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Particle-vortex duality is a powerful theoretical tool that has been used to study bosonic systems.

Here we propose an analogous duality for Dirac fermions in 2+1 dimensions. The physics of a single

Dirac cone is proposed to be described by a dual theory, QED3 with again a single Dirac fermion but

coupled to a gauge field. This duality is established by considering two alternate descriptions of the

3d topological insulator (TI) surface. The first description is the usual Dirac fermion surface state.

The dual description is accessed via an electric-magnetic duality of the bulk TI coupled to a gauge

field, which maps it to a gauged chiral topological insulator. This alternate description ultimately

leads to a new surface theory - QED3 which provides a simple description of otherwise intractable

interacting electronic states. For example, an explicit derivation of the T-Pfaffian state, a proposed

surface topological order of the TI, is obtained by simply pair condensing the dual fermions. The

roles of time reversal and particle-hole symmetry are exchanged by the duality, which connects some

of our results to a recent conjecture by Son on particle-hole symmetric quantum Hall states.

I. INTRODUCTION

Following the prediction and classification of topo-

logical insulators (TIs) and topological superconductors

(TSc) based on free fermion models1, the conceptual

frontier has now shifted to studying strongly interact-

ing topological phases. For low dimensional phases,

one can utilize powerful non-perturbative techniques

to describe the 1+1D edge or bulk to obtain qualita-

tively new physics introduced by interactions2–8. How-

ever, for 3+1D systems, we have few non-perturbative

tools - nevertheless remarkable theoretical progress has

been made in recent years. For example, entirely new

phases that only appear in interacting systems have been

predicted9–16. Furthermore, phases that were predicted

to be distinct by the free fermion classification, and whose

edge states are stable to weak interactions, can sometimes

be smoothly connected in the presence of strong interac-

tions. A striking example of this phenomen is provided

by the 3d topological superconductors with time reversal

invariance (class DIII), whose integer free fermion classi-

fication is broken down to Z16
12,17–21 by strong interac-

tions. The discovery of strongly correlated TIs such as

3D topological Kondo insulators22 may provide an exper-

imental window into the effects of strong interactions.

A useful theoretical tool that was introduced to study

surfaces of strongly interacting 3d topological phases is

surface topological order (STO)9,17–19,23–28. In the early

days of the field it was assumed that the surface of a topo-

logical phase, such as a topological insulator, is metallic

if all symmetries are preserved. The resulting surface

state of a TI, a single Dirac cone, is forbidden in a purely

2d system with time reversal invariance and charge con-

servation, since it suffers from the parity anomaly.29,30 If

gapped, it was generally assumed that the surface must

break one of the protecting symmetries such as time re-

versal symmetry. However, with strong interactions, new

possibilities arise. A gapped, insulating surface state of

the TI can preserve all symmetries if it is topologically

ordered, i.e. if the surface supports anyonic excitations

with fractional quantum numbers. This topological order

must encode the parity anomaly that ensures it is a bona

fide surface state of the topological insulator bulk. In this

sense it encodes the same ‘Hilbert space’, with the same

anomalies as the single Dirac cone surface state. Here we

will discuss a dual surface theory that also captures the

same Hilbert space - which, in contrast to the STO, is

gapless in the UV and is described by QED3.

More precisely, the surface Dirac theory of a TI is given

by the Lagrangian:

Le = Ψ̄eiγ
µ[∂µ − iAµ]Ψe (1)

where Ψ̄e = Ψ†eγ
0, γµ are 2 × 2 Dirac matrices, and we

have introduced an external electromagnetic potential Aµ
to keep track of the conserved U(1) charge, and possibly

insert a chemical potential. Then, the proposed dual

surface theory is:

Lcf = ψ̄cf iγ
µ[∂µ − iaµ]ψcf −

1

4π
εµνλAµ∂νaλ (2)



where the fermions are now coupled to an emergent fluc-

tuating gauge field aµ, whose flux is proportional to the

electron density, or more precisely, 4π flux of a corre-

sponds to unit electron charge.

Let us note three key points. First, we can ask - how

do we represent the electron insertion operator Ψe in the

dual theory? We find that Ψe corresponds to a double

monopole operator that introduces 4π flux as expected

from the previous discussion. It will be shown that this

operator has all the desired properties. Second - how

do we interpret ψcf , the dual fermions, in terms of elec-

trons? ψcf will be shown to be a double (2hc/e) vortex

in the electron fluid bound to an electron - closely analo-

gous to the composite fermion construction31,32 - which

accounts for the subscript. Finally, we note the action

of time reversal symmetry exchanges particles and holes

of ψcf , T : ψcf → ψ†cf , consistent with their interpreta-

tion as vortex like degrees of freedom. A finite chemical

potential on the electronic Dirac cone translates into a

finite magnetic field on the composite fermions and vice

versa.

Many aspects of the duality above closely resemble par-

ticle vortex duality for bosons.33,34 Denoting the boson

by a complex scalar field Φ, we have the XY action,

LXY = |(∂µ − iAµ)Φ|2 − V (|Φ|) (3)

which is dual to the Abelian-Higgs action

LAH = |(∂µ − iαµ)ϕ|2 − Ṽ (|ϕ|)− 1

2π
εµνλAµ∂ναλ (4)

The dual field ϕ is minimally coupled to a fluctuating

electromagnetic field α whose flux is the boson density.

The dual field ϕ inserts vortices into the bose fluid and

the monopole operator of the theory (4) corresponds to

Φ. The duality is believed to hold at the critical point of

theories (3), (4), i.e. at the insulator-superfluid transition

of bosons. An important question then arises: is the dual

surface state in Eq. (2) dynamically equivalent to the

usual free electron Dirac cone (with chemical potential

at the node)? This would be the simplest form of the

correspondence, but is not something that we can prove

at present. This interesting question is discussed further

in Section III C.

The existence of the dual surface theory (2) clari-

fies a number of earlier mysteries. Two different sur-

face topological orders were put forward for the TI.

The first, the Pfaffian-antisemion state consisting of 12

nontrivial anyons, was obtained using a vortex conden-

sation method26,27. Another, simpler topological or-

der, the T-Pfaffian, with half as many anyons was also

proposed25,28, but despite its apparent simplicity could

not be ‘derived’ in an analogous fashion, or directly con-

nected back to the superconducting surface state of the

topological insulator. We will see that T-Pfaffian is read-

ily derived from the dual surface theory. Another obser-

vation that was previously mysterious was the close re-

lation between chiral topological insulators (class AIII)

with ν = 1 (single surface Dirac cone) and conventional

topological insulators (class AII).35 In both cases there

is a U(1) symmetry that can be spontaneously broken at

the surface; the statistics of vortices in the resulting sur-

face superfluid can be determined. A striking observation

is that vortex statistics on the conventional TI surface is

closely related to the STO on the chiral TI (cTI) sur-

face, and vice versa. For example, vortices on the chiral

TI surface have the same statistics and transformation

properties under time-reversal as the T-Pfaffian topolog-

ical order. The dual surface theory sheds light on this

apparent coincidence.

We note recent works which have a significant concep-

tual overlap with the present paper. In Ref. 36, Mross,

Essin and Alicea explicitly construct a gapless surface

state for the TI called the composite Dirac liquid (CDL).

Like the present dual Dirac theory, pairing the CDL leads

to the T-Pfaffian state. However, in contrast to our dual

theory, charge fluctuations are gapped in the CDL, and

the gapless Dirac fermions have short ranged interac-

tions. Another insightful development is Son’s proposal

in Ref. 37 for a dual description of the particle-hole sym-

metric half-filled Landau level (see also Ref. 38). At

first sight this purely 2d problem seems unrelated to the

anomalous surface theories we are discussing in this pa-

per, which always occur on a higher dimensional topo-

logical bulk. However, particle-hole symmetry of a Lan-

dau level is a nonlocal symmetry. Hence it can evade

restrictions imposed on usual symmetries, and thereby

realize the equivalent of an anomalous surface theory in

the same dimension. Indeed, our work can be viewed as

a ‘derivation’ of the conjecture in Ref. 37, in a setting

where symmetries are conventionally implemented (such

as on the surface of a topological phase where Landau

levels with locally implemented particle-hole symmetry

can be realized).

