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We study radiative energy transfer between a donor-acceptor pair across a hyperbolic metamate-
rial slab. We show that similar to a perfect lens a hyperbolic lens allows for giant energy transfer
rates. For a realistic realization of a hyperbolic multilayer metamaterial we find an enhancement of
up to three orders of magnitude with respect to the transfer rates across a plasmonic silver film of
the same size especially for frequencies which coincide with the epsilon-near zero and the epsilon-
near pole frequencies. Furthermore, we compare exact results based on the S-matrix method with
results obtained from effective medium theory. Our finding of very large dipole-dipole interaction
at distances of the order of a wavelength has important consequences for producing radiative heat
transfer, quantum entanglement etc.
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I. INTRODUCTION

Dipole-dipole interactions are at the heart of many
fundamental interactions such as van der Waals forces
and vacuum friction [1, 2], Förster (radiative) energy
transfer (FRET) [3, 4], radiative heat transfer [2, 5],
quantum information protocols like the realization of
CNOT gates [6–8], pairwise excitation of atoms [9–11],
and Rydberg blockade [12, 13]. Clearly large number
of problems in physics and chemistry require very sig-
nificant dipole-dipole interaction at distances which are
not much smaller than a wavelength. The development
of plasmonic and metamaterial platforms can consider-
ably enhance these fundamental dipole-dipole interac-
tions. In an early work [14] it was shown that the dipole-
dipole interaction [14, 15] can be quite significant even
at distances bigger than microns if one utilizes whis-
pering gallery modes of a sphere. More recently such
systems have been revisited for their remarkable quan-
tum features like squeezing [10]. Further it was shown
that the energy transfer across plasmonic metal films
can be enhanced [16] and that the long range plasmons
allow for long-range plasmon assisted energy transfer
between atoms placed on plasmonic structures such as
graphene [17–19] and metals [20–24].

More elaborate structures possessing more features
than simple single-layer plasmonic structures are for ex-
ample hyperbolic metamaterials (HMM) [28, 29], which
exhibit a broadband enhanced LDOS [30] allowing for
broadband enhanced spontaneous emission [31–42], hy-
perbolic lensing [43–47], negative refraction [48, 49],
super absorbers [50] and broadband enhanced ther-
mal emission [51–56], for instance. These HMM can

be artificially fabricated by a periodic layout of sub-
wavelength metal and dielectric components for appli-
cations in the visible. For applications in the infra-red
phonon-polaritonic/semi-conductor and dielectric com-
ponents can be combined [49, 52–55] but hyperbolic ma-
terials in the visible and infra-red also exist in nature [59–
63]. Here we concentrate on artificially fabricated HMM
since the choice of fabrication parameters makes it pos-
sible to control the epsilon-near zero (ENZ) and the
epsilon-near pole (ENP) frequencies. At these frequen-
cies the HMM can show extra-ordinary features as en-
hanced superradiance [64] and supercoupling [65, 66].
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Figure 1: Sketch of the considered geometry. The metamate-
rial slab at the moment is an isotropic one with ǫ and µ as
the dielectric and magnetic permeabilities.

The aim of our work is to study FRET across a hy-
perbolic multilayer metamaterial (see Fig. 1). We will
demonstrate that similar to the perfect lens effect [67],
the dipole-dipole interaction across a HMM can be en-
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hanced by orders of magnitude compared to the pure
plasmonic enhancement by a thin plasmonic metal layer.
We will see that the enhancements are observed most
strongly in the ENZ and ENP regime or in the type I
HMM regime. This is the regime which is more easily
accessible for experiments.
The organization of our paper is as follows: In Sec. II

we introduce the elementary relations for FRET between
a donor and an acceptor which are separated by an in-
termediate slab. We discuss the possibility of a perfect
dipole-dipole interaction which is studied in Sec. III an-
alytically and numerically for a thin silver film. Then,
in Sec. IV, we discuss the anomalous transmission across
a hyperbolic metamaterial as an alternative for realiz-
ing perfect dipole-dipole interaction. Finally, in Sec. V
we study FRET across a concrete hyperbolic structure
using exact S-matrix calculations. The exact numerical
results are compared with the approximative results of
effective medium theory.

