obtained from the Gibbs ensemble by
matching the static one-particle electronic correlations
in the steady state (as done in Sec. III), and (ii) the
temperature obtained from fitting the dynamical corre-
lations 〈R(ω, t)〉t with the thermal form tanh[ω/(2T )],
are equal. Figure 5(d) shows that such agreement indeed
holds true. It establishes an important link between the
temperature, measured from the dynamical correlation
functions, and the temperature of the electronic subsys-
tem.

V. CONCLUSION AND DISCUSSION

We studied thermalization of a photoexcited electron
coupled to quantum phonons using a state-of-the-art nu-
merical method. Even though in the simple Holstein
model the relaxation channel is represented by a sin-
gle (optical) phonon branch, many indicators for ther-
malization are fulfilled provided that the excitation en-
ergy is much larger than the phonon frequency. First,
we calculated all elements of the electronic one-particle
density matrix, as well as the occupations of fermionic
momenta, which are the corresponding eigenvalues. We
showed that all those eigenvalues agree with the ones
in the Gibbs ensemble, indicating thermalization of elec-
tronic correlations on the entire lattice. This leads to
the conclusion that the standard view of thermalization,
which takes place only in a subsystem physically sepa-
rated from the environment, is too restrictive. Recently,
a complete thermalization of one-particle observables to-
wards predictions of the generalized Gibbs ensemble was
reported for two integrable models [62, 63]. In contrast,
the Holstein model is a generic (nonintegrable) system,
and its eigenenergy spectrum is unbounded from above.
Our results hence give new insights into nonequilibrium
statistical mechanics of fermion-boson coupled systems
and call for further studies, e.g., in the context of eigen-
state thermalization [4].

Second, we have shown that the entire spectral distri-
bution of the nonequilibrium dynamical current-current
correlation function approaches in the steady state the
thermal form. The latter allows one to extract the tem-
perature of the corresponding Gibbs ensemble. Remark-
ably, the temperature obtained from the dynamical two-
particle correlation function agrees with the one in the
Gibbs ensemble that describes static one-particle elec-
tronic observables.

From the point of view of time-resolved experiments,
our model provides a reasonable description of the initial
photocarrier relaxation with a single branch of bosonic
excitations. We denoted this process as the primary re-
laxation. Thermalization of electronic one-particle ob-
servables implies that the optical sum rule becomes,
at a given excitation density, independent of the ini-
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tial state. In addition, the approach of the dynamical
current-current correlation function to a simple thermal
form, given by Eq. (13), reestablishes the potential of
time-resolved optical spectroscopy [6] as a very efficient
technique for studying thermalization (or the absence
thereof) in solids.

While our investigation focused on the primary relax-
ation regime in the context of pump-probe experiments,
the current time resolution of many experiments (e.g., the
time-resolved ARPES [64–68]) only allows measurements
of secondary relaxation processes. Our results demon-
strate high efficiency of the primary relaxation, leading
to a thermal state even if the electron is strongly cou-
pled to only a few bosonic degrees of freedom. Therefore,
during the secondary relaxation processes charge carriers
may be accurately described within the framework of qu-
asithermal evolution, i.e., by a well-defined temperature
that evolves with time. In this stage, electrons further
exchange energy with other degrees of freedom of their
environment and evolve towards the global equilibrium.
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Appendix A: Numerical calculation within limited
functional space

Here we provide more details about the limited func-
tional space that we use in our Lanczos algorithm. We
truncate the Hilbert space by applying a limited func-
tional space (LFS) generator [46]. We initiate the gen-
eration procedure by a starting state, which is a bare

electron in a given momentum eigenstate ĉ†k|∅〉. We then

apply the off-diagonal elements of Ĥsys to this starting
state. The maximal number of generations of new states
is controlled by the parameter Nh. We represent the en-

tire set of states
{∣∣∣φ(Nh)

k

〉}
forming the LFS by a sum

Nh∑
nh=0

(
Ĥkin + Ĥe−ph

)nh

ĉ†k|∅〉. (A1)

Further details about the method can be found, e.g., in
Ref. [69]. We set Nh = 22 in our calculations and apply

0 10 20 30 40 50
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7
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FIG. 6. Time dependence of the electron kinetic energy Ekin

at λ = 0.5 and ω0/t0 = 2.0. Different curves represent results
for different sizes of the LFS. We set Nh = 10, 14, 18, 20 and
22, which lead to 2.5× 103, 4.2× 104, 6.9× 105, 2.7× 106 and
1.0× 107 states in the LFS, respectively.

periodic boundary conditions on a lattice with L = 16
sites.

The latter method, apart from being numerically exact
for calculations of the Holstein polaron ground state [47]
and low-lying excited states [70], can also be applied to
study time-dependent problems [15, 27, 43, 44]. By com-
paring it to other wavefunction-based methods, it has
been recently shown to be the most efficient method to
study the nonequilibrium dynamics of the Holstein po-
laron [27] (see [71] for a more recent methodological de-
velopment, though).

We demonstrate the efficiency of calculation within the
LFS in Fig. 6. We study the finite-size effects of the
relaxation of electron kinetic energy Ekin at λ = 0.5 and
ω0/t0 = 2.0. The data for Nh = 22 has been shown in
Fig. 3(c). Since the system exhibits persistent oscillations
around the steady-state value, one may wonder whether
these are a finite-size effect or a real physical feature.
In Figure 6 we compare the data for five different sizes
of the LFS obtained by setting Nh = 10, 14, 18, 20, 22
in Eq. (A1). Results show collapse of the data for all
times of interest. In particular, the minimal size of the
LFS needed to get the converged results in this case only
requires around ∼ 105 states.

