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There has been tremendous progress in manipulating electron and hole spin states in quantum
dots or quantum dot molecules (QDMs) with growth-direction (vertical) electric fields and optical
excitations. However, the response of carriers in QDMs to an in-plane (lateral) electric field remains
largely unexplored. We computationally explore spin-mixing interactions in the molecular states
of single holes confined in vertically-stacked InAs/GaAs QDMs using atomistic tight-binding sim-
ulations. We systematically investigate QDMs with different geometric structure parameters and
local piezoelectric fields. We observe both a relatively large Stark shift and a change in the Zeeman
splitting as the magnitude of the lateral electric field increases. Most importantly, we observe that
lateral electric fields induce hole spin mixing with a magnitude that increases with increasing lateral
electric field over a moderate range. These results suggest that applied lateral electric fields could
be used to fine-tune and manipulate, in situ, the energy levels and spin properties of single holes
confined in QDMs.

PACS numbers: 73.21.La, 73.63.Kv, 85.35.Be

I. INTRODUCTION

In recent years there has been tremendous progress
in controlling spin projections and spin interactions in
solid state systems that could provide the foundation
for quantum information processing devices.1 Solid-state
materials that have been explored for this application in-
clude: silicon dopants,2 nitrogen vacancy (NV) centers
in diamond,3 gate-defined quantum dots (QDs),4 and
optically-active self-assembled QDs.5,6 Although initial
efforts focused on electron spins, hole spins have recently
attracted considerable attention due to the significant
reduction in hyperfine interactions with nuclear spins,
which are a primary source of dephasing and decoherence
for qubits based on electron spins.7–9 Continued progress
toward the development of quantum device technologies
based on hole spins requires a detailed understanding of
the physical properties of hole spin states in candidate
materials and the ways in which these properties can be
manipulated by external stimuli.

In this paper we explore the spin properties of sin-
gle holes confined in InAs/GaAs quantum dot molecules.
The experimental system we model consists of two InAs
QDs aligned along the growth direction and separated by
a thin layer of GaAs, as depicted in Fig. 1a. Such a com-
plex of multiple QDs is called a quantum dot molecule
(QDM) because coherent interactions between two or
more adjacent QDs lead to delocalized molecular-like
wavefunctions with unique and tunable properties.10–19

We focus specifically on a QDM in which the relative size
of the two QDs and the electric field applied along the
growth direction enables coherent tunneling of holes.20 In
the simplest picture, one can consider a QDM in which
a hole with heavy-hole spin projection up is located in
either the bottom ((⇑, 0)) or top ((0,⇑)) QD. When elec-

tric fields applied along the molecular stacking axis bring
the discrete energy levels of the top and bottom QDs into
resonance, coherent tunneling leads to the emergence of
molecular states that can be described as the sum and
difference of the basis states (e.g. (⇑, 0)± (0,⇑)). When
a magnetic field Bz is applied along the growth axis (z),
the spin degeneracy of the hole ground states in each
QD is broken and a Zeeman splitting of each molecular
branch is observed. Figure 1b shows the resulting four
molecular states, with each state labelled at the right side
of the figure by the atomic-like basis state that describes
the state at an electric field where coherent interactions
are negligible.
Due to the complex nature of the valence band, molec-

ular states created by the coherent tunneling of holes
can have surprising properties, including antisymmet-
ric molecular ground states.21 We focus here on the
emergence of hole spin mixing, which is conceptually
equivalent to a spin-flip coherent tunneling process that
mixes states with opposite heavy-hole spin character (e.g.
(⇑, 0) ± (0,⇓)).22 Such hole spin mixing manifests as
an anticrossing between Zeeman-split molecular orbitals
with opposite heavy-hole spin character, as indicated by
the ∆sm in Fig. 1c. This hole spin mixing interaction
presents an opportunity to create wavelength-tunable
qubit states compatible with all-optical information pro-
cessing and scalable production of photonic information
processing device architectures.23 The hole spin mixing
that has been observed to date is understood to arise from
a lateral offset of the two QDs along the stacking axis (see
bottom panel of Fig. 1a).22 The symmetry breaking pro-
vided by the lateral offset allows light-hole components
of the hole spinor to mediate a spin-orbit interaction that
creates the hole spin mixing.22,24–26 Larger offsets (∆x)
create stronger spin mixing interactions that are advanta-
geous for all-optical information processing schemes and
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manifest as larger spin mixing anticrossings (∆sm). Al-
though lateral offsets frequently occur in QDMs grown
by molecular beam epitaxy, the typical offset distance
is relatively small and cannot be controlled by growth
techniques.22