This paper is organized as follows. We derive the sur-

face QED3 theory in Eq. (2) in two stages. First, in

section II, we present an unconventional construction of

a 3d topological insulator. This construction starts with

a gapless u(1) spin-liquid phase, with emergent fermionic

quasiparticle realizing a chiral topological insulator band

structure. The 3d TI is then obtained after a confine-

ment transition (see Figure 1). Next, in section III A we
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derive the surface theory that follows from this bulk con-

struction and show it is given by QED3. In section III B

we present a more heuristic derivation of QED3 based

solely on the surface physics, which provides a transpar-

ent physical interpretation of the dual fields. Section

III C discusses possible scenarios for the low energy dy-

namics of QED3: in particular, in this section we con-

trast weak (Hilbert space and symmetry) and strong (dy-

namical) forms of duality between free Dirac theory and

QED3. In section IV we show how previously known

surface phases of the 3d TI, including the time reversal

symmetry broken insulator and Fu-Kane superconductor

surface states, as well as the surface topological order,

can be obtained in the dual description. In sections V

and VI we show how the particle-vortex duality of the

2d surface theory can be understood as a descendant of

electric-magnetic duality of 3d u(1) gauge theory.

II. A PARTON CONSTRUCTION OF A

TOPOLOGICAL INSULATOR

In this section we will use parton techniques to con-

struct a 3d gapped state of electrons with no intrinsic

topological order and U(1) o T symmetry (the T sym-

metry acts on the electrons in a conventional Kramers

manner). The 2d surface of this state is described ex-

actly by the gauge theory in Eq. (2). We will argue that

the constructed bulk state is continuously connected to a

non-interacting topological insulator, therefore, the the-

ory (2) provides a description of the TI surface.

The ingredients we will utilize are:

1. A trivial (θEM = 0) band insulator of electrons.

2. A spin-liquid state of neutral bosons, SL×.

While we are ultimately interested in constructing a T -

invariant state of electrons (fermions) charged under the

electromagnetic U(1) symmetry, as a first step we will

build a T -invariant state of neutral bosons (spins). We

will label this state as SL×. This state will be described

by an emergent u(1) gauge theory and will possess a gap-

less photon excitation. One can think of SL× as a spin-

liquid with global time reversal symmetry (thus the no-

tation SL; we will explain the meaning of the subscript ×
shortly). We will then re-introduce the charged electrons

and drive a confinement transition in the u(1) gauge the-

ory, obtaining the desired gapped electronic state that is

in the same phase as the non-interacting TI.
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FIG. 1. (a) Dual derivation of topological insulator using
fermionic partons in a chiral topological insulator band struc-
ture (ν = 1 of class AIII), where time reversal flips the sign
of the gauge electric charge. The bulk topological insulator
phase is obtained by condensing a pair of monopoles (0,2)
bound to an electron. The surface state consists of the par-
ton Dirac cone coupled to photons that only propagate on the
surface, i.e. QED3 (b) The 3D TI derived more directly from
the partons in the topological insulator band structure, which
is Higgsed by condensing the unit electric charge (1,0) (bound
to an electron). The surface is the regular single Dirac cone.
The gauged versions of the chiral topological insulator (a)
and ordinary topological insulator (b) are related by electric
magnetic (E-M) duality - as seen from the lattice of electric
and magnetic charges by identifying the basis vectors shown.
The two basis vectors are exchanged by time-reversal symme-
try in both (a) and (b). The E-M duality relates the double
monopole condensate and the Higgs condensate, consistent
with obtaining a TI from both descriptions.

A. The u(1) spin-liquid of bosons SL×

To construct the spin-liquid state SL× we start with a

Hilbert space built out of neutral bosons (spins) B. We

use the standard parton approach whereB is decomposed

into fermionic constituents ψ as

B = ψ†Γψ (5)

with Γ - a matrix acting on components of ψ. (The pre-

cise component structure of ψ and the form of Γ will not

be important in the discussion below). The representa-

tion (5) is invariant under local u(1) gauge-rotations,

u(1) : ψ(x)→ eiα(x)ψ(x) (6)

The gauge symmetry (6) will be manifested in the low-

energy theory of partons and will give rise to an emer-

gent u(1) gauge field aµ. (We use lower case letters to

distinguish the emergent u(1) gauge symmetry from the

physical U(1) charge symmetry). We take the partons ψ
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to transform under time-reversal as,

T : ψ → UTψ
†, ψ† → U∗Tψ (7)

with U2
T = −1, i.e.

T 2ψ(T †)2 = −ψ (8)

Note that the action of T inverts the charge of the par-

tons under the u(1) gauge symmetry. Since T is an

anti-unitary symmetry, T and u(1) commute, so the to-

tal symmetry group of the parton theory, which includes

both the gauge symmetry and the global T symmetry,

is u(1) × T . (Our notation SL× emphasizes this direct

product structure). Further note that we can combine a

rotation by α in the u(1) group with T to get an anti-

unitary symmetry Tα = uαT , which squares to e2iα when

acting on ψ. Thus, while we have nominally chosen the

partons to transform as Kramers doublets under T , this

has no physical consequence and is a pure convenience.

The fact that the time reversal partners ψ and ψ† have

different gauge charge implies that they lie in different

topological sectors of the u(1) gauge theory and hence

cannot be assigned a physical Kramers parity.

To complete the construction of the SL× state, we

imagine that the partons ψ form a band-insulator. The

transformations of ψ under u(1)×T are identical to those

of an electronic system in class AIII, which we will re-

fer to as chiral topological insulator class. One typically

thinks of class AIII as T -invariant superconductors with a

u(1) symmetry, corresponding to the conservation of the

Sz components of spin. In our set-up, the u(1) symme-

try is an emergent gauge symmetry and has no relation

to spin conservation. Recall that non-interacting chiral

topological insulators in class AIII have an integer classi-

fication ν ∈ Z.39,40 The 2d boundary between the phase

with ν 6= 0 and the vacuum (ν = 0) supports |ν| Dirac

cones. In the presence of interactions, the non-interacting

phases are known to collapse to a Z8 group.17–19 Inter-

actions also introduce a single novel phase absent in the

non-interacting classification, bringing the total classifi-

cation in class AIII to Z8 × Z2.18,41

To build our spin-liquid state, we will place the partons

ψ into a non-interacting band-structure with ν = 1. (We

give an example of such a band-structure in appendix A).

Since the partons are gapped, the resulting u(1) gauge

theory is in the Coulomb phase with a gapless photon

aµ. The effective action of the gauge-field aµ is given by,

S[aµ] =

∫
d3xdt

(
− 1

4e2
fµνf

µν +
θ

32π2
εµνλσfµνfλσ

)
(9)

with θ = π and fµν = ∂µaν − ∂νaµ. The first term in

Eq. (9) is the Maxwell action with a coupling constant

e. The second term is the topological term generated by

integrating out the partons. Similarly to electrons in an

ordinary TI, for partons in a ν = 1 band-structure the

coefficient θ = π.

Let us discuss the spectrum of topological excitations

in the SL× state. One type of topological excitations is

given by partons ψ - i.e. electric charges of aµ. The sec-

ond type of excitations is given by magnetic monopoles

of aµ. The presence of the topological term in Eq. (9) en-

dows a monopole with magnetic flux 2πm with an electric

charge42

q = n+
θm

2π
= n+

m

2
(10)

Here n is an arbitrary integer which reflects the freedom

of adding n electric charges ψ to a monopole. Thus, the

topologically distinct excitations form a 2-dimensional

lattice (q,m) labelled by electric charge q and magnetic

charge m satisfying Eq. (10), see Fig. 1a.

The excitations have the following statistics.10 A sin-

gle charge ψ = (1, 0) is a fermion. A single monopole

(q,m = 1) of arbitrary electric charge q is a boson. A gen-

eral dyon (q,m) has statistics (−1)(q−m/2)(m+1) with +1

corresponding to bosonic statistics and −1 to fermionic.

