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We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of
semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method
is efficient and scalable and becomes exact in the limiting case of weakly interacting SQDs. The
self-consistent equations obtained for the steady state are analogous to the Heisenberg equations
of motion for the density matrix of a SQD placed in an effective electric field computed within
the discrete dipole approximation (DDA). Illustrative applications of the theory to square and
honeycomb SQD, MNP and hybrid SDQ/MNP lattices as well as SQD-MNP dimers are presented.
Our results demonstrate that hybrid SQD-MNP lattices can provide flexible platforms for light
manipulation with tunable resonant characteristics.

I. INTRODUCTION

Collective surface charge oscillations (plasmons) on
a metal-nanoparticle (MNP) can strongly localize light
to subwavelength regions and greatly enhance the field
in these regions1–6. Gold nanoparticles, for example,
are well-known to exhibit plasmonic resonances in the
visible7,8. Hybrid systems of MNPs and semiconductor
quantum dots (SQDs)9–15 are attracting special inter-
est because interactions between the excitons of an SQD
and the plasmons of an MNP can lead to novel effects
and strong modifications of the optical properties of an
SQD-MNP network compared to those of the underly-
ing SQD or MNP building blocks; the SQDs play the
role of quantum emitters in the network16,17, whereas
the MNPs act to amplify or dampen the electromag-
netic field. The matrix elements of the density operator
satisfy the well-known optical Bloch equations18. Thus,
as shown by Zhang et al.19, the plasmon-excitation in-
teraction leads to the formation of a hybrid excitation
with shifted frequency (Lamb shift) and decreased life-
time. The modified decay rate can be also derived from
Fermi’s golden rule as shown in the book by Novotny and
Hecht7. Efficient transfer of energy through the network
can be achieved by designing a hybrid layer composed
of plasmonic elements coupled with SQDs20 or semicon-
ducting interfaces21. The underlying mechanism involves
a near-field resonance of electric dipoles, also known as
Forster resonance energy transfer (FRET)22, which can
be viewed as a quantum version of the classical resonance
phenomenon23.

Exciton migration in a hybrid SQD-MNP network
can be incoherent (diffusive)9 or coherent (wavelike) and
could be studied by using positronium atoms simulators
in metal-organic framework.24 In the coherent case, exci-
tations are transferred back and forth between the MNPs
and the SQDs. This regime occurs in the vicinity of the

exciton-plasmon resonance and produces a shift in the
exciton emission frequency. Coupling of resonance to the
broad continuum of plasmonic modes of the MNP in the
presence of an applied driving field near the resonance
has been investigated within the framework of the quan-
tum density-martix formalism19,25–27, and show to yield
Fano lines shapes28–30, excitation induced transparency,
suppression and bistability behavior of the network19,25.
Reference 27 has developed a theory in this connection,
but the scheme of Ref. 27 can only treat a few building
blocks since it involves a set of complicated non-linear
ordinary differential equations (ODEs). To solve this
bottleneck, in system size, we consider a set of linear
Heisenberg equations of motion in the steady state for
the density matrix of each SQD placed in an effective
field, due to the network, which is obtained within the
discrete dipole approximation (DDA).

The resulting equations differ sharply from the stan-
dard linear response treatment in that our SQD density
matrix operator can be cast in terms of occupation num-
bers, which can be computed very efficiently by adapt-
ing Self Consistent Field (SCF) iterative schemes that
have been implemented in many quantum chemistry and
solid-state electronic structure software packages involv-
ing Hartree-Fock or Kohn-Sham equations31. In this way,
our method becomes extremely efficient and scalable and
enables the treatment of very large hybrid networks.

The present framework will allow a broader exploration
of light-matter interactions in metamaterials32–34 and hy-
brid systems35–37, where one is constrained currently to
the treatment of only plasmonic particles. Inclusion of
SQDs, offers a much greater degree of freedom in the de-
velopment of applications such as multi-wavelength en-
ergy absorption arrays38,39 and optical nanocircuits3.
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II. METHOD

A. Formalism

Our scheme is composed of two main parts, namely,
the evaluation of the Heisenberg equations of motion for
the density matrix, ρ, of each SQD in the steady state,
and of the effective electric fields calculated within the
DDA40–45. The density matrix of each SQD is first ini-
tialized to the one given by the external electric field E0.
It is next updated by using the local electric field at the
SQD. In each of these steps, we solve, in the steady state,
given by the master equation

dρ

dt
=
i

~
[ρ,HE ]− Γ(ρ). (1)