We explore spin mixing interactions in the molecu-
lar states of single holes confined in InAs QDMs subject
to two-dimensional electric fields that have components
both parallel and perpendicular to the molecular stacking
axis. Zhou, et al. recently presented a design for a de-
vice that can generate such fields around single QDMs.27

Our objective in this paper is to understand the physi-
cal interactions that contribute to the emergence of hole
spin mixing and to evaluate the possibility of using ex-
ternally applied electric fields to reversibly control the
magnitude of hole spin mixing interactions. We pursue
this objective by computing the energies of QDM states
under various electric and magnetic field conditions with
a combination of tight binding atomistic calculations and
matrix-based extrapolation of the atomistic results. We
choose tight binding-based simulations over continuous
methods such as k · p theory due to the advantages of
tight binding in capturing the effects of atomistic sym-
metry, material interfaces, strain, and piezoelectricity28

without the computational cost of the atomistic empiri-
cal pseudopotential methods. To understand the physi-
cal origin of observed phenomena, we systematically ap-
ply the methods to QDMs both with and without lateral
offsets and compute results both with and without the
inclusion of piezoelectric fields.
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FIG. 1: (Color Online) (a) Disk shaped QDMs without (sym-
metric) and with (asymmetric) lateral offset. (b and c) The
four lowest-energy hole states as a function of vertical (z-
direction) electric field in a symmetric QDM for Bz = 12
T (b) and asymmetric QDM with ∆x = 4 nm and Bz = 6 T
(c).

II. METHODOLOGY

Figure 1a shows the two types of QDMs (symmetric
and asymmetric) used in our calculation. Both types of
QDMs consist of two disk-shaped InAs QDs that are 2
nm high and have a 10 nm radius. The QDs are verti-
cally stacked along the z axis and are separated by a 4 nm
thick GaAs barrier. The QDs of the symmetric QDM are
perfectly aligned along the z axis while the asymmetric
QDM has a top QD laterally offset by ∆x. We compute
the energy levels of these QDMs in the presence of electric
and magnetic fields with an atomistic tight binding sim-
ulation that includes strain and spin-orbit interactions.
For the tight-binding calculations employed here, we

use a s3ps∗ model.29–32 In this model, the basis states
for each atom include an s orbital, three p orbitals and
an excited s∗ orbital. Tight-binding parameters for InAs
and GaAs that describe the on-site orbital energies and
the coupling between nearest-neighbor atoms are ad-
justed empirically to reproduce the InAs and GasAs bulk
band structure.29 Spin-orbit effects are also included.33,34

InAs/GaAs QDs are defined both by the band offset of
the heterojunction and by the strain due to the lattice
mismatch of the InAs and GaAs. The strain due to
lattice mismatch is accounted for by use of the valence
force field method to find the relaxed lattice configura-
tions with the minimum strain energy.30–32,35 The tight-
binding parameters are rescaled using Harrison scaling
laws to account for deviations of the local atomic lattice
from the bulk configuration with bulk bond lengths and
bond angles. Different electric and magnetic fields are
used to manipulate the QD electronic structure. A static
applied electric field is included in the tight-binding ap-
proach via a potential energy shift of the atomic orbital
energies. A constant, static magnetic field is incorpo-
rated, in a gauge-invariant form, in the tight-binding ap-
proach via a Peierls transformation36 that includes the
magnetic vector potential via a phase shift of the tight-
binding nearest-neighbor hopping parameters. The in-
teraction with atomic orbital angular momentum and
spin is also included with an additional Zeeman energy,