II. POSSIBILITY OF PERFECT

DIPOLE-DIPOLE INTERACTION

The Förster energy transfer rate between an donor-
acceptor pair as sketched in Fig. 1 is well-known and
can be written in terms of the dyadic Green’s function G

as [4]

Γ =

∫

dω σabs(ω)T (ω)σem(ω) (1)

where σabs and σem are the absorption and emission spec-
tra of the acceptor and donor and

T (ω) =
2π

~2

(

ω2

ǫ0c

)2

|dD|2|dA|2|eA ·G · eD|2 (2)

introducing the dipole-transition matrix elements dD =
|dD|eD and dA = |dA|eA of the donor and acceptor.
Making a plane wave expansion of the dyadic Green’s

function, we obtain

G(r, r′) =

∫

d2κ

(2π)2
eiκ·X

G(κ, z) (3)

where κ = (kx, ky)
t, X = (x− x′, y − y′)t, and

G(κ, z) =
ieiγv(z−z′)

2γv

[

tsa
+
s ⊗ a

+
s + tpa

+
p ⊗ a

+
p

]

(4)

introducing the vacuum wavevector in z-direction γv =
√

k2v − κ2 and the vacuum wavenumber kv = ω/c. Note
that the expression for the Green’s function contains the
contribution of the propagating (κ < kv) and evanescent
(κ > kv) waves. The evanescent wavas are exponentially
decaying in z-direction so that during propagation these
contributions are lost unless the medium somehow can
reverse the decay of such waves. Here ts and tp are the

transmission coefficients of the s- and p polarization and
a
+
s,p are the polarization vectors defined by

a
+
s =

1

κ





ky
−kx
0



 and a
+
p =

1

κkv





−kxγv
−kyγv
κ2



 . (5)

The transmission coefficients for a metamaterial film can
be expressed as [28, 67]

ts =
4µγγve

i(γ−γv)d

(γ + µγv)2 − (γ − µγv)2e2iγd
, (6)

tp =
4ǫγγve

i(γ−γv)d

(γ + ǫγv)2 − (γ − ǫγv)2e2iγd
, (7)

where the wavevector component inside the medium in z-
direction is given by γ =

√

ǫµω2/c2 − κ2. Note that the
dipole-dipole interaction in free space (i.e. if we replace
the film by vacuum) can be obtained from the Green’s
tensor in Eq. (4) by setting the transmission coefficients
to one ts = tp = 1 (which is the result for ǫ = µ = 1), i.e.

G
(vac)(κ, z) =

ieiγv(z−z′)

2γv

[

a
+
s ⊗ a

+
s + a

+
p ⊗ a

+
p

]

(8)

In this case the dipole-dipole interaction would become
infinitely large if the donor and the acceptor would be
placed at the same position, that means if z = z′. From
a mathematical point of view this is so because the ex-
ponential prefactor equals one for z = z′ so that the κ-
integral in Eq. (3) would diverge due to the fact that an
infinite number of evanescent waves with κ > kv would
contribute to the energy transfer. On the other hand, it
is well known that the dipole-dipole interaction between
the donor and acceptor is proportional to 1/|r−r

′|3 which
diverges for z → z′, since we here have x = x′ = 0 and
y = y′ = 0 as shown in the Fig. 1.
For an ideal left-handed material exhibiting negative

refraction the permittivity and permeability are given by
ǫ = µ = −1. In such a material evanescent plane waves
are amplified as shown by Pendry when he introduced
the concept of a perfect lens [67]. For the here defined
transmission coefficients we obtain for ǫ = µ = −1

ts = tp = exp(−2iγvd) (9)

showing clearly the feature of amplification of evanscent
waves inside the ideal left-handed material. Note, that
this exponential amplification stems from the exponential
in the denominator of the transmission coefficients. This
is just the same expression derived by Pendry showing
that for the perfect lens both propagating and evanescent

waves contribute to the resolution of the image [67] which
leads to the perfect lensing effect depicted in Fig. 2.
Inserting the expression of the transmission coefficients

in the Green’s tensor describing the dipole-dipole inter-
action gives

G(κ, z) =
ieiγv(z−z′−2d)

2γv

[

a
+
s ⊗ a

+
s + a

+
p ⊗ a

+
p

]

. (10)



3

zz’ 0 d

x

z
Donor Acceptor

Figure 2: Sketch of the perfect lensing effect [67].