In Eq.1 HE = ~ω0â
†â − µ · Eâ − µ · E∗â† is the SQD

Hamiltonian, where â and â† are the exciton annihilation
and creation operators, ω0 is the energy gap in the SQD,
µ denotes the dipole matrix element, and E the electric
field. Moreover, Γ is the relaxation matrix where the
matrix elements are Γ11 = (ρ11 − 1)/τ0, Γ22 = ρ22/τ0,
and Γ12 = Γ∗21 = ρ12γ21. Within this work we have taken
the values of γ21 and τ0 from Ref. 19 and 25 in order to
benchmark our solution. To include the Purcell effect,
decay rates can be renormalized to take into account of
the environment as discussed in Ref. 7 and 46. Here,
entanglement effects have been neglected since these are
observed to be small in the steady state47,48, although
these effects can be significant in the transient regime.

In order to find the induced polarizations on various
elements of the hybrid network within the DDA, we as-
sign polarization Pi and polarizability αi = ε0χi

49,50

to the ith element (plasmonic or semiconducting) of the
network51. Then Pi = αiE

i
loc, where Ei

loc is the total
(local) electric field on the ith site produced by all other
sites and the external electric field. This expression can
be expressed into a system of linear equations52 given by

P i
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∑
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xyP
j
y

)
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x


 , (2)

P i
y = αi


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j
x +Gij
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j
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)
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
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where P i
x and P i

y are the x- and y- components of the

polarization at the ith site, and E0
x and E0

y are the x-

and y- components of the external electric field. Gij
ws,

with ws ∈ {xx, xy, yx, yy}, is a matrix element of the

dyadic Green’s function
↔
G(r, r′), where r is the location

of the ith observation site and r′ is the location of the jth

source site. The resulting closed form of
↔
G(r, r′) given

in Ref.53 is

↔
G(r, r′) =

1

4πε0

e−ikoR

R3

{[
(k0R)2 − ik0R− 1

]↔
I−

−[(k0R)2 − 3ik0R− 3]RR
}
, (3)

where
↔
I is the identity dyad, R = r − r′, and k0 is the

free space wave vector.

Initialize ρ using ~E0:

ρ̇(0) = i
h̄

[
ρ(0),H~E0

]
− Γ(ρ(0))

DDA Solver

Evaluate Master Equation:

ρ̇(n+1) = i
h̄

[
ρ(n+1),H~E

(n)

loc

]
− Γ(ρ(n+1))

Converged if:∣∣∣ρ(n+1)
11 − ρ(n)

11

∣∣∣ <Tolerance

Output: ρ(n+1), ~P
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(n)
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no
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FIG. 1. A schematic illustration of our self-consistency loop
for treating the network of SQD and MNP elements. Here ρn

denotes the density matrix of a SQD in the nth iteration.

Since our network contains two distinct types of ele-
ments (MNP and SQD), we must consider two different
forms of linear susceptibility. The classical MNP suscep-
tibility is given by

χMNP = 4πε0a
3γ, (4)

where a is the radius and γ = εm−ε0
εm+2ε0

is the effective
dielectric constant of the MNP. For the SQD, we use

χSQD =
1

3~εeff
2ω0ρ11µ

2

(ω0 − ω − γ12)(ω0 + ω + γ12)
(5)

where εeff is given in Ref. 19, ρ11 is a matrix element of
the density matrix and 1/γ12 is the lifetime of the excited
state54 given by the relaxation matrix in Eq.1.
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B. Practical Implementation of the Algorithm

The combined evolution of the density matrix and the
induced local polarizations can now be obtained through
the preceding set of equations, starting with the initial
density matrix ρ(0) and the resulting susceptibility χSQD

[see Fig. 1]. The linear system in Eq. 2 is solved self-
consistently to yield the polarizations on various elements
of the network using the local field on each SQD to ex-
tract an updated density matrix ρ(1). The main com-
putational cost as a function of the size of the system
is driven by the matrix inversion of the linear system in
Eq.2 which depending on the algorithm the complexity
can range from O(n2 log n) to O(n3) as shown in Ref.55.
Here n = d(NMNP + NSQD), with d being the num-
ber of spatial dimensions and NMNP (NSQD) being the
number of MNPs (SQDs) in the system. Self-consistency

is reached when
∣∣∣ρ(n+1)

11 − ρ(n)11

∣∣∣ is smaller than a given

value: here we used a tolerance of 10−5. In the present
calculations, we found that convergence of the density
matrix is typically achieved within about 10 iterations,
with the number of iterations depending on the external
field strength, dipole strength, the distance between the
particles and the proximity of the system to the reso-
nance frequency ω0. However, when µ is large, and the
distance between particles is small, we found an increase
in the number of iterations to around 30.