µB(~Lat +2~S) · ~B where ~Lat is the atomic orbital angular

momentum and ~S is the spin. In piezoelectric materi-
als, like III-V semiconductors such as InAs and GaAs,
local strain produces local charge that is proportional to
the strain. This local charge creates an additional local
electric field and corresponding potential. We use the
approach employed by Zielinski37,38 to include the po-
tential for the piezoelectric field as an additional shift of
the on-site orbital energies.
The open circles in Figures 1b and c show the energies

of the four lowest-energy hole states of the symmetric and
asymmetric QDMs, relative to the lowest hole state in a
single dot, as computed by our atomistic tight-binding
method. These state energies are displayed as a function
of the electric field applied along the growth direction in
the presence of a constant 12 T (for the symmetric QDM)
and 6 T (for the asymmetric QDM) magnetic field along
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the growth direction. As shown in Fig. 1b for the sym-
metric QDM, the degeneracy of the hole states with op-
posite spin projections is broken by the applied magnetic
field and four states are observed. Away from the cross-
ing these states can be assigned to the heavy-hole spin
states (⇑, 0), (⇓, 0), (0,⇑), and (0,⇓), with the hole lo-
cated in the bottom (left) or top (right) QD, respectively.
For the asymmetric QDM, hole spin mixing manifests as
an anticrossing between two states that have opposite
heavy-hole spin projection far away from the anticross-
ings. Molecular states that are complex mixtures of these
QD states are formed near and between the anticrossings
for the asymmetric QDM in Fig. 1c. For the asymmet-
ric QDM, whose state energies are shown in Fig. 1c, two
such anticrossings are observed, at 1.1 kV/cm and 3.2
kV/cm. We will use Fsm to represent the vertical elec-
tric fields at which hole spin mixing can occur and the
anticrossing gap ∆sm to characterize the strength of the
hole spin mixing interaction. In Fig. 1b no anticrossing
is observed at the Fsm points because the QDM is sym-
metric and the electric field has components only along
the z axis.
We note that the magnetic field values for our compu-

tations are chosen so that hole spin mixing effects can be
quantitatively extracted from the computed energy levels
of the states as a function of both lateral and vertical elec-
tric field. Specifically, we choose magnetic fields at which
hole states with opposite spins in the two QDs come into
resonance. The magnetic field required to create this de-
generacy depends on both the strength of coherent tun-
neling and the hole g-factor, as shown in several previous
experiments.13,15,20,22 This is the reason that different
magnetic fields (6 T vs 12 T) are used in Fig. 1b and c
for symmetric and antisymmetric QDMs, respectively. A
further consequence of this variation is a change in the
electric fields of maximum spin mixing, Fsm in Fig. 1b
and c. As a result of this change, different x scales are
used in Figs. 1b and c. The difference in x scales creates
the illusion of a different electric field dependence for the
indirect optical transitions between these two cases, but
the dependence is, in fact, the same.
Although the atomistic tight binding method provides

a precise computation of both the state energies and the
corresponding state wavefunctions, it is computationally
intensive. To reduce the number of full tight-binding cal-
culations needed, we first do a tight-binding calculation

at a chosen electric field ~F0 to define a basis of exact
eigenstates for this field. Using this basis, we then cal-
culate eigenstates for other fields by diagonalizing the
following matrix Hamiltonian:

H ′ =
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In the following, we refer to this as the matrix Hamilto-

nian method to distinguish it from our full tight-binding
calculations.

The basis states for this matrix are the first n hole
states, with energies E

(0)
n as computed by the atom-

istic method. The wavefunction that describes each state
(φi) consists of amplitudes for every electron orbital (s,
p and s*) at each atomic site. The external potential

V = (~F − ~F0) ·~r is based on the electric field (~F ) and the
position of each atom (~r). The interaction terms (Vij)
are constructed from the integration of two wavefunc-
tions over the electric potential, Vij = 〈φi|V |φj〉, which
is performed as a sum over every atomic site. The eigen-
values of the matrix Hamiltonian provide the energies of
the hole states under the external electric field.

For computational efficiency we want to include in our
matrix Hamiltonian calculations the minimum number
of basis states required to generate a sufficiently precise
result. We therefore test the matrix Hamiltonian cal-
culations by computing the matrix Hamiltonian results
as a function of the number of basis states included and
comparing these results to atomistic simulations. We use
basis states generated by the tight-binding method un-
der a constant electric field along the z axis. We then
use our matrix Hamiltonian (Eq. 1) to compute the en-
ergy levels under an electric field applied along the x and
z axis. We compare the matrix Hamiltonian results to
the full tight-binding calculations under the same elec-
tric field conditions (e.g. with electric fields along both
x and z). We performed this test for multiple field con-
figurations and found that our matrix Hamiltonian re-
sults converge to a precision of at least 97 %, relative
to the full tight-binding results, so long as we include at
least the 16 lowest-energy hole states (i.e. the 16 states
closest to the valence band edge). Throughout the re-
mainder of this paper, results computed by the matrix
Hamiltonian method will be indicated by lines and re-
sults computed by full tight-binding calculations will be
indicated by open circles. The good agreement between
tight-binding and matrix Hamiltonian results can be seen
in each figure.