In particular, a neutral double monopole (q = 0,m = 2)

is a fermion. Two dyons (q,m) and (q′,m′) experi-

ence a non-trivial statistical interaction. Namely, if we

place (q′,m′) at the origin and let (q,m) move along

a closed contour C, (q,m) will accumulate a statistical

phase (qm′ − q′m)Ω/2, where Ω is the solid angle sub-

tended by C. In addition to the statistical interaction,

dyons also experience a 1/r Coulomb interaction.

As already mentioned, time-reversal symmetry (7)

maps electric charge q → −q. Furthermore, due to the

u(1) × T group structure the magnetic flux is preserved

under T : m → m. Let us next discuss the physical

Kramers parity T 2 of the excitations. Kramers parity

can only be assigned to topological sectors which are left

invariant under T . In the present case, this corresponds

to (q = 0,m) with m-even. As has been discussed in

Refs. 18 and 19, the neutral double monopole (q = 0,m =

2) is actually a Kramers doublet fermion. This is required

by the consistency of the theory since (0, 2) can be ob-

tained by fusing the time-reversal partners (1/2, 1) and
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(−1/2, 1). The presence of a non-trivial statistical inter-

action between (1/2, 1) and (−1/2, 1) forces their fusion

product (0, 2) to be a Kramers doublet fermion.15,26

Next, let us discuss the surface of SL× phase. Let

us imagine that space is divided into two regions by an

interface at z = 0. We will place our partons ψ into the

ν = 1 band-structure for z < 0 and into the trivial ν = 0

band-structure for z > 0. The interface then supports a

single gapless Dirac cone of ψ,

S2d =

∫
d2xdt ψ̄cf iγ

µ(∂µ − iaµ)ψcf (11)

with ψcf now denoting the surface Dirac fermion. Under

T , ψcf transforms as

T : ψcf → εψ†cf , i→ −i (12)

where ε = iσy and we are using the basis of γ matrices

(γ0, γ1, γ2) = (σy, −iσz, iσx). Again, we stress that this

is different from the T -transformation of the electron on

the free Dirac surface of a TI (1),

T : Ψe → εΨe, i→ −i (13)

The z < 0 region realizes our SL× phase. The z > 0

also realizes a spin-liquid described by a u(1) gauge-

theory with a gapless photon. Let us briefly discuss

the properties of the spin liquid in the z > 0 region.

Since here the partons are in a trivial band-structure,

the topological angle θ = 0, and the dyon spectrum is

given by (q,m) with q - integer and m - integer. The

(q,m) dyon has statistics (−1)q(m+1), in particular, all

neutral monopoles are bosons. Time reversal symmetry

again acts as T : (q,m) → (−q,m), however, the single

monopole (0, 1) is now a Kramers singlet.

So far, we have constructed an interface between two

u(1) spin-liquid phases: one with θ = 0 and one with

θ = π. The 2d gapless Dirac fermion appearing on the

interface (11) interacts with a 3d gapless photon living

on both sides of the interface. In order to construct an

interface between the spin-liquid with θ = π and the vac-

uum, we need to drive a confinement transition in the

region z > 0. This can be done by condensing the sin-

gle neutral monopole (0, 1) in the region z > 0. Since

this monopole is a boson it can condense. Furthermore,

since the monopole is a Kramers singlet the condensa-

tion process preserves the T -symmetry. The only decon-

fined excitations are (0,m), and since these are multi-

ples of the condensed monopole (0, 1) the resulting phase

has no topologically non-trivial excitations. Hence, af-

ter monopole condensation the z > 0 region realizes the

trivial T -invariant vacuum phase. The Dirac cone on the

interface survives the monopole condensation, however,

it now interacts with a gauge field aµ, which lives only in

the z < 0 region.

B. Confinement to a topological insulator

We next describe how to confine the SL× spin-liquid

phase with θ = π described in the previous section to

a T -symmetric, fully gapped insulator of electrons with

no intrinsic topological order. As a first step, we will

now need to work in a Hilbert space which includes the

physical charged electron Ψe which is a Kramers doublet

under time reversal symmetry.

Let us begin by taking a non-interacting “mixture” of

a trivial band insulator of electrons and the SL× state

of neutral bosons with θ = π constructed in the previ-

ous section. Consider a bound state D of the electron

Ψe and the neutral double monopole of the spin-liquid

(q = 0,m = 2). As we discussed above, (q = 0,m = 2) is

a Kramers doublet fermion. Therefore, D is a Kramers

singlet boson, which can condense preserving T . What

are the properties of the resulting phase? Recall that gen-

erally condensation of a dyon with charges (q,m) gives

rise to an analogue of a Meissner effect for the gauge field

combination q~b − 2πm~e, with ~b = ∇ × ~a - the magnetic

field of aµ, and ~e = ∂t~a − ∇at - the electric field of aµ.

All excitations which are sources of this gauge field com-

bination will be confined, i.e. a dyon (q′,m′) is confined

if qm′ − mq′ 6= 0 (i.e. only dyons which possess trivial

mutual statistics with (q,m) are deconfined).43–45 Now,

since the electron has no charge under aµ, our condensing

dyon D still has electric gauge charge q = 0 and magnetic

charge m = 2. Its condensation will gap out the photon

giving rise to the “Meissner” effect ~e = 0. Therefore, all

excitation with gauge charge q 6= 0 will be confined. Re-

membering that q = n+m/2, only excitations with q = 0

and m - even are deconfined. These excitations are mul-

tiples of the condensing dyon D (possibly with electrons

Ψe added on top). Therefore, the condensed phase has

no non-trivial deconfined excitations and so possesses no

intrinsic topological order.

What is the fate of the physical U(1) charge symme-

try in the D-condensed phase? First, all excitations in

the Coulomb phase can be labelled by (q,m;Q), with

(q,m) being the emergent u(1) electric and magnetic

quantum numbers coming from the SL× sector, and Q

being the physical U(1) charge coming from the electron

band-insulator sector. Nominally, D has quantum num-

bers (q = 0,m = 2;Q = 1). Therefore, one might naively
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think that the D-condensed phase breaks the U(1) sym-

metry and is a superfluid. However, this is not the case.

Indeed, one cannot build any local observable (i.e. one

with q = 0 and m = 0) with non-zero Q out of D. More

physically, recall that the dyons D experience a long-

range 1/r interaction. In the D-condensed phase, the

dyons D form a Debye-plasma with short-range correla-

tions, so the resulting state is gapped. This fact is com-

pletely insensitive to D’s carrying a global U(1) charge.

So the D-condensed phase cannot possibly be a super-

fluid, since a superfluid would necessarily possess a gap-

less Goldstone mode; rather, it is an insulator. Now,

let us imagine inserting a gapped double monopole (0, 2)

with Q = 0 into the Debye plasma of D’s. This dou-

ble monopole will be Debye screened by the D’s - it will

be surrounded by a cloud of D’s and D†’s with a total

D-number equal to −1. Now, as each D carries a U(1)

charge Q = 1, the screening cloud has a total electric

chargeQ = −1. Therefore, we conclude that a deconfined

double monopole sucks up a physical electric charge−1 in

the D-condensed phase. More generally, the true physi-

cal U(1) charge of an excitation with “nominal” quantum

numbers (q,m;Q) in the D-condensed phase is,

QEM = Q−m/2 (14)

Note that since only dyons with even m are deconfined,

the electric charge QEM is always an integer.

Let us now argue that this phase has a response to

the physical electromagnetic field Aµ characterized by

θEM = π. This is most conveniently done via the Witten

effect, by calculating QEM of an inserted monopole of

Aµ. Before the D-condensation, we can label all excita-

tions by (q,m;Q,M) where M now represents the mag-

netic charge under Aµ. Since the response of our initial

Coulomb phase to Aµ comes entirely from the trivial elec-

tron band insulator, the U(1) sector is characterized by

a θ angle θEM = 0, so Q and M are both integers. Now,

D has quantum numbers (q = 0,m = 2;Q = 1,M = 0),

so its condensation leads to a Meissner effect for 4π~e− ~B,

where ~B = ∇ × ~A is the magnetic field strength of Aµ.