FIG. 2. (color online) Population of the excited state of a
dimer system for different inter-particle distances R. The
ODE and SCF results are compared.

The standard route followed in quantum plasmonics
involves solving simultaneously the rate equations of the

(a) (b)

FIG. 3. (color online) (a) A 10× 10 square MNP lattice with
a basis of SQDs; (b) a 10×10 MNP/SQD honeycomb lattice.
The gold (red) spheres represent the MNP (SQD).

FIG. 4. (color online) Resonant behavior of the local electric
field Eloc on MNP (a) and SQD (b) elements of various lattices
as a function of the frequency ω: square lattice (blue lines);
honeycomb lattice (red lines); and dimer case (green lines).
The effect of disorder in the lattice is shown by shading of
different colors around various lines. The external field is
oriented 45◦ with respect to the x-axis.

quantum emitters along with the field equations obtained
via finite-difference time-domain schemes. The present
SCF approach gives the same results in the steady state
as the standard approach19. However, our scheme avoids
the key numerical bottlenecks of the standard approach
by invoking the SCF methodology. It should be noted
that a disadvantage of our method is that it cannot treat
the transient regime before the system reaches the steady
state. If effects of the fractional occupation number ρ22
of the excited state are neglected, we don’t need to it-
erate and our scheme becomes equivalent to that intro-
duced by Panahpour et al.56. For a system only com-
posed of SQDs, our SCF scheme reduces to the General-
ized Maxwell-Bloch equations introduced by Bowden and
Dowling57.

III. RESULTS

We first consider the illustrative case of a hybrid dimer
composed of a spherical MNP of radius a = 7.5 nm
and an SQD in the presence of a polarized external field
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E0 cos(ωt), at light intensity of I0 = 1 W/cm
2
. Plas-

monic properties of the MNP are introduced in our cal-
culations by using the dielectric function of Ref. 58. The
energy gap ω0 of the SQD can be tuned to resonate
with the MNP, for example, by modifying the size of
the SQD16. The dipole moment of the SQD is given by
µ = e r0 where we take r0 = 0.65 nm, and the relaxation
times to be τ0 = 0.8 ns for fluorescence and 1/γ12 = 0.3
ns for the dipole transition. As we mention before the
value of γ21 and τ0 are taken from Ref.19 and 25. The
center-to-center distance between the two nano-particles,
R, ranges typically between 13 nm to 80 nm. Depending
on the angle between the polarization vector and dimer-
axis, the two dipoles will interfere either constructively
or destructively. In particular, the induced field between
the spheres will be enhanced in the longitudinal polar-
ization configuration at frequencies well below the res-
onance. Figure 2 shows the population of the excited
state, ρ22, for the SQD in the dimer system for different
inter-particle distances R when the field is in the lon-
gitudinal polarization configuration. The earlier ODE
results of Refs. 19 and 25 are seen to be almost identi-
cal to the present SCF results for R = 20 nm, although
one can notice small differences at shorter inter-particle
distances. The reason is that our self-consistent compu-
tation fully captures the feedback of dipole interactions
in the system. In fact, in the small R limit, we find that
the MNP dominates the response and the SQD becomes
irrelevant, while for large R, the behavior of the MNP
and SQD contributions is opposite. Our method thus
correctly captures the standard ODE cases of dimer as
well SQD/MNP/SQD27 and MNP/SQD/MNP trimers
as shown in detail in the Supplementary Information (SI).
Our analysis indicates that for 15 ≤ R ≤ 20 nm, the
hybrid artificial systems (dimer or trimer) behave signif-
icantly differently from their constituent elements, and
offer unique optical properties at the nanometer scale at
their resonant energies.

In particular, when µ is large, our method is able to
capture plexitonic effects such as electromagnetically in-
duced transparency (EIT) and modified Fano shapes; it
also reproduces well cases studied with the standard ODE
approach by Artuso and collaborators25,59. Interestingly,
Artuso et al. found two distinct solutions to the rate
equations25,26,60 due to non-linearity, in the dimer case
for a specific set of parameter values (R = 13nm, a =
7nm, µ = 3.5e nm). One of these stable solutions is a
smooth and continuous function of ω, while the second
solution displays a similarly broad asymmetrical shape
away from the resonance with a discontinuous jump. Our
method, on the other hand, only yields the first solution.
In the strong coupling regime discussed in Ref. 46, the
atom-field coupling κ (see Ref.7 for definition) is much
larger than the spontaneous decay rate. Such a regime
can be accessed by measuring vacuum Rabi oscillations61.