We now present a systematic analysis of hole spin mix-
ing in QDMs under four different conditions: both with
and without lateral offsets and both with and without
the inclusion of piezoelectric fields. All calculations are
performed under a constant magnetic field applied along
the z axis. Initial basis states are generated by full tight-
binding calculations and the matrix Hamiltonian method
is used to explore variations in the electric field. Full
tight-binding calculations for certain electric fields are
performed to validate the matrix Hamiltonian results. In
each case we first consider the energy levels and Zeeman
splittings of the hole states under a constant ‘vertical’
electric field (along the z axis) as a function of the ‘lat-
eral’ electric field (along the x axis). Second, we explore
the magnitude of hole spin-mixing induced by the lateral
electric field. Third, we consider the hole wavefunctions
to probe the impact of the lateral electric fields on the
spatial distribution of the hole. In all of these cases the
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FIG. 2: (Color Online)Effect of a lateral (x-direction) electric field on a symmetric QDM under a constant 12 T magnetic field
in the absence of piezoelectric fields. (a and b). Energy (a) and Zeeman splitting (b) of the four lowest-energy hole states
as a function of lateral electric field when Fz = 3.8 kV/cm. (c and d) Spatial distribution of a hole wavefunction in y = 0
plane (c) and along z axis (d) with different lateral electric fields as derived from the full tight-binding results. (e) Spin mixing
anticrossing splitting (∆sm) and spin mixing resonance vertical electric field (Fsm) as a function of lateral electric field.

lateral electric field is constant along the z axis. In the
final section we explore hole spin-mixing in response to
lateral electric fields that have a gradient along the z
axis, so that a different lateral field acts on each dot and
further breaks the symmetry between dots.

III. RESULTS

A. Symmetric QDM without piezoelectric field

To systematically analyze the effects of lateral electric
fields on QDM spin states, we first consider a symmet-
ric QDM in the absence of piezoelectric fields. Figure 2a
plots the energies of the four lowest-energy hole states
as a function of lateral electric field applied along the x
axis. For clarity, we present the hole energy relative to
the lowest hole energy in a single dot instead of the abso-
lute hole energy value. A constant magnetic fieldBz = 12
T and vertical electric field Fz = 3.8 kV/cm are applied.
This value of Fz brings states with opposite heavy-hole
spin character into resonance. The results computed with
our matrix Hamiltonian method are based on the basis
states computed with the full tight-binding approach for
zero lateral electric field. Both tight-binding and ma-
trix Hamiltonian results indicate that the energy of the
hole states decreases with increasing lateral electric field.
The state energy decreases by about 3.5 meV when a

30 kV/cm lateral electric field is applied. The nearly
parabolic decrease in energy largely arises from the Stark
shift by the lateral field. However, the Stark shift when
electric fields are applied along the lateral direction tunes
the state energy over a much larger range than the Stark
shift for an electric field applied along the growth direc-
tion. This larger tuning range for lateral electric fields is
due to the extended distribution of the hole wavefunction
in the lateral direction. Thus, lateral electric fields may
provide a method for fine-tuning the optical transition
energies of QDs or QDMs for use in device applications.

Figure 2b plots the Zeeman splitting of the hole states
as a function of applied lateral electric field, with a con-
stant magnetic field Bz = 12 T and vertical electric field
Fsm = 3.8 kV/cm. Previous work on InAs QDMs has
shown that the Zeeman splitting between spin projec-
tions can be a function of applied vertical electric field
due to the changing spatial distribution of electron or
hole wavefunctions.13,15,39–42 In our case, the changing
Zeeman splitting originates, at least in part, from the
changing spatial extent of the hole wavefunctions induced
by the applied lateral electric field. This dependence of
the hole wavefunction distribution on lateral field is dis-
played in Figure 2c. Figure 2c shows the spatial dis-
tribution of the third-lowest hole state wavefunction in
the y = 0 spatial plane computed directly from tight-
binding results for three different lateral electric fields.
We see that the charge density of the heavy hole is some-
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what larger in the top dot than the bottom dot. This
is because the result is computed at the applied vertical
field for maximum hole spin mixing, which is a vertical
electric field slightly detuned from the resonant field for
spin-conserving tunneling at which the charge density in
the two QDs would be equal. The displacement of the
wavefunctions in both QDs relative to the blue dashed
line at x = 0 can be seen to increase with increasing
lateral electric field. However, the relative contributions
of changing atomic spin polarization and orbital angu-
lar momentum to this changing Zeeman splitting are not
presently understood.