Thus, deconfined excitations must have 2q = M . In par-

ticular, an M = 1 external monopole of Aµ must carry aµ
electric charge q = 1/2. Since q −m/2 is an integer, we

conclude that the M = 1 external monopole must bind

an odd number m of monopoles of aµ. From Eq. (14),

we conclude that an external M = 1 monopole will bind a

half-odd-integer physical electric charge QEM . This im-

plies that the D-condensed phase has a response to the

external U(1) gauge field with θEM = π - the same as the

EM response of a non-interacting topological insulator.

By an argument of Ref. 15, a phase of electrons with

no intrinsic topological order and θEM = π is identical

to a non-interacting topological insulator up to an SPT

phase of neutral bosons with T -invariance. In section VI,

we will give another viewpoint on why the D-condensed

phase must be identical to a non-interacting TI up to

a bosonic SPT phase. Moreover, by strengthening the

argument in section VI, we will be able to show that the

D-condensed phase is continuously connected to a non-

interacting TI with no additional bosonic SPT.41

III. THE SURFACE THEORY - QED3

A. Derivation of surface theory from parton

construction

Let us now turn to the surface of the D-condensed

phase. As before, we imagine putting partons into a

ν = 1 band-structure of class AIII in the region z < 0

and into the trivial ν = 0 band-structure in the region

z > 0. The electrons Ψe are placed into a trivial band-

insulator band-structure everywhere in space. The inter-

face at z = 0 supports a single Dirac cone of partons ψcf
coupled to a bulk u(1) gauge-field aµ living on both sides

of the interface, see Eq. (11). We drive the z > 0 side of

the interface into a trivial insulating state (vacuum) by

condensing the single monopole (q = 0,m = 1;Q = 0).

We condense the D-dyon on the z < 0 side of the in-

terface, driving it into the topological insulator phase.

Both sides of the interface are now confined and exhibit

the Meissner effect, ~e = 0. The Dirac cone of partons

ψcf on the surface survives the condensation, since the

bulk gap to partons ψ persists during the condensation

process. Due to the bulk Meissner effect, the field lines

of the electric field ~e cannot penetrate into the bulk and

can only stretch along the surface. On the other hand,

a surface magnetic field bz perpendicular to the interface

is allowed - such a magnetic field gets Debye screened by

the condensed monopoles/dyons on both sides of the in-

terface. Thus, the gauge field aµ is now confined to live

on the surface becoming a 2+1 dimensional u(1) gauge-

field, so the surface theory is simply given by QED3 with

a single flavor of Dirac fermions.

Let us discuss the response of the surface to the U(1)

gauge field Aµ. Imagine that there is a magnetic field

bz = ∂xay − ∂yax perpendicular to the surface. As al-

ready noted, this magnetic field will be Debye screened

by monopoles/dyons on the two sides of the interface.

On the z > 0 side, the condensed monopoles (q = 0,m =

1;Q = 0) will form a screening layer with 2d density
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ρm = − 1
2π bz. Since these monopoles carry no U(1)

charge, they do not contribute to the physical electric

charge density. On the z < 0 side, the condensed D-

dyons (quantum numbers (q = 0,m = 2;Q = 1)) will

form a screening layer with 2d density ρD = 1
4π bz. Since

each D has electric charge Q = 1, this screening layer

creates a U(1) charge density ρEM = 1
4π bz.

Similarly, imagine that an electric field ei (i = x, y)

along the interface is present. This electric field must be

Meissner screened by monopole currents on both sides of

the interface (analagous to how a magnetic field along

the surface of a superconductor is Meissner screened by

electric currents). On the z > 0 side of the interface

this results in a monopole current jmi = 1
2π εijej . Since

these monopoles are neutral, the monopole current does

not contribute to the U(1) current. On the z < 0 side

of the interface the electric field is screened by a current

of D-dyons, jDi = − 1
4π εijej , which translates into a U(1)

electric current jEMi = − 1
4π εijej . Thus, we conclude that

the surface gauge-field aµ induces a U(1) current jµEM =
1

4π ε
µνλ∂νaλ, and the effective action of the surface theory

in the presence of an external U(1) gauge field Aµ is

Lcf = ψ̄cf iγ
µ(∂µ − iaµ)ψcf −

1

2(2π)
εµνλAµ∂νaλ (15)

We immediately see that dynamical instantons of aµ
are prohibited in the surface theory as they do not

preserve the U(1) charge. However, instantons of flux

φ = 2πm, with m - even, do correspond to physical op-

erators with electric charge QEM = m/2 in the surface

theory. In fact, a flux 4π instanton is identified with the

electron insertion operator Ψe. To see this, imagine we

create an electron Ψe on the surface. Our parton con-

struction had Ψe gapped everywhere (including on the

boundary). However, Ψe can decay into gapless bound-

ary degrees of freedom as follows: it can grab a double

monopole from the z > 0 side of the interface (where

monopoles are condensed) and tunnel across the inter-

face to the z < 0 region vanishing into the condensate

of D = Ψe × (0, 2). An aµ flux of 4π and U(1) charge

QEM = 1 is created on the surface in the process. Thus,

an electron creation operator Ψe corresponds to a flux 4π

instanton in the surface theory.

Note that single (flux 2π) instanton events do not cor-

respond to physical operators in the surface theory. In-

deed, a flux 2π instanton would correspond to a single

monopole tunneling across the z = 0 interface. But sin-

gle monopoles are confined in the D-condensed region,

so single instanton events are not local operators in the

surface theory.

A complementary picture to the above discussion can

be obtained by studying instanton events directly in sur-

face QED3 theory. Let us imagine that the TI phase

obtained by D-condensation occupies a solid ball of ra-

dius R and the trivial vacuum occupies the region outside

this ball. The surface theory then lives on a sphere S2.

A strength m instanton event in the surface theory will

create a flux 2πm on the surface. For simplicity, imag-

ine this flux spreads uniformly across the surface. The

single-particle spectrum of a Dirac fermion on S2 in the

background of a uniform flux 2πm possesses N0 = m

zero modes. Recall that time-reversal symmetry inverts

the u(1) charge density, Tρ(x)T † = −ρ(x). This implies

that the total u(1) charge of a state with all the negative

energy modes filled and all the zero and positive energy

modes empty is q = −N0/2 = −m/2.46 On a compact

space such as S2 the total u(1) gauge charge q must be

zero. Therefore, we must fill m/2 out of m zero energy

modes. If m = 1, there is only a single zero-energy level,

so we cannot half-fill it: the state with the zero mode

empty has q = −1/2 and the state with the zero mode

filled has q = 1/2. Therefore, the flux 2π instanton is not

a local operator in QED3. However, if m = 2, we have

two zero modes: we can fill either one or the other, ob-

taining two degenerate q = 0 states. In fact, these states

transform in the j = 1/2 representation of the rotation

group on the sphere. Since the surface theory QED3 is

Lorentz invariant, the fact that we’ve changed the spin of

the system by 1/2 implies that we have added a fermion

to the system. This is consistent with our identification

of the flux 4π instanton operator with the electron Ψe.

It is often stated that a single Dirac fermion in 2 + 1

dimensions suffers from the parity anomaly, namely it

cannot be consistently coupled to a u(1) gauge field pre-

serving the time-reversal symmetry.29 Our surface the-

ory (15) has a dynamical u(1) gauge field aµ, which is

confined to live just on the surface (we switch off the

background electromagnetic field Aµ for now). Thus, the

standard argument for the evasion of the anomaly via the

3+1 dimensional bulk does not directly apply in this case.

Rather, the anomaly is resolved by modifying the com-

pactification of the gauge-field aµ in the surface theory.

This important point is discussed in detail in Appendix

B.