We turn now to discuss the electromagnetic response

FIG. 5. (color online) Intensity of the induced electric field
(excluding the external field E0) in a plane 12 nm above the
square 10x10 planer network for: (a) a pure MNP network;
(b) a pure SQD network; (c) the hybrid MNP/SQD network,
and, (d) the difference between the hybrid system in (c) and
the pure MNP system in (a). The external field is oriented at
45◦ with respect to the x-axis with ω at resonance. The field
intensities are given in units of external field intensity.

of hybrid SQD/MNP lattices by taking advantage of
the high computational efficiency of our SCF algorithm.
Properties of two specific lattices are considered: a 10×10
square MNP lattice with a basis of SQDs at (0.5, 0.5),
and a 10 × 10 MNP/SQD honeycomb lattice, as seen in
Fig.3. Such large systems are intractable within the stan-
dard ODE approach60. In investigating the SQD/MNP
networks, we chose R = 20 nm as the distance between
the SQD and MNP elements for ease of comparison with
the corresponding dimer results. Figure 4 illustrates the
resonant behavior of the local electric field Eloc as a func-
tion of the frequency ω of the external electric field, which
is oriented 45◦ with respect to the x-axis. We see that
on the SQD site of the square lattice there is a strong
suppression of the local electric field at the resonance
frequency [blue curve in Fig. 4(b)] and that just before
the resonance Eloc becomes larger than E0. In the hon-
eycomb lattice also the ratio Eloc/E0 rises just before the
resonance but it does not become larger than unity. By
comparing various curves in Fig. 4, it is clear that there
are substantial differences between the behavior of the
SQD and MNP lattices, and that the response of the lat-
tices differs sharply from that of the dimer, especially at
and near the resonance. Results of Fig. 4 demonstrate
that the Eloc/E0 line-shape can be controlled through the
choice of the lattice on which elements of the network are
arranged, providing flexibility in tuning the plasmonic
characteristics of the network. We have also taken ad-
vantage of the scalability of our algorithm to find that,
near the resonance frequency, the density operator in the
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infinite lattice limit needs systems as large as 80 × 80
to converge as illustrated in the SI62. Finally, we have
simulated effects of disorder by randomly varying the po-
sitions of the SQDs and MNPs in the lattice by up to 5%
of the inter-particle distance away from the perfect lat-
tice positions. The resulting uncertainty in the response
is shown by the shading around various curves in Fig. 4.
It is be seen that the response in all cases considered in
Fig. 4 is quite robust against such disorder effects.

Figure 5 gives further insight into our results by show-
ing that the hybrid network can be used to shape the
electric field in the near-field region by producing a beam
with a modulated pattern. Here, we consider the 10× 10
MNP/SQD square network discussed above using the
same external field orientation. Figure 5(a) shows the
electric field in a plane 12 nm above the planar network
for the SQD subnetwork, and is compared with the corre-
sponding results of Fig. 5(b) for the MNP subnetwork52.
The focal properties of the full hybrid MNP/SQD system
(panel (c)) are seen to change significantly as demon-
strated by the difference, panel (d), with respect to the
linear superposition of the two pure systems (i.e. MNP
and SQD)63. SQD/MNP arrays could thus provide a flex-
ible basis for designing platforms for nano-antenna light
manipulation64. Previously, we have noticed that Fig. 4
was little affected by randomness. However, disorder is
mainly manifested in the propagation properties. There-
fore, quantities shown in Fig. 5, which are relevant to
propagation and Green’s tensors, are much more sensi-
tive to disorder effects as shown in the SI65. Interestingly,
disorder in the lattice can also lead to Anderson localiza-

tion effects as shown by John66, however, here the main
reason to introduce small disorder effects is motivated by
the study of the stability of our numerical solutions.

IV. CONCLUSION

We have developed an efficient SCF method based on
the DDA for obtaining the optical response of large net-
works of plasmonic MNPs and SQDs. Our method is
both accurate and scalable, and it can be generalized to
treat complex nano-resonators with arbitrary shapes67.
The present scheme solves the major computational bot-
tlenecks for the numerical treatment of large hybrid net-
works of MNPs and SQDs, and significantly advances
the field of opto-electronics based on plasmonics. For
example, one could determine optimal architectures for
absorbing layers in novel quantum dot sensitized solar
cells20. By combining MNPs with quantum emitters such
as the SQD, it will become possible thus to model wire-
less networks at the nanoscale, and analyze the efficiency
of energy transport through such networks.
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