The vertical electric field controls the energy offset be-
tween hole states in the two QDs and thus the local-
ization/delocalization of the hole state along the growth
axis. The Zeeman splitting reduction should also result in
changes of the hole distribution along the z-axis because
the shift in Zeeman splitting changes the resonance be-
tween the hole states in the separate QDs. Fig. 2d shows
that the hole distribution along the growth axis changes
non-monotonically with increasing lateral electric field.
The hole state is more delocalized with a non-zero lat-
eral electric field (5 kV/cm) than for zero lateral electric
field. However, the hole state becomes more localized as
the lateral electric field increases further (10 kV/cm). We
believe that this non-monotonic behavior originates in
the competition between multiple effects, including Zee-
man splitting reduction and hole spin mixing.

To directly analyze the impact of lateral electric fields
on hole spin mixing, Fig. 2e plots the hole spin mix-
ing magnitude (∆sm) and spin mixing resonance vertical
electric field (Fsm) as a function of lateral electric field.
We observe a nearly linear increase of ∆sm with the in-
crease of lateral electric field in both the full tight-binding
and matrix Hamiltonian calculations. The non-zero value
for ∆sm for non-zero lateral electric fields demonstrates
that lateral electric fields could be used to controllably
turn on the hole spin mixing effect, although the strength
of the hole spin mixing interaction is relatively weak. In
principle larger lateral electric fields could be used to
increase the strength of the interaction. However, the
Zeeman splitting reduction displayed in Fig. 2b shifts
the energies of the involved states and causes the two
spin mixing anticrossing points (Fsm) to approach one
another, as displayed by the right axis in Fig. 2e. As a
result of this energy shift, the states (⇓, 0) and (0,⇑) no
longer intersect and no spin mixing anticrossing can be
resolved for lateral electric fields more than 20 kV/cm.
Although there are likely complex spin mixing interac-
tions present for larger lateral electric fields, we focus
here on the spin mixing interactions that can be quanti-
fied by the magnitude of spin mixing anticrossings.

To summarize this section, lateral electric fields can in-
duce a Stark shift with a larger energy tuning than that
induced by growth direction electric fields. Lateral elec-
tric fields further modulate the energy level of holes in
symmetric QDMs by both shifting and shrinking the hole
wavefunction in the lateral direction. As a consequence

of these wavefunction changes, increasing lateral elecric
fields cause the hole to become less sensitive to growth
direction magnetic fields, causing a reduction of the Zee-
man splitting. Finally, lateral electric fields induce hole
spin mixing with a magnitude that increases with increas-
ing lateral electric field over a moderate range. These re-
sults demonstrate that applied lateral electric fields pro-
vide an opportunity to fine-tune, in situ, the energy levels
and spin properties of holes in QDMs.

B. 1 nm shifted QDM without piezoelectric field

Lateral offsets in QDMs are commonly observed ex-
perimentally, with an average lateral offset of about 1.8
nm.22 The magnitude of this offset cannot be controlled
and can only be directly measured with destructive tech-
niques. From a QDM device engineering point of view,
however, QDMs with small lateral offsets should be con-
sidered as they will commonly occur. From a physics
point of view it is important to understand what hole
spin properties change as a result of nonzero lateral off-
set. We therefore explore the hole states of an asymmet-
ric QDM with ∆x = 1 nm as a function of applied lat-
eral electric field. In this section we continue to exclude
piezoelectric fields. Unlike the case of symmetric QDMs,
in which the direction of the lateral electric field is not
important, in asymmetric QDMs the direction of the lat-
eral electric field relative to the shift direction plays an
important role. We therefore consider two cases: lateral
electric field along the shift direction (Fx) and lateral
electric field perpendicular to the shift direction (Fy).
We use basis states obtained by a full zero-lateral-field
tight-binding calculation and then extrapolate with our
matrix Hamiltonian method to consider the effect of lat-
eral electric fields.
When we apply a lateral electric field (Fy) that is per-