B. Heuristic derivation of dual surface theory

We now give a more heuristic derivation of the dual

surface QED3 theory, which starts directly with the Dirac

cone of electrons (1) and does not rely on the bulk con-
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k → 0 1 2 3 4 5 6 7
I 1 −i 1 −i
σ 1 −1 −1 1
ψ −1 i −1 i

TABLE I. Vortex defects on the surface of a topological in-
sulator. The vortex statistics are described by Ising×U(1)−8

theory and the table lists the topological spins of vortices.
The column index is the flux k hc

2e
, which coincides with the

U(1)−8 charge and the row index is the Ising charge. Only ψ0

has a well-defined Kramers parity T 2 = −1. The fermionic
vortex ψ4 has trivial mutual statistics with all other vortices.

struction in Section II.

Consider the TI surface state (single Dirac cone) with

U(1) charge and time reversal symmetry U(1)oT . For

simplicity we assume that the chemical potential is at

the Dirac point. Now, consider surface superconductivity

and the statistics of vortices induced in the superconduc-

tor. This was studied in Refs. 26 and 27 where the vortex

theory in Table I was derived. The vortex statistics can

be described by a TQFT Ising×U(1)−8. The anyons in

this TQFT are labelled by the Ising charge {I, σ, ψ} and

a U(1)−8 charge k, which will be noted as a subscript on

the Ising charge. The U(1)−8 charge coincides with the

vorticity (the hc/2e vortex is the unit vortex). Not all

sectors of Ising×U(1)−8 TQFT are realized by vortices:

vorticies with odd vorticity always have an Ising charge

σ, and vorticies with even vorticity have an Ising charge

I or ψ. Time-reversal symmetry reverses the vorticity.

Note that the Ising×U(1)−8 TQFT is the same as one

describing the T-Pfaffian surface topological order of a

TI (table II), however, the action of time-reversal sym-

metry on the U(1)−8 charge k is different. In a T-Pfaffian

state k is preserved by T , while in the vortex theory it

is reversed. A further difference is that anyons in the

T-Pfaffian state also carry charge k/4 under the physical

U(1)EM global symmetry. Let us define the CT-Pfaffian

to be a topological order of electrons with U(1)×T global

symmetry with the same anyon content and U(1) charge

assignments as the T-Pfaffian, but reversed action of

time-reversal symmetry on the U(1)−8 charge. One may

suspect that the CT-Pfaffian is the surface topological

order of the ν = 1 class AIII chiral topological insula-

tor. Indeed, precisely this proposal has been made in

Ref. 17 (modulo a bosonic SPT phase, which we will re-

turn to). Note that the fermion ψ4 in the T -Pfaffian and

CT-Pfaffian states has trivial mutual statistics with all

other anyons and is identified with the physical electron.

Let us come back to the vortices on the surface of a TI.

k → 0 1 2 3 4 5 6 7
I 1 −i 1 −i
σ 1 −1 −1 1
ψ −1 i −1 i

T 2 1 η −η −1 −η η

TABLE II. T-Pfaffianη topological orders with η = ±1. The
top table lists the topological spins of anyons; the column and
row indices denote the U(1)−8 charge and the Ising charge re-
spectively. The physical electric charge of anyons QEM = k/4
with k - the U(1)−8 charge. Time-reversal maps k to itself.
The bottom row lists the T 2 assignment of anyons (where de-
fined). The T 2 assignment is independent of the Ising charge.
ψ4 is the physical electron. The CT-Pfaffian topological or-
der has identical anyon content and charge assignments, but
T maps k → −k and ψ0 has T 2 = −1.

To encode logarithmic interactions between vorticies we

can take them to carry gauge charge of an emergent u(1)

gauge field aµ (in addition to charges in the Ising×U(1)−8

TQFT). For notational convenience, let us normalize the

charge of a unit vortex under aµ to be 1/4. Let us for a

moment ignore the fluctuations of aµ, and treat the vor-

ticity as a charge under a global u(1) symmetry. Then

we can regard the vortex theory as a topological order

CT-Pfaffian with u(1) × T symmetry, which is the sur-

face state of the ν = 1 chiral TI in class AIII. In this

identification, the quadruple vortex ψ4 is identified with

the electron of the class AIII TI.

With this connection in hand, we can discuss other

possible surface states of the class AIII TI. The simplest

one of course is the single Dirac cone, which will now be

composed of the ψ4 fermions. Reinstating the fact that

the u(1) charge is actually gauge charge, implies that the

fermions are coupled to a gauge field as described by the

Lagrangian (2). This line of reasoning provides a physical

picture of the dual fermionic field ψcf = ψ4, i.e. it is the

strength 4 fermionic vortex on the surface of a topological

insulator. Also, if one prefers to view the vortex as a bo-

son, then this is a bound state of a 4hc2e vortex and a neu-

tral Bogoliubov quasiparticle. Due to its vorticity, it is

minimally coupled to a gauge field a. Since each electron

appears as a flux of 4π to a strength 4 superconductor

vortex (2hc/e vortex), we have (∂xay−∂yax) = 4πρe - the

electron density. The terminology ‘composite fermion’ to

describe the fermionic vortex ψ4 should be clear now. Re-

call, in the original definition of composite fermions each

electron is attached to a pair of hc/e vortices - as in ψ4.

While this is usually discussed in the context of quan-

tum Hall states31,32, the present discussion shows that

this duality is also relevant to describe the surface of a
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topological insulator.

One may think that the Dirac theory of composite

fermions represents a different gapless surface state from

the original Dirac model (1) - however, the simplest con-

clusion that the two models are dynamically equivalent,

also remains an intriguing possibility as discussed below.

C. Weak vs strong form of the duality

So far we have ignored the issue of the dynamics of

the surface QED3 theory. Instead, our discussion was

focused on issues of symmetries and quantum numbers

of operators. In principle, the surface theory (15) can

be perturbed by an orbitrary local symmetry preserving

operator. This gives rise to a large landscape of pos-

sible surface phases, some of which will be discussed in

section IV. Since the D-condensed phase in our bulk con-

struction is continuously connected to a non-interacting

TI, one of these surface phases must be the gapless (un-

gauged) free Dirac cone of electrons. Thus, the Dirac

cone is dual to QED3 in the sense of duality of Hilbert

spaces, operators and symmetries.

One can ask whether a stronger version of duality

holds. Namely, is weakly coupled QED3 dual in the infra-

red to the free Dirac cone. By weakly coupled QED3 we

mean the theory

LQED3
= ψ̄cf iγ

µ(∂µ − iaµ)ψcf −
1

4g2
fµνf

µν (16)

with the coupling constant g2 much smaller than the UV

cut-off ΛUV . The theory (16) is well defined and an-

alytically controlled in the UV (i.e. for energy scales

g2 � ω � ΛUV ) where it reduces to a Dirac fermion ψcf
interacting weakly with a massless photon aµ. The fate

of the theory in the IR is not known. One can envision

three different scenarios, which we list here in the order

of increasing exoticity:

i) The theory (16) spontaneously breaks time-reversal

symmetry in the infra-red, dynamically generating a

fermion mass term mψ̄cfψcf . The IR theory is then a

trivial gapped state with no intrinsic topological order

(see section IV B 2 and Appendix B). It is identical to

the phase obtained from the free Dirac cone by spon-

taneously breaking T -symmetry and generating a mass

mΨ̄eΨe. This is the most conventional scenario. In fact,

the standard (although unproven) expectation is that

non-compact QED3 with a small number of fermion fla-

vors Nf and a symmetry group SU(Nf ) does generate

a fermion mass in the IR. However, as we review in ap-

pendix B, conventional 2+1 dimensional QED3 with the

standard large gauge transformations is only consistent

with T -symmetry for even Nf . For odd Nf , one must

add a Chern-Simons term with a half-odd-integer level

k to the massless Dirac theory in order to preserve the

standard large gauge transformations (see appendix B).