This Green’s tensor is the same as expression (8) of the
vacuum Green’s tensor with the important difference that
now the argument of the exponential prefactor is differ-
ent. As in the case of interaction in free space we have
an infinite large energy transfer if the exponential equals
one leading to the condition that z − z′ = 2d. Hence
by placing the donor-acceptor pair such that this con-
dition is fullfilled corresponds to a dipole-dipole interac-
tion for two dipoles at the same position leading to an
infinitely large energy transfer rate. This is so, because
for z−z′ = 2d all evanescent waves (κ > kv) get focused.
We have thus shown that a pefect negative material with
zero losses can yield perfect dipole-dipole interaction and
perfect energy transfer which is limited only by the donor
and acceptor line shapes.

III. SILVER FILM AS METAMATERIAL

As pointed out by Pendry [67] for observing the perfect
lensing effect it suffices to consider a thin silver film. In
the quasistatic-limit such a thin silver film mimicks a
perfect lens for the p-polarized waves at a frequency ωpl

where ǫ′(ωpl) = −1, which coincides with the surface
plasmon resonance frequency of a single metal interface.
To see this we take the quasi-static limit (κ → ∞) of the
transmission coefficient tp in Eq. (7) with µ = 1. We
obtain

tp → 4ǫ

(ǫ + 1)2 − (ǫ − 1)2e2iγd
. (11)

The exponential in the numerator vanishes because in
the quasi-static limit γv ≈ γ ≈ iκ. If we now insert

ǫ = −1 + iǫ′′, (12)

then we arrive at

tp → 4(iǫ′′ − 1)

ǫ′′2(e2iγd − 1) + 4(iǫ′′ − 1)e2iγd
. (13)

It is now easy to see that for vanishing losses ǫ′′ → 0 we
again have (γv ≈ γ ≈ iκ)

tp = exp(−2iγvd). (14)

Proving that a silver film can mimick a perfect lens. The
only drawback is that in metals the losses are not neg-
ligible so that the perfect lens effect does not persist in
this case. Nonetheless even with losses one can expect
to find large Förster energy transfer due to the fact that
the donor and acceptor can couple to the surface waves
inside the silver film.
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Figure 3: Plot of Fz and Fx as function of wavelength for a
silver film with thickness d = 30 nm. The donor is placed at
z′ = −10 nm and the position of the accepor is varied such
that z − z′ = 50nm, 60 nm, 70 nm.

That the coupling to the surface plasmons can enhance
the energy transfer has been demonstrated theoretically
for different systems like nanoparticles [68], plasmonic
waveguides [23] and films [20, 21] as well as graphene [17–
19]. This enhanced energy transfer might be exploited
for solar energy conversion [22]. Experimentally it has
been shown by Viger et al. [69] and Zhang et al. [70] that
plasmonic nanoparticles can enhance the energy transfer
rate; Andrew and Barnes [16] have proven experimentally
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that the Förster energy transfer across thin silver films
can be enhanced by the coupling to the surface plasmon
polaritons demonstrating a long-range coupling between
the donor-acceptor pair across films with thicknesses up
to 120nm. Although we are here particularly interested
in the long-range energy transfer across a film, surface
plasmons can also be used to mediate the energy transfer
along plasmonic structures as shown theoretically [17–
21, 23]. Recently, Bouchet et al. [24] have detected this
long-range energy transfer when both donor and acceptor
are placed on a plasmonic platform like a thin metal film.

To see how the Förster energy transfer is affected by
the presence of a metal film, we consider therefore first a
thin silver layer with permittivity described by the Drude
model

ǫAg = ǫ∞ −
ω2
p

ω(ω + iτ−1)
. (15)

For silver the parameters from [25, 26] are ǫ∞ = 3.7,
ωp = 1.4 · 1016 rad/s,τ = 4 · 10−14 s. However, we use a
much smaller relaxation time of τ = 0.45 · 10−14 s which
accounts for the increased collission frequency found in
thin metal films [27]. Note that a reduced relaxation
time results in reduced energy transfer rates. In order
to quantify the enhancement of the energy transfer we
introduce the enhancement factor

Fi ≡
|Gii|2

|G(vac)
ii |2

, (16)

where i = x, z is the orientation of the dipole-transition

matrix element of the donor/acceptor and G
(vac)
ii is the

vacuum Green’s function. In Fig. 3 we show our results
for the enhancement of the dipole-dipole interaction due
to the presence of a silver film of thickness d = 30 nm
with respect to the case where this film is replaced by
vacuum. It can be seen that the dipole-dipole interac-
tion and therefore the Förster energy transfer is espe-
cially large for λ ≈ 300 nm where ǫ′Ag ≈ −1 as expected.