Appendix B: Finite Temperature Lanczos Method

We briefly present the basic elements of the Fi-
nite Temperature Lanczos Method (FTLM). We follow
Refs. [48, 69] where the method has been described in
detail. A straightforward calculation of the canonical
thermodynamic average of an operator Â in a finite sys-
tem with Nst states can be expressed in an orthonormal
basis {|n〉} as

〈Â〉 =

Nst∑
n=1

〈n|e−βĤÂ|n〉
/ Nst∑

n=1

〈n|e−βĤ |n〉, (B1)

where β = 1/T (kB has been set to unity). Using the
high-temperature expansion of Eq. (B1) and the Lanczos
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FIG. 7. Lines: Electron kinetic energy Ekin in the Gibbs
ensemble (5), versus the temperature T . We use different
lattice sizes L and different sizes of the LFS (A1), denoted
by Nh. Symbols: The long-time average of Ekin after the
field quench at F = 1.0. The corresponding temperature
is computed from the calculation of 〈R(ω, t)〉t in the same
system, and by fitting the latter quantity to the thermal form
tanh[ω/(2T )].

procedure with M steps we obtain

〈Â〉 = Z−1
Nst∑
n=1

M∑
i=0

e−βε
n
i 〈n|ψni 〉〈ψni |Â|n〉, (B2)

Z =

Nst∑
n=1

M∑
i=0

e−βε
n
i 〈n|ψni 〉〈ψni |n〉, (B3)

where |ψni 〉 and εni are Lanczos functions and energies
obtained from the starting state |n〉, while the error of
the approximation is O(βM+1). To allow computation
of systems where Nst ∼ 107 or more, the summation
over Nst states is replaced by a random sampling over r̄
random states |r〉

〈Â〉 =
Nst
Zr̄

r̄∑
r=1

M∑
j=0

e−βε
r
j 〈r|ψrj 〉〈ψrj |Â|r〉, (B4)

Z =
Nst
r̄

r̄∑
r=1

M∑
j=0

e−βε
r
j |〈r|ψrj 〉|2. (B5)

Random states |r〉 act as initial states for the Lanczos
iteration, resulting in M eigenvalues εrj with the corre-
sponding |ψrj 〉. Note that the summation over the ran-
dom states runs over all k-sectors. For each k-sector, we
sample over r̄k = 20 states.

In Fig. 7 we present Ekin(T ) obtained by the FTLM
and compare results for different lattice sizes L = 6 and
16, as well as different sizes of the LFS given by Nh = 16,
22 and 30. At small T deviations from the thermody-
namic limit are expected predominantly due to the finite
system size L, while at larger T when the electron coher-
ence length becomes shorter, deviations are expected due
to a lack of adequate number of phonon quanta contained
in the LFS. Despite distinct lattice sizes chosen for com-
parison, L = 6 and 16, variations of Ekin(T ) are rather
small throughout the whole temperature range. In addi-
tion, the time-propagation results (red circles) are mostly

obtained in the temperature range of the smallest finite-
size effects.

Appendix C: Dynamical current-current correlations
in thermal equilibrium

The Fourier transform of the dynamical current-
current correlation C(ω) is defined as

C(ω) = <
∫ ∞

0

dteiω
+t〈̂(t)̂(0)〉 (C1)

= <
∫ ∞

0

dteiω
+tTr{ρ̂syŝ(t)̂(0)}

=
1

Z
<
∫ ∞

0

dteiω
+tTr{e−βĤsyseiĤsyst̂e−iĤsyst̂},

where we used the Gibbs density matrix ρ̂sys =

Z−1e−βĤsys and Z = Tr{e−βĤsys}.
Eigenstates of the Hamiltonian Ĥsys|n〉 = En|n〉 form

a complete set of states,
∑
n |n〉〈n| = 1. Using the com-

pleteness relation we rewrite Eq. (C1) as

C(ω) =
1

Z
<
∫ ∞

0

dteiω
+t ×∑

nm

e−βEneiEnt〈n|j|m〉e−iEmt〈m|j|n〉

=
1

Z

∑
nm

e−βEn |〈n|j|m〉|22πδ(En − Em + ω). (C2)

If we now set ω → −ω, we can readily obtain

C(−ω) = e−βωC(ω), (C3)

which we in turn use to produce Eq. (13).
Note that the same result can be obtained using the

fluctuation-dissipation theorem

χ′′(ω) = −1

2
(1− e−βω)C(ω), (C4)

where χ′′(ω) = =[χ(ω)] represents the imaginary part of
Fourier transform of the equilibrium dynamical suscepti-
bility

χ(t) = iθ(t)〈[̂(t), ̂(0)]〉. (C5)

Equation (13) can be reproduced using the symmetry
χ′′(−ω) = −χ′′(ω).

Appendix D: Nonequilibrium optical conductivity

The evaluation of the two-time optical conductivity
σ(t′, t), as defined in Eq. (8), was implemented according
to the procedure described in [59]. On the other hand,
the implementation of a nonequilibrium dynamical sus-
ceptibility χ(t′, t′′) defined in Eq. (9) is a straightforward
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evaluation of the corresponding expectation value. All
Fourier transformations, such as

σ(ω, t) =

∫ tm

0

ds σ(t+ s, t)eiωs, (D1)

where tm denotes the maximum time of simulation, fol-
lowed the definitions in [59].

Since our calculations are performed in a limited time
window with tm = 100τ , we use artificial spectral broad-
ening to calculate σ(ω, t) and C(ω, t), smoothing the non-
physical artifacts. The applied broadening replaces eiωs

in Eq. (D1) with eiωse−s
2/2W 2

, where we set the width
of the Gaussian envelope to W = 10τ .
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