In this case, the T -symmetry is absent so a fermion mass

term is allowed by symmetry and is, in fact, generated

already in perturbation theory. Now, our Nf = 1 surface

theory has no Chern-Simons term due to the modifica-

tion of allowed large gauge transformations. Therefore,

it does not fit into the conventional folklore and perhaps

can remain gapless in the IR. This brings us to the other

two scenarios.

ii) Weakly coupled QED3 with Nf = 1 flows in the

infra-red to a free Dirac theory of ψe with Nf = 1. This

would be a “strong” version of particle-vortex duality for

fermions. Such a strong version of duality is believed

to hold for bosons (we review the status of the bosonic

duality in appendix C).

iii) Weakly coupled QED3 with Nf = 1 flows in the

infra-red to a CFT distinct from a free Dirac theory.

At present, we can make no statement regarding which

of these scenarios is realized.

IV. DUAL DESCRIPTIONS OF THE TI

SURFACE PHASES

Let us describe how the different phases of the topo-

logical insulator surface are realized in the dual fermion

description.

Let us begin by considering symmetry preserving sur-

face states, and then discuss those that break symmetry.

This discussion has significant overlap with a previous pa-

per by Son37, with some relabeling of time reversal and

particle-hole symmetry, and the physical context. Also

Ref. 37 adopts a minimal coupling of dual fermions to

gauge field with twice the charge used in this paper.

A. Surface phases preserving all symmetries

1. Fermi liquid and HLR state of dual fermions

Consider the situation when we preserve physical sym-

metries, charge conservation and time reversal, with the

metallic surface state of the topological insulator. Typ-

ically the metallic surface state will be at finite filling,

implying the chemical potential is away from the Dirac

node. How is this Fermi liquid state described in the

dual language? The finite chemical potential on the elec-
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trons implies a finite magnetic field on the composite

fermions via the equation (∂xay − ∂yax) = 4πρe. The

dual fermions are at neutrality as a consequence of phys-

ical time reversal symmetry, so they will be at half fill-

ing of the zeroth Landau level. Fermions in a magnetic

field which fill half a Landau level can be in a variety

of states. One possibility is the ‘composite Fermi liquid’

or Halperin-Lee-Read31 state. Here, however, since the

fermions are themselves composite fermions, performing

the duality twice leads us back to the original electrons.

This is nothing but the original Fermi liquid of electrons.

2. Surface topological order and superconductivity of dual

fermions

Another possible way to preserve charge U(1) and T

on the TI surface is through surface topological order.

Two different symmetric topologically ordered surface

states of a TI have been identified. The first is the

Pfaffian-antisemion state, with 12 particles, and the other

is the T-Pfaffian state, with 6 particles (see table II).

While the Pfaffian-antisemion state can be derived by

a vortex condensation argument starting from the sin-

gle Dirac cone surface state of a topological insulator,

the T-Pfaffian cannot be analogously derived (see, how-

ever, Ref. 36). Rather it is argued to be a consistent

surface termination that captures all relevant anomalies

of the TI surface. Here, we are able to derive this sur-

face topological order directly from the duality (2). To

do so, we simply consider the composite fermions to be

in the Higgs phase, where they have paired and con-

densed, 〈ψcf↑ψcf↓〉 6= 0. This gaps out the photon aµ,

and the vortices in this phase trap quantized gauge flux∫
d2x (∂xay − ∂yax) = π. This simply means that the

unit vortex carries electric charge QEM = 1/4 (since from

(2) a flux 2π of a corresponds to charge 1/2). The statis-

tics of vortices in this superfluid have previously been

worked out18,19 - and they precisely corresponds to the

T-Pfaffian state, with the same transformation proper-

ties under time reversal as proposed in Refs. 25, 28! In

fact, the T-Pfaffian appears in two varieties, T-Pfaffian±
which differ in the transformation properties under time

reversal (see table II). While one of them corresponds to

the topological insulator surface, the other differs from

it by addition of the eTmT SPT state of neutral bosons.

The eTmT phase admits a toric code surface state where

both the e and m anyons are Kramers doublets. Pre-

viously, the exact correspondence was unknown. Now,

pair condensation of composite fermions in the dual the-

ory (2), in fact, gives rise to the T-Pfaffian+ topologi-

cal order.19 Thus, the duality allows to resolve the long-

standing T-Pfaffian+/T-Pfaffian− puzzle. We, however,

remind the reader that to establish the duality (2) we

had to argue that the bulk phase constructed in section

II is continously connected to the non-interacting TI and

does not differ from it by an eTmT state. The details of

this argument will be given in section VI and in Ref. 41.

B. Breaking symmetries

Now we consider surface phases that break symmetry.

1. Surface superfluid and dual surface topological order

When electrons pair and condense to form a surface

superfluid, we have noted that surface vortices have the

same statistics and transformation properties under T as

the CT-Pfaffian topological order. As discussed in section

III B, this can simply be interpreted as the topological or-

der of composite fermions ψcf of the dual surface theory.

An additional feature here is the coupling to the gauge

field. When all gauge charges are gapped the photon is

free to propagate, which is just the dual description of

the Goldstone mode of the electronic superfluid.

A different way to motivate this connection is the fol-

lowing. Consider the metallic surface state of electrons

at finite chemical potential. A natural instability of this

Fermi liquid is the BCS instability towards pairing. In

the dual description, this corresponds to a finite effective

magnetic field applied to a half filled Landau level of ψcf .

A natural consequence are various non-Abelian topologi-

cal orders such as Pfaffian, anti-Pfaffian etc. These, how-

ever, break particle-hole symmetry, which is just the time

reversal symmetry of the electrons. A topological order

that preserves particle-hole symmetry is the CT-Pfaffian,

which corresponds to the surface superfluid of electrons.

2. Breaking time-reversal symmetry

Consider breaking time reversal symmetry on the TI

surface while maintaining the chemical potential at the

electronic Dirac node. This induces a mass term Ψ̄eΨe

leading to an insulating surface with surface Hall conduc-

tance σxy = 1
2
e2

h . The effective response theory on the

surface is given by:

L = − 1

2(4π)
εµνλAµ∂νAλ (17)
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The dual composite fermions also acquire a mass gap

due to breaking of T symmetry via the mass term ψ̄cfψcf .

Integrating out the single Dirac cone of ψcf , leads to the

following effective action:

L =
1

2(4π)
εµνλaµ∂νaλ −

1

2(2π)
εµνλAµ∂νaλ (18)

Integrating out the dynamical gauge field aµ then pro-

duces the same Lagrangian as Eq. (17). Other important

aspects of the theory (18), such as statistics of excitations

and ground state degeneracy on a torus, are discussed in

appendix B, and are shown to precisely coincide with

those in the trivial insulating T -broken surface phase.

V. PARTON THEORIES WITH INDEX ν 6= 1

We have seen in section II how to obtain a T -invariant

electronic insulator with θEM = π by confining the spin-

liquid phase SL×. This spin-liquid phase was obtained

through a parton construction, with partons ψ placed

into a non-interacting ν = 1 band-structure of class AIII.

As we already mentioned, non-interacting electron phases

in class AIII have an integer classification ν ∈ Z, which

collapes to a Z8 group upon adding interactions. We

now ask what happens if we place our partons into a

non-interacting band-structure with ν 6= 1 and ν - odd?

One can quickly see that the properties of the elec-

tronic ν = 1 phase that we used in our bulk construction

in section II are shared by all phases with ν - odd. In

particular, they all have a response to a u(1) gauge field

characterized by θ = π. The quantum numbers of dyons

in the bosonic spin-liquids SLν× based on a parton band-

structure with ν-odd will, therefore, be identical. Conse-

quently, the associated confined phases obtained by con-

densing the D-dyon Ψe×(0, 2) will all have a θEM = π re-

sponse to the U(1) gauge-field Aµ. The resulting surface

theories are, however, different, consisting of Nf = |ν|
flavors of gapless Dirac fermions interacting with a u(1)

gauge field aµ.