pendicular to the lateral offset direction (x), we find that
the hole states respond in a manner similar to when a
lateral electric field is applied to non-shifted QDMs, as
described in Section IIIA. Figure 3(a) shows the energies
of the four lowest-energy hole states as a function of Fy

under a constant vertical electric field Fz = 3 kV/cm and
magnetic field B = 12 T. Lateral electric fields in both
± directions will cause a Stark shift in the hole state
energies with a magnitude similar to that in symmetric
QDMs. Figure 3(b) shows the magnitude of the two hole
spin-mixing anticrossings, ∆sm, and the two resonance
vertical electric fields, Fsm, as a function of Fy. Due to
the symmetry breaking of the QDM, a hole spin-mixing
anticrossing ∆sm = 0.18 meV is formed when Fy = 0. A
lateral electric field along y modulates the magnitude of
the hole spin mixing interaction in a direction-dependent
manner. Both the offset and the lateral electric field con-
tribute to the symmetry breaking in the QDM. However,
for lateral fields along +y, the (110) component of the
lateral field and the QDM shift are parallel. For lat-
eral electric fields along −y, the two components are an-
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FIG. 3: (Color Online) Effect of lateral electric field on an asymmetric QDM for B = 12 T, in the absence of piezoelectric
field. (a) Energy level of the lowest four hole states for B = 12 T and Fz = 3 kV/cm, as a function of lateral electric field (Fy)
perpendicular to the QDM offset direction (x). (b) Spin mixing splitting amplitude ∆sm (yellow solid line) and spin mixing
resonance vertical electric field Fsm (blue dashed line) as a function of Fy . (c) Energy levels of hole states as a function of
lateral electric field along the QDM’s offset direction, Fx. (d) ∆sm and Fsm as a function of lateral electric field Fx.

tiparallel. A similar effect has been reported in QDMs
subject to external strains, which provides an alternative
path toward controllable hole spin mixing in QDMs.43

We observe a Zeeman splitting reduction in this asym-
metric QDM with similar magnitude to that observed
for a symmetric QDM. In summary, lateral electric fields
orthogonal to the QD shift direction modify hole states
in a manner similar to the effect on perfectly aligned
QDs, with the exception that the field direction deter-
mines whether the hole spin mixing magnitude increases
or decreases.

Lateral electric fields along the QD shift direction (x)
impact the hole state energies in a manner that changes
the molecular resonance field Fsm. Figure 3(c) shows the
energies of the four lowest-energy hole states under a con-
stant vertical electric field as a function of lateral electric
field along x (i.e. Fx). The dependence on Fx highlighted
by the red square in Figure 3(c) appears qualitatively
similar to the energy levels as a function of vertical elec-
tric field shown in Fig. 1c. However, the vertical field
needed to induce the resonance shifts significantly when
a lateral field is applied along x. These shifts in the an-
ticrossing energies originate in changes to the molecular
wavefunctions. We calculate and observe that the x di-
rection electric field shifts the hole wavefunctions along x
in a manner similar to the shifts observed in symmetric
QDMs and presented in Figure 2(c) and (d). We also
confirm that the wavefunction overlap in the vertical di-
rection for these asymmetric QDMs is perturbed by the

lateral shifts induced by the x direction electric field. As
a result, the vertical electric field required to create fully
delocalized molecular states changes.

For the calculations displayed in Fig. 3(c), which are
computed at a fixed vertical electrical field, the shift in
state energies that arises when the electric field is applied
along x effectively results in a detuning from the verti-
cal electric field that creates the molecular resonance.
We also analyze the hole spin-mixing anticrossing mag-
nitude ∆sm as a function of an electric field along x.
As indicated in Figure 3(d), the magnitude of the spin
mixing anticrossing stays nearly constant as a function
of Fx. This is not surprising because the lateral electric
field shifts the hole wavefunctions in each QD similarly
in the x direction, thus the electric field applied along
the shift axis does not introduce any significant change
to the broken symmetry of the QDM.