Furthermore it can be seen that at z − z′ = 2d = 60 nm
no particular effect happens proving that losses mask the
perfect lens effect. The Förster energy transfer becomes
just less important when the distance z− z′ between the
donor-acceptor pair is increased. In Fig. 4 we show sim-
ilar results for a much thicker film with d = 120 nm. In
this case there can be still seen an enhancement effect
for z orientation but of course the enhancement effect
becomes less important when the thickness of the sil-
ver film is increased due the losses inside the metal film.
Therefore another kind of material is needed in order
to overcome the harmful effect of the losses. Nonethe-
less such an enhancement due to the surface plasmons of
the silver film have already been measured in the exper-
iment by Andrew and Barnes [16] for film thicknesses of
d = 30 nm, 60 nm, 90 nm and even d = 120 nm.
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Figure 4: Plot of Fz and Fx as function of wavelength. The
donor and accepor are placed in a distance of 10 nm of each
interface (i.e. z′ = −10 nm and z− d = 10 nm) of a silver film
with thickness d = 120 nm.

IV. ANOMALOUS TRANSMISSION FOR

HYPERBOLIC MATERIALS

Now, let us replace the ideal left-handed material slab
by a hyperbolic or indefinite material [29]. The beauty of
such hyperbolic materials is that waves with large kappa
(κ ≫ kv) emitted by a donor which would be evanes-
cent in free space are homogenous within these materials.
This leads to significant fields on the other side of the slab
which makes hyperbolic materials very advantageous for
energy transfer even for slabs with an appreciable thick-
ness as was shown in some preliminary works [57, 58] car-
ried out solely in the hyperbolic dispersion region. This
is to contrast with our work which addresses ENZ and
ENP regions where we see the maximum enhancements.
Hyperbolic materials are uni-axial materials which do ex-
ist in nature [59–63]. But they can also be easily fabri-
cated by combining alternating layers of dielectric and
plasmonic materials in a periodic structure, for instance.
Here, we consider only the non-magnetic case so that the
permeability tensor is given by the unit tensor and the
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permittivity tensor is given by diag(ǫ⊥, ǫ⊥, ǫ‖) with re-
spect to the principal axis. In our case the z-axis is the
optical axis of the uni-axial material. The dispersion re-
lations of the ordinary and extra-ordinary modes inside
the uni-axial medium are [71]

γ2
o

ǫ⊥
+

κ2

ǫ⊥
= k2v and

γ2
e

ǫ⊥
+

κ2

ǫ‖
= k2v (17)

where γo (γe) is the z-component of the wavevector of the
ordinary (extraordinary) mode. Neglecting dissipation
for a moment we can easily define normal dielectric uni-
axial materials as materials with ǫ‖ > 0 and ǫ⊥ > 0
and hyperbolic materials as materials with ǫ‖ǫ⊥ < 0, i.e.
one of both permittivites is positiv and the other one
negative. Due to the property ǫ‖ > 0 and ǫ⊥ > 0 the
iso-frequency curves for dielectric uni-axial materials in
k-space are ellipsoids whereas for hyperbolic materials
these iso-frequency curves are hyperboloids. For ǫ‖ <
0 and ǫ⊥ > 0 — a type I hyperbolic material — the
iso-frequency curve is a two-sheeted hyperboloid and for
ǫ‖ > 0 and ǫ⊥ < 0 — a type II hyperbolic material — the
iso-freqency curve is a one-sheeted hyperboloid. In Fig. 5
the iso-frequency lines of a type I hyperbolic material are
sketched in the kz-kx plane.
Now we will show that similar to the perfect lensing

effect the evanescent waves can be amplified inside a hy-
perbolic slab even in the absence of a magnetic response.
To this end, we consider the transmission coefficients of
a uniaxial slab where the optical axis is normal to the
interface, i.e. it is along the z-axis. In this case the
transmission coefficients for the ordinary and extraordi-
nary modes (which coincide with the s- and p-polarized
modes) are given by

ts =
4γoγve

i(γo−γv)d

(γo + γv)2 − (γo − γv)2e2iγod
(18)

tp =
4ǫ⊥γeγvei(γe−γv)d

(γe + ǫ⊥γv)2 − (γe − ǫ⊥γv)2e2iγed
. (19)

The effect of anisotropy is mainly seen in the transmis-
sion coefficient tp because only here both permittivities
ǫ⊥ and ǫ‖ enter. When considering an epsilon-near-zero
(ENZ) material with ǫ⊥ → 0, then γo, γe → 0 so that the
exponential in the denominator of ts and tp is one and
we find

ts → e−iγvd and tp → e−iγvd. (20)