We now discuss whether the bulk SLν× phases with dif-

ferent ν and the associated confined phases are, in fact,

different. First of all, due to the collapse of the non-

interacting classification, the bulk phase only depends

on ν mod 8. Furthermore, we claim that once the u(1)

symmetry of class AIII is gauged, ν = 1 and ν = −1 ∼ 7

phases are identical. Recall that when the u(1) symme-

try is a global symmetry of an electronic theory, ν = 1

and ν = −1 phases differ in the action of the T sym-

metry on a single monopole (q = 1/2,m = 1). Under

T , (1/2, 1) ↔ (−1/2, 1). In a theory of electrons, these

two time-reversal partners differ by a local object - the

electron (1, 0), and one can, therefore, assign a T 2 value

to them. In the ν = 1 state, (1/2, 1) has T 2 = +i and

(−1/2, 1) has T 2 = −i (with the choice T 2 = −1 when

acting on the electron). In the ν = −1 state the T 2 as-

signments of these monopoles are reversed.19 However,

once we treat the u(1) symmetry as a gauge-symmetry,

the parton ψ = (1, 0) is no longer a local object. There-

fore, the dyons (1/2, 1) and (−1/2, 1) belong to different

topological sectors and one cannot assign a value of T 2 to

them. Similarly, ν = 3 and ν = −3 ∼ 5 phases collapse

after gauging. (For a more formal proof that phases ν

and −ν coincide after gauging the u(1) symmetry, see

Ref. 41).

It remains to see whether SLν=1
× and SLν=5

× bulk phases

are distinct. In fact, they are. Recall that before the u(1)

symmetry is gauged, ν = 1 and ν = 5 phases differ by

the eTmT SPT phase of neutral bosons.18,19 But neu-

tral bosons are not affected by the gauging of u(1) sym-

metry. Therefore, SLν=1
× and SLν=5

× spin-liquid phases

also differ by an eTmT phase of neutral bosons. Like-

wise, the associated confined phases also only differ by

an eTmT phase. At the level of confined phases, this

can also be seen by considering the symmetric topologi-

cal surface states in the ν = 1 and ν = 5 constructions.

As we discussed in section IV, these states can be ob-

tained by pair-condensing the composite fermions ψcf in

the surface QED3 theory. In the case of both ν = 1 and

ν = 5 the resulting intrinsic topological order is given

by the T-Pfaffian, however, ν = 1 and ν = 5 differ in

the action of time-reversal symmetry on the anyons of

T-Pfaffian. In the ν = 1 case the charge e/4 anyon σ1 is

a Kramers singlet and the associated state is known as

T-Pfaffian+. In the ν = 5 case the charge e/4 anyon is

a Kramers doublet and the associated state is known as

T-Pfaffian− (see table II). These two T-Pfaffian states

are known to differ precisely by the eTmT surface topo-

logical order (i.e. T-Pfaffian+ + eTmT can be driven via

a surface phase transition to T-Pfaffian−).

As we already mentioned, since the confined phases

have θEM = π they differ from a non-interacting TI

at most by an SPT phase of neutral bosons with T -

invariance.15 Such T -invariant boson SPT phases have

a Z2
2 classification.9,14,24,47 The two Z2 root phases are

best understood via their symmetric topologically or-

dered surface states. One of the root phases admits

the aforementioned eTmT surface topological order. The

other root phase admits a surface topological order with

anyons {1, f1, f2, f3}, where f1, f2, f3 are fermions and

the fusion rules are the same as in a toric code. This
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phase (and the above topological order) is abbreviated

as fff. Thus, our confined phases are identical to a non-

interacting electron TI up to these bosonic SPT phases.

In fact, one can rule-out the scenario where the confined

phases differ from the ordinary TI by the fff state (or fff

+ eTmT). Indeed, if one strongly breaks the T -symmetry

on the surface of an fff state, one drives the surface into

a topologically trivial phase with thermal Hall response

κxy/T = 4 and electric Hall response σxy/T = 0. How-

ever, the trivial T -broken surface phase of an ordinary TI

has σxy = κxy/T = 1/2. Similarly, if we break T strongly

starting from the T-Pfaffian± surface states of ν = 1,

ν = 5 confined phases, we obtain σxy = κxy/T = 1/2.

Strictly 2d phases of fermions with no intrinsic topologi-

cal order always have σxy − κxy/T ≡ 0 (mod 8). There-

fore, our ν = 1 and ν = 5 confined phases differ from the

non-interacting TI at most by the eTmT phase. Since

ν = 1 and ν = 5 themselves differ by the eTmT phase,

we conclude that one of them is continuosly connected

to the TI. By strengthening the arguments presented in

section VI, one can show that it is actually the ν = 1

phase (surface topological order T-Pfaffian+), which cor-

responds to the ordinary TI.41

From the above discussion, we obtain a family of novel

surface theories for the ordinary TI. Since all ν’s of the

form ν = 8k ± 1 give rise to the same bulk phase, QED3

with Nf = 8k±1 flavors provides a description of the TI

surface. Let us start with the weakly coupled QED3 in

the UV and ask about its fate in the IR. If one considers

the SU(Nf ) invariant situation, in the limit Nf →∞ the

IR theory is a CFT. This CFT is under complete theoret-

ical control and one can systematically compute scaling

dimensions of operators in powers of 1/Nf . For instance,

the T -odd “mass” operator ψ̄cfψcf has scaling dimension

∆ψ̄ψ ≈ 2 + 128
3π2Nf

.48 The flux 4π instanton operator cor-

responding to the physical electron Ψe has scaling dimen-

sion ∆Ψe
≈ 0.673Nf .46 Clearly, the CFTs with large Nf

are distinct from a free Dirac cone. Furthermore, these

CFTs are stable to SU(Nf )-breaking velocity anisotropy

terms,48,49 and, therefore, give rise to a family of sta-

ble novel surface phases of a TI. The strong version of

particle-vortex duality discussed in section III C would

require that when Nf = 1 the IR CFT becomes a free

Dirac cone.

VI. BULK DUALITY

In section II we’ve constructed a 3+1D SPT phase of

electrons with symmetry U(1) o T and electromagnetic

response with θEM = π. As we already mentioned, by

general arguments of Ref. 15 this phase can differ from

the non-interacting TI at most by a bosonic SPT phase

with T -symmetry. We now give a different argument

for this. In the process, we will demonstrate that the

particle-vortex duality of 2+1 dimensional Dirac fermions

can be understood as a descendent of electromagnetic

duality of the 3+1 dimensional u(1) gauge theory.

Our construction in section II started with a T -

symmetric spin-liquid phase of neutral bosons SLν=1
× .

This phase was obtained by using the parton decomposi-

tion (5), assigning partons T -transformations (7) result-

ing in an overall symmetry group u(1) × T , and then

placing the partons into a ν = 1 band-structure of class

AIII. Now consider a (seemingly) different T -symmetric

spin-liquid phase of neutral bosons obtained through the

decomposition,

B = ψ̃†Γ̃ψ̃ (19)

with ψ̃ - a fermionic parton. The decomposition again

has a ũ(1) gauge symmetry,

ũ(1) : ψ̃(x)→ eiα(x)ψ̃(x) (20)

which will give rise to an emergent gauge field ãµ. (We

use the tilde superscript to distinguish the present con-

struction from the one in section II). We assign the par-

ton ψ̃ the following transformation properties under T ,

T : ψ̃ → ŨT ψ̃ (21)

with ŨT Ũ
∗
T = −1, so that T 2ψ̃(T †)2 = −ψ̃. Since now T

does not change the ũ(1) charge of ψ̃, ψ̃ is a true Kramers

doublet. The time-reversal symmetry and the gauge sym-

metry now do not commute: if ũα is a gauge rotation by

a phase α, T ũαT
† = ũ−α, so the overall symmetry group

is ũ(1) o T . This symmetry group is the same as for

familiar topological insulators in class AII. To complete

the construction of the spin-liquid phase, we place the

partons ψ̃ into a non-interacting TI bandstructure. We

label the resulting spin-liquid SLo.

We will now argue that the two states SLo and SLν=1
× ,

in fact, belong to the same phase.

Let us first discuss the excitations of the SLo state.