In summary, lateral electric fields perpendicular to the
QDM shift direction introduce energy shifts similar to
those observed when lateral electric fields are applied to
a symmetric QDM. Moreover, the magnitude of hole spin
mixing can be increased or decreased depending on the
direction of the applied field. Lateral electric fields paral-
lel to the shift direction change the resonance field needed
to form the molecular hole state. However, electric fields
along the shift axis have little impact on the symmetry
breaking or hole spin mixing.
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C. QDM with piezoelectric field

In the previous sections we explored the effect of lateral
electric field on symmetric and asymmetric QDMs with-
out including the piezoelectric field. However, strain-
induced piezoelectric fields can make an important con-
tribution to the local electric field of the QDM. We in-
clude piezoelectric effects in our tight-binding calcula-
tions as described in the methodology section. We repeat
the process of calculating the energy levels of symmetric
and asymmetric QDMs under applied electric fields with
piezoelectric fields included. We analyze the results to
understand the physical consequences of the piezoelec-
tric fields and their interplay with QDM symmetry and
applied lateral electric fields.

Figure 4(a) and (b) display two different 2D cross-
sectional planes of the piezoelectric potential of a sym-
metric QDM. The vertical planes in Figure 4(a) lie at the
outer edges of the two QDs and the horizontal planes in
Figure 4(b) lie at the middle of each QD. These figures
show that piezoelectric potential dipoles are formed at
the corner of each quantum dot, but with a 90◦rotation of
the dipole orientation between the two dots. The symme-
try of piezoelectric potentials has been found to depend
on a variety of parameters.25,44,45 The rotated symmetry
we find occurs when QDs are close together and act as a
strongly coupled entity.44 Under a constant lateral elec-
tric field, we observe Stark shifts and Zeeman splitting
reduction similar to QDMs without piezoelectric fields
with only small shifts in the resonant electric fields at
which molecular states are formed. However, piezoelec-
tric fields substantially change the magnitude and tuning
range of hole spin mixing, as we now discuss.

Figure 4(c) plots the ∆sm and Fsm for the two hole spin
mixing anticrossings of a symmetric QDM as a function
of a lateral electric field along x. Because the QDM is
symmetric, piezoelectric fields by themselves are not suf-
ficient to induce hole spin mixing and two crossings occur
as a function of applied vertical electric field. In other
words, ∆sm = 0 for Fx = 0. Anticrossings at both Fsm

emerge when a non-zero lateral electric field is applied
(Fx > 0). Zeeman splitting effects (not shown) cause
the two Fsm to converge with increasing lateral electric
field as described above. Although the emergence of non-
zero ∆sm as a function of Fx is qualitatively similar to
what is observed in the absence of piezoelectric fields, the
magnitude of ∆sm is substantially reduced. As shown in
Fig. 4(c), ∆sm at Fx = 15 kV/cm is about 6 µeV, much
smaller than the 35 µeV anticrossing observed in the ab-
sence of piezoelectric fields (Fig. 2).

We next explore the consequences of including piezo-
electric fields in the simulations of asymmetric QDMs
with ∆x = 1 nm. Following the analysis described above,
we consider lateral electric fields perpendicular to (Fy)
and parallel to (Fx) the lateral offset direction (x). The
results are presented in Figure 4(d) and (e), respectively.
In both cases, the ∆sm value remains nearly constant as
a function of lateral electric field. For electric fields par-
allel to the shift axis (Figure 4(e)), this result is similar
to what is observed without the inclusion of piezoelectric
fields (Fig. 3(d)). We therefore conclude that the inclu-
sion of piezoelectric fields does not significantly alter the
physics of hole spin mixing for electric fields along the
shift axis. For electric fields perpendicular to the shift
axis (Figure 4(d)), the change in ∆sm is about 7 times
smaller than that observed when piezoelectric fields are
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not included (Fig. 3(b)). This suggests that the symme-
try breaking induced by the applied lateral electric field
is largely compensated by the local piezoelectric field.
In summary, the emergence and evolution of hole spin

mixing is qualitatively similar for QDMs studied with and
without the inclusion of piezoelectric fields. However, the
magnitude of hole spin mixing interactions (∆sm) is re-
duced when piezolectric fields are included. Piezoelectric
fields are inherent to the InAs/GaAs QDM system, and
thus intentional generation of strong spin mixing inter-
actions using constant lateral electric fields will be chal-
lenging. A physical interpretation of the relatively weak
tuning with constant electric fields is that hole wavefunc-
tions in the two QDs are displaced by similar amounts
when the same electric field is applied to each QD. As a
result, constant electric fields do not substantially alter
the symmetry of the electronic states of the QDM. This
suggests that a gradient in the lateral field, with differ-
ent lateral fields applied to each dot, may enhance the
symmetry breaking. We next explore the consequences
of lateral electric field profiles that have a gradient with
different lateral field magnitudes at the locations of the
two QDs that comprise the QDM.