That means that similar to the perfect lensing effect,
the evanescent waves are amplified by uni-axial mate-
rial and in particular by a hyperbolic structure. Note,
that this time the exponential which enhances the evanes-
cent modes stems from the numerator of the transmission
coefficient which makes this effect more robust against
losses. Similarly, when considering an epsilon-near-pole
(ENP) material with ǫ‖ → ∞, then ts remains unaffected
because γo remains unaltered. But for the extra-ordinary

wave we have γe ≈
√
ǫ⊥ω/c. It follows that

tp → Ae−iγvd (21)

with

A ≡ 4ǫ⊥
√
ǫ⊥kvγveikv

√
ǫ⊥d

(

kv
√
ǫ⊥ + ǫ⊥γv

)2 −
(

kv
√
ǫ⊥ − ǫ⊥γv

)2
e2ikv

√
ǫ⊥d

.

(22)
Therefore tp ∝ exp(−iγvd) and the evanescent modes are
again amplified, if the κ-dependent prefactor A is not too
small.
To summarize, we find that for ENZ and ENP fre-

quencies evanescent waves in vacuum are amplified and
the dipole-dipole interaction can at least in principle be-
come infinitely large if z = z′ + d, i.e. if the donor and
the acceptor are both exactly deposited on the surface
of the hyperbolic film which cannot be achieved in a real
setup. But even if this condition is not perfectly met, we
can expect to find an amplified energy transfer across a
hyperbolic slab at the ENZ and ENP frequencies. Fur-
thermore, from the above derivation suggests that the
ENZ resonance is more advantageous for transmission
than the ENP resonance, because the prefactor fullfills
for ǫ > 0 typically |A| < 1.
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Figure 5: Sketch of the isofrequency lines of γe for a dielec-
tric uniaxial medium (blue ellipse) and a type I/II hyperbolic
material (solid black and light blue line). The asymptotes
(dashed red lines) are given by kz = ±kx

√

|ǫ⊥|/|ǫ‖|.

Note, that both regimes of ENZ and ENP were dis-
cussed in the context of diffraction suppressed hyperbolic
lensing [44], using the canalization regime for hyperbolic
lensing [72, 73] and directed dipole emission [45]. In these
cases, the advantage of using ENZ and ENP resonances
lies in the resulting very flat iso-frequency line of the ex-
traordinary modes so that the group velocity is mainly
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directed along the optical axis for a very broad band of
lateral wavenumbers κ. This becomes clear when looking
at the asymptotes of the isofrequency lines of γe as shown
in Fig. 5. For large wavenumbers κ (evanescent regime)
we have γe ≈ κ

√

|ǫ⊥|/|ǫ‖|. With this result we can eval-
uate the ratio of the group velocity along the z-axis and
the group velocity perpendicular to the z-axis and obtain

∣

∣

∣

∣

dω
dγe

dω
dκ

∣

∣

∣

∣

=

∣

∣

∣

∣

γe
κ

ǫ‖
ǫ⊥

∣

∣

∣

∣

≈
√

|ǫ‖|
|ǫ⊥|

. (23)

Hence, at the ENZ and ENP resonance the slope of the
isofrequency lines become infinitely small and the group
velocity becomes mainly directed parallel to the optical
axis so that the energy transferred between the donor
and acceptor flows preferentially along the line connect-
ing both, if both are placed along the optical axis.

V. S-MATRIX CALCULATION OF THE

DIPOLE-DIPOLE INTERACTION

Let us turn to a concrete numerical example. We con-
sider a hyperbolic multilayer metamaterial made of alter-
nating layers of silver and TiO2 which has for example
been used in the experiment in Ref. [40]. In most treat-
ments of such multilayer materials, effective medium the-
ory (EMT) is used which describes the multilayer struc-
ture as a homogenous but uni-axial material, with an op-
tical axis perpendicular to the interfaces. Within EMT
the effective permittivities of the multilayer structure can
be easily calculated and are given by

ǫ⊥ = fǫAg + (1− f)ǫTiO2
, (24)

ǫ‖ =
ǫAgǫTiO2

fǫTiO2
+ (1− f)ǫAg

, (25)

where f is the filling fraction of silver and ǫAg/ǫTiO2
are

the permittivites of the both constitutents of the mul-
tilayer structure. For silver we use the Drude model in
Eq. (15). TiO2 is transparent in the visible regime. It’s
permittivity ǫTiO2

is nearly constant in that regime and
can be well described by the formula [76]