Integrating the partons out, we obtain an effective action

for ãµ,

S[ãµ] =

∫
d3xdt

(
− 1

4ẽ2
f̃µν f̃

µν +
θ

32π2
εµνλσ f̃µν f̃λσ

)
(22)

with θ = π and f̃µν = ∂µãν − ∂ν ãµ. There is again a

topological term in the effective action with θ = π. Thus,
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the spectrum of dyon excitations can again be labeled by

electric and magnetic charges (q̃, m̃) with m̃ - integers

and q̃ − m̃/2 - integers. As in the SL× phase, the self-

statistics of dyons is (−1)(q̃−m̃/2)(m̃+1). Two dyons (q̃, m̃)

and (q̃′, m̃′) experience the usual statistical interaction,

with a statistical phase exp (i(q̃m̃′ − q̃′m̃)Ω/2), as well as

a 1/r Coulomb interaction.

Under time-reversal, T : (q̃, m̃)→ (q̃,−m̃). Only exci-

tations whose topological sector is not modified by T can

be assigned a Kramers parity. In the present case, these

are the pure-charge excitations (q, 0). The single parton

ψ̃ = (1, 0) is (by construction) a Kramers doublet.

In order to compare the two spin-liquid phases SLν=1
×

and SLo it is convenient to choose the following basis

for the lattice of dyon excitations. Starting with the SL×
case, let us choose as a basis the two dyons: d+ = (1/2, 1)

and d− = (−1/2, 1). These dyons are both bosons, and

have a non-trivial mutual statistical interaction: d+ sees

d− as a charge (1, 0) would see a monopole (0, 1) at θ = 0.

Under T : d+ ↔ d−. These time reversal partners fuse

to a double monopole (0, 2), which is a Kramers doublet

fermion as is required by the presence of a non-trivial sta-

tistical interaction between them. Decomposing a gen-

eral dyon as D = d
n+

+ d
n−
− , two dyons with quantum num-

bers (n+, n−) and (n′+, n
′
−) have a static interaction:

E =
1

4πr

(
e2qq′ +

(2π)2

e2
mm′

)
=

1

4πr

(
e2

4
(n+ − n−)(n′+ − n′−)

+
(2π)2

e2
(n+ + n−)(n′+ + n′−)

)
(23)

In the SLo case, let us choose a different dyon basis:

d̃+ = (1/2,−1) and d̃− = (1/2, 1). Again, these dyons

are both bosons and have a non-trivial mutual statistical

interaction: d̃+ sees d̃− as a charge sees a monopole at

θ = 0. Furthermore, under T : d̃+ ↔ d̃− and these two

time-reversal partners fuse to a single charge (1, 0), which

is a Kramers doublet fermion. Decomposing a general

dyon D̃ = d̃
ñ+

+ d̃
ñ−
− , two dyons with quantum numbers

(ñ+, ñ−) and (ñ′+, ñ
′
−) have a static interaction

E =
1

4πr

(
ẽ2q̃q̃′ +

(2π)2

ẽ2
m̃m̃′

)
=

1

4πr

(
ẽ2

4
(ñ+ + ñ−)(ñ′+ + ñ′−)

+
(2π)2

ẽ2
(ñ+ − ñ−)(ñ′+ − ñ′−)

)
(24)

We see that the properties of excitations in the u(1)×T
case and in the ũ(1) o T case are the same if we identify

d+ ∼ d̃+, d− ∼ d̃− and e = 4π
ẽ . In fact, this duality is

just an element of the general SL(2,Z) duality of the u(1)

gauge theory.43,44,50,51 The only non-trivial fact is that

this element of the duality preserves the time-reversal

symmetry.

Based on the above discussion, one is tempted to con-

clude that the two spin-liquids SLν=1
× and SLo, in fact,

belong to the same phase. One caveat is that, in prin-

ciple, these two phases could differ by a bosonic SPT

phase with T symmetry (i.e. eTmT phase or fff phase).

Indeed, an “addition” of such an SPT phase will not alter

the properties of the excitations charged under the gauge

symmetry. In fact, as discussed in section V, the SLν=5
×

phase based on a ν = 5 band-structure of partons ψ dif-

fers from the SLν=1
× phase precisely by an eTmT phase.

A priori, it is not clear if SLo is dual to SLν=1
× or SLν=5

× .

In Ref. 41, we argue that the duality is, in fact, between

SLo and SLν=1
× . We will briefly summarize the strategy

for showing this in section VI A.

Having established the duality between two spin-liquid

phases, we proceed to confine these phases and obtain a

duality between SPT phases of electrons. To do so, imag-

ine adding a trivial band insulator of electrons to each of

the spin-liquid phases. In the SLo construction, condense

the bound state of the physical electron Ψe and the single

charge (1, 0) = d̃+d̃− - i.e. the single fermionic parton ψ̃.

This bound state is a Kramers singlet boson, so its con-

densation does not break the T symmetry. The effect of

the condensation is to Higgs the dynamical gauge field,

effectively ungauging the TI. Indeed, once Ψeψ̃ is con-

densed, the parton ψ̃ and the electron Ψ†e become identi-

fied, so the resulting phase is continuously connected to a

non-interacting TI. Now, in the dual SLν=1
× description,

the single charge (1, 0) = ψ̃ = d̃+d̃− corresponds to the

double monopole (0, 2) = d+d−. Hence, condensing Ψeψ̃

in the SLo construction is equivalent to condensing the

dyon D = Ψe × (0, 2) in the SLν=1
× construction, which

is precisely the confinement transition discussed in sec-

tion II. We, therefore, conclude that the state obtained

by confining the SLν=1
× spin-liquid is continuously con-

nected to a non-interacting TI.

A. Fixing the eTmT factor in the duality

We would like to show that SLo and SLν=1
× spin-liquids

are identical as T -symmetric bosonic phases; in particu-

lar, that they do not differ by either the eTmT or the fff

phase.

13



Typically, to detect an SPT phase with a unitary sym-

metry G using bulk probes only we must “weakly gauge”

G, effectively studying the response of the bulk SPT to

fluxes of G. In the case when the symmetry G is the

time-reversal symmetry it has been suggested that the

equivalent of “weakly gauging” the symmetry is placing

the system on a non-orientable manifold.14,47,52 For in-

stance, the partition function of the eTmT phase on the

non-orientable manifold RP4 is equal to −1.14,47 Thus,

we can detect whether two phases differ by the eTmT

phase by comparing their partition functions on RP4.

Similarly, the partition function of the fff phase on an

arbitrary oriented manifold is given by (−1)σ(M), where

σ(M) is the signature of the manifold M .24,47,53 Thus,

we can detect whether two phases differ by the fff phase

by comparing their partition functions on CP2, which has

signature σ(CP2) = 1. In Ref. 41, we show that the par-

tition functions of SLo and SLν=1
× spin-liquids are equal

on both RP4 and CP2, provided that the coupling con-

stants of the two gauge theories are related by e = 4π
ẽ .

This supports the proclaimed duality.

VII. DUALITY, DIRAC COMPOSITE

FERMIONS AND THE HALF FILLED LANDAU

LEVEL

Thus far we have focused on the dual description of

the topological insulator surface, which is a gauged chi-

ral topological insulator surface. Indeed, this was appro-

priate to study the strongly interacting surface phases of

the topological insulator. However, given the bulk dual-

ity in Section VI, one can equally well run the connection

in reverse, and establish a dual description for the chi-

ral topological insulator surface, which is now given by a

gauged TI surface. What is the physical relevance of this

connection? Although chiral TIs may not be naturally

realized in electronic systems, it turns out that the half

filled Landau level of a 2DEG can effectively be consid-

ered equivalent to the surface of a chiral topological insu-

lator (with ν = 1). This can be readily seen by studying

the particle-hole symmetry of the half filled Landau level

and relating it to the particle-hole symmetry of chiral TI

surface.

Particle-hole symmetry of the half filled Landau level:

Consider a purely 2D non-relativistic electron in a uni-

form magnetic field: HL = (~p− ~A)2/2m, where a Landau