D. Lateral electric fields with a gradient

To investigate the effects of an electric field with a
gradient, we compute the energies of the hole states in
an asymmetric QDM when the applied lateral electric
field along y (Fy) has a gradient along the growth di-
rection. We choose the lateral electric field profile so
that the direction of the field is reversed in different
dots, and then compute energy states for a gradient

Gyz =
∂Fy

∂z
= ∂Fz

∂y
. We consider Gyz values ranging from

0 to 0.002 (mV/Å)/Å. For this gradient, there is a Gyz

mV/Å change in the amplitude of Fy for every Å step
along the z axis. In compliance with Maxwell’s equa-
tions, the same gradient occurs in the vertical electric
field (Fz) as a function of lateral position (y). The elec-
tric field along the y axis (Fy) as a function of y and z
position coordinates is Fy = 5 kV/cm +Gyzz.
The results presented here are computed with the ma-

trix Hamiltonian approach using basis states obtained
with atomistic tight binding for the asymmetric QDM
without a lateral electric field. Figure 5(a) shows the elec-
tric potential in the plane of the two QDs whenG = 0.002
(mV/Å)/Å. The red arrows indicate the direction and
relative magnitude of Fy . The oppositely oriented elec-
tric fields in the planes of the two QDs will cause the
hole wavefunctions to shift in opposite directions, break-
ing the QDM symmetry in a manner similar to the lateral
shift that occurs in asymmetric QDMs. This range of
electric field gradient around single QDMs can be easily
achived by the device designed by Zhou, et al.27

Figure 5(c) shows the hole spin mixing ∆sm and res-
onance electric field Fsm as a function of the gradient
magnitude Gyz. The magnitude of hole spin mixing ∆sm

(a) (b)
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FIG. 5: (Color Online) Effect of lateral electric field with a
gradient in the growth direction on asymmetric QDMs with
piezoelectric fields included. (a) Electric potential for gradient
Gyz = 0.002 (mV/Å)/Å . (b) ∆sm (orange) and Fsm (blue)
as a function of lateral electric field gradient G.

increases with increasing gradient magnitude. The range
of ∆sm values accessible for this range of Gyz is still lim-
ited, possibly because of the strong piezoelectric fields,
and thus larger field gradients would likely be desirable
for device applications. Fsm shifts with Gyz due to the
changes in both Fy and Fz . Unlike the case with constant
lateral electric field, we do not observe a Zeeman splitting
reduction as a function of increasing gradient magnitude.
As a result, the spacing between the two Fsm is nearly
independent of Gyz.

IV. CONCLUSION

We use tight-binding atomistic simulations and a
finite-basis matrix Hamiltonian extrapolation method to
explore the effects of lateral electric fields on holes con-
fined in vertically-stacked InAs/GaAs QDMs. We sys-
tematically considered the effects of QDM asymmetry,
piezoelectric fields and electric field gradients. We find
that constant lateral electric fields can be used to change
the hole state energy and can also be used to reduce
the Zeeman splitting of hole spin states. These results
suggest that lateral electric fields could be used to tune
the spin splitting or optical emission energies of QDMs
for photonic device applications. We also find that con-
stant lateral electric fields can be used to modulate the
magnitude of hole spin mixing in both symmetric and
asymmetric QDMs. Although the magnitude of the hole
spin mixing interaction increases with applied field, the
simultaneous reduction in Zeeman splitting restricts the
range of hole spin mixing values that can be achieved.
Lateral electric fields with a gradient in the growth di-
rection enhance the tuning of the hole spin mixing in-
teraction without reducing the Zeeman splitting. Our
analysis shows that piezoelectric fields in the QDM re-
duce the sensitivity of the hole spin mixing magnitude
to applied lateral electric fields, suggesting that different
structures with different piezoelectric field environments
could be explored to overcome this limitation. Future
exploration of these effects in QDMs with a range of
sizes, barrier thicknesses, and barrier compositions will
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provide important information on the design of quantum
dot molecules for quantum device applications.
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30 G. W. Bryant, M. Zieliński, N. Malkova, J. Sims,

W. Jaskólski, and J. Aizpurua, Physical Review Letters
105, 067404 (2010).

31 G. W. Bryant, M. Zieliński, N. Malkova, J. Sims,
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