ǫTiO2
= 5.913 +

0.2441

λ2 − 0.0803
. (26)

where λ is the wavelength in micrometer. The effective
permittivties ǫ⊥ and ǫ‖ are shown in Fig. 6 for a filling
fraction of f = 0.35. It can be seen that at the edges of
the hyperbolic bands we find the ENP and ENZ points
at λ = 394.8 nm and λ = 551.2 nm. To make these points
more obvious we show in Fig. 6 a plot of |ǫ⊥|/|ǫ‖|. By
changing the filling fraction the position of the ENZ and
ENP frequencies can be shifted. Note that the strong
resonance in the type I regime around λ = 350 nm can
essentially be considered as an ENZ resonance, since for
large κ it converges to the ENZ point as can be seen in
Fig. 6. When increasing the filling fraction the dielectric

band in between both hyperbolic bands in Fig. 6 will
become smaller until f = 0.5, then the frequencies of
ENP and ENZ coinside since in this case both hyperbolic
bands (type I and type II) are in juxtaposition with each
other.
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Figure 6: Top: plot of the real part of the effective permit-
tivites ǫ⊥ and ǫ‖ for a Ag/TiO2 multilayer hyperbolic mate-
rial with a silver filling fraction of f = 0.35. The vertical lines
mark the edges of the hyperbolic bands of type I and type
II. Bottom: plot of |ǫ‖|/|ǫ⊥| manifesting the ENP and ENZ
points at λ = 394.8 nm and λ = 551.2 nm.

However, the EMT is only applicable if the consid-
ered wavelengths and distances are much larger than the
period of the multilayer structure [35, 36, 36, 38, 74].
Furthermore, EMT cannot account for the ordering of
the layers so that it can be very important if we con-
sider a finite Ag/TiO2 or TiO2/Ag multilayer mate-
rial [74]. Therefore we will use mainly full S-matrix cal-
culations [75] to determine the transmission coefficients
of the multilayer hyperbolic film. Here, we choose silver
as first layer which is facing the donor. Hence, the last
layer facing the acceptor is made of TiO2.
The transmission coefficient of the extra-ordinary

waves tp is plotted in Fig. 7 for a Ag/TiO2 multilayer
structure of thickness d = 120 with a filling fraction of
f = 0.35 of silver. The calculation was made for N = 24
layers, which means that the silver layers have a thick-
ness of 3.5nm and the TiO2 layers have a thickness of
6.5nm which is at the lower limit of a realizable struc-
ture. In Fig. 7 the different coupled surface modes of the
hyperbolic multilayer structure can be seen. Obviously
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in the type I hyperbolic band the coupled surface modes
can exhibit negative group velocities which will result in
negative refraction [49]. Furthermore it can be niceley
seen that all the coupled modes converge for large κd
towards the ENZ and ENP frequencies (vertical lines).
Therefore at those ENZ and ENP frequencies we have
quite a number of surface modes with zero group velocity
in direction of the interfaces of the multilayer structure.
These are the waves which will contribute dominantly
to the Förster energy transfer having a group velocity
rather along the optical axis (z-direction) than perpen-
dicular to it as shown in Eq. (23). This is so, because for
the evanescent waves with large κ ≫ kv the exponentials
in the Green’s function in Eq. (4) introduce a cutoff [79]
at κ ≈ 1/(z−z′−d) at the ENP and ENZ frequencies for
the κ-integral, since tp ≈ exp(κd) in this case. Therefore
the major conributions stem from κ around 1/(z−z′−d).
That means in the ideal case z − z′ = d all evanescent
waves contribute, but in the non-ideal realistic case only
evanescent waves up to a finite value of κ ≈ 1/(z−z′−d)
will contribute to the energy transfer.

0 4 8 12 16 20

κ d

300

400

500

600

700

λ 
(n

m
)

 0

 2

 4

 6

 8

type II

type I

Figure 7: Plot of the transmission coefficient |tp exp(−κd)|2

for the hyperbolic Ag/TiO2 multilayer structure d = 120 nm
and N = 24 with filling fraction of f = 0.35. We have multi-
plied the transmission coefficient with exp(−κd) to compen-
sate the exponential enhancement of the evanescent waves
with large κ ≫ ω

c
. The horizontal lines and arrows mark the

edges of the hyperbolic bands.

In Fig. 8 we show now the results for the enhance-
ment factors Fx and Fz of the Förster energy transfer
by a Ag/TiO2 hyperbolic multilayer structure. It can be
seen that the enhancement is especially large close to the
ENZ and ENP frequencies. Furthermore, the enhance-
ment is more than two orders of magnitude larger than
for a single silver film in Fig. 4, so that this enhancement
of energy transfer due to the ENP and ENZ resonances
is much larger than the enhancement due to the thin film
surface plasmons. Since the latter has already been mea-
sured by Andrew and Barnes [16] the ENP and ENZ en-
hancement should be easily measurable. The advantage
of the hyperbolic structures to have large energy transfer
over long distances becomes apparent when comparing

configuration Fz Fz

(z − z′ = 50 nm) (z − z′ = 140 nm)

Ag, d = 30nm (SPP) 1138 25

Ag, d = 120nm (SPP) - 7.1

HMM, N6, (typeI) - 241

HMM, N6, (ENP) - 268

HMM, N8, (typeI) - 518

HMM, N8, (ENP) - 380

HMM, N10, (typeI) - 725

HMM, N10, (ENP) - 428

HMM, N10, (ENZ) - 115

HMM, N12, (typeI) - 873

HMM, N12, (ENP) - 452

HMM, N12, (ENZ) - 164

HMM, N24, (typeI) - 1204

HMM, N24, (ENP) - 477

HMM, N24, (ENZ) - 493

Table I: Collection of the enhancement factors Fz for silver
films (with d = 30nm and d = 120nm) and HMMs (with
different number of layers N, but all have a thickness of d
= 120nm) close to the surface plasmon polariton resonance
frequency (SPP), the resonances at the ENP and ENZ points
as well as the ENZ resonance in the type I regime (near λ =
350 nm. In all cases the distance of the donor and acceptor
to the surface is the same (i.e. we consider the symmetric
situation where |z′| = z − d).

the different enhancement factors listed in Table I. Of
course, this hyperbolic enhancement effect also exists for
much thicker structures. Note, that by increasing the
number of layer N in the multilayer film or by increasing
the distance of the donor-acceptor pair with respect to
the film the exact S-matrix result converges to the EMT
result. Realization of ultrathin layers for realizing hy-
perbolic materials is not very practical. However even in
that case if one was to compare the performance of a sin-
gle silver film versus the hyperbolic material using EMT
or numerical calculation, one will find that while thin
silver performs much better close to the volume plasmon
frequency of silver (300 nm), at longer and more practical
wavelengths where donor molecules are found, the HMM
doses a better job. Additionally, the use of multilayered
structures also allows one to tune the frequency range
where hyperbolic dispersion occurs through control of fill
fraction and thereby engineer the spectral range at which
the energy transfer enhancement is desired.
The position of the peaks can be explained be the fact

that the dominant contributions to the energy transfer
stem from κd ≈ d/(z − z′ − d) = 6 in this case. The
vertical line in Fig. 7 is exactly at this value. It can
be seen that the frequencies at which the coupled surface
modes cross this vertical line coincide with the resonances
of the energy transmission in Fig. 8. If we would increase
the donor-acceptor distance z−z′ the vertical line would
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Figure 8: Plot of Fz and Fx as function of wavelength. Again
donor and accepor are placed in a distance of 10 nm of each
interface (i.e. z′ = −10 nm and z − d = 10 nm) of the film of
thickness d = 120 nm. Here the film is given by a Ag/TiO2

multilayer structure with N = 6, 12, 24, 60 layers. The filling
fraction of silver is f = 0.35. For comparision the exact and
the EMT results are shown. The vertical lines correspond
again to the edges of the hyperbolic bands as in Fig. 6.

move to smaller κ values in Fig. 7 so that the resonances
will shift accordingly. This shifting of the resonances is
shown in Fig. 9(a). Obviously, the enhancement around
the ENZ and ENP frequencies gets smaller and smaller,
when the distance of the donor and acceptor with respect
to the surface is increased. However as can be seen in
Fig. 10, there can still be an enhancement of 30 for the
energy transfer inside the type I hyperbolic band if the
distance of the donor and acceptor with respect to the
surface of the hyperbolic medium has relative large values
as for example 100 nm so that z − z′ = 320 nm.

Finally, we also consider the influence of a 10nm
silica cladding which is deposited on the metal layer
on the donor-side of the structure. Obviously the
cladding improves the performance of the hyperbolic
multilayer structure, because waves which are evenescent
in air/vacuum when there is no cladding can be homo-

geneous inside the cladding. Therefore, the light from
the donor couples better into the structure when there is
a cladding due to the increased density of states in the
dielectric compared to air - hence the emission pattern
gets modified leading to an increased energy transfer. So
far we have not included the absorption and enission line
shapes of the acceptor and donor. We next show that
such an inclusion does not change the enhancement fac-
tors much. We include explicitly the case when the donor
emission peak is near 550 nm. The emission and absorp-
tion shapes are modeled as Lorentzians:

σem(ω) =
1

π

Γ0

(ω − ω0)2 + Γ2
0

, (27)

σabs(ω) =
1

π

Γ0

(ω − ω)2 + Γ2
0

(28)

with λ = λ0+∆ (ω0 = 2πc/λ0 and ω = 2πc/λ ) using the
realistic parameters ∆ = 30 nm and Γ0 = 2.28×1014 s−1.
Then the enhancement factor can be expressed as [confer
with Eq. (1)]

F i :=

∫

dωσem(ω)σabs(ω)|Gii|2ω4

∫

dωσem(ω)σabs(ω)|G(vac)
ii |2ω4

. (29)

A plot of the numerical result in Fig. 9(c) for donor-
acceptor pairs with λ0 and λ around one of the reso-
nant transmission peaks at 550 nm shows that due to
the broad-band enhancement of the transmission through
the hyperbolic material the enhancement factor is at its
maximum about 900 which is quite close to the predicted
maximal enhancement factor of 1330 in Fig. 9(b).

VI. CONCLUSION

In conclusion, we have discussed the perfect lens effect
and its pendant for hyperbolic metamaterials in the con-
text of Förster energy transfer between a donor-acceptor
pair placed on each side of the perfect or hyperbolic lens.
We have demonstrated that in principle in both cases one
can have an infinitely large dipole-dipole interaction for
precisely defined positions of the donor-acceptor pair and
well-defined frequencies which coincide with the surface
plasmon frequency in the case of a perfect lens and the
epsilon-near zero or epsilon-near infinity frequency for the
hyperbolic lens. Due to losses this interactions becomes
finite but it remains large compared to the dipole-dipole
interaction in vacuum. The main reason for such large
enhancements is that the enhancment effect in HMM
is much more robust against the negative influence of
losses, whereas the perfect lens effect is quite susceptible
to losses. Finally, we have studied the effect numerically
using an exact S-matrix method and realistic material
parameters for a Ag/TiO2 mulilayer HMM. The numer-
ical results show that FRET can be enhanced by two to
three orders of magnitude by using a HMM instead of a
thin silver film of same thickness. Since the plasmonic
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enhancement of FRET for a thin silver film has already
been observed, a measurement of the enhancment due to
the hyperbolic material should be feasible. Such a re-
alization is important not only for FRET but for other
areas like production of quantum entanglement [77, 78].
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Figure 9: Plot of Fz for a Ag/TiO2 multilayer structure with
N = 24 for different donor-acceptor positions in (a). In (b)
we show for z′ = −10 nm the influence of a silica cladding of
10nm thickness which is deposited on the metal layer on the
side of the donor. The donor lies on top of the cladding and
the acceptor is set at position z− d = 10 nm (cladding 1) and
z−d = 0nm (cladding 2). Note that the TiO2 layer functions
as a cladding on the acceptor side of the hyperbolic structure
so that by setting z−d = 0nm the acceptor just lies on top of
this ’cladding’. In (c) we have plotted the enhancement factor
defined in Eq. (29) as a function of the maximum emission
wavelength λ0 of the donor while the acceptor wavelength is
λ = λ0 + 30 nm for the configuration ’cladding 2’ in (b).



12

 0

 10

 20

 30

 40

 300  400  500  600  700

|G
zz

|2  / 
|G

zz
V

ac
|2

λ (nm)

N = 12

N = 60

(a) Ag/TiO2, Fz

 0

 1

 2

 300  400  500  600  700

|G
xx

|2  / 
|G

xx
V

ac
|2

λ (nm)

N = 12

N = 60

(b) Ag/TiO2, Fx

Figure 10: Same as in Fig. 8 but with z′ = −100 nm and
z = d+100 nm for N = 12, 60. The EMT result is not shown
because it practically coinsides with the result for N = 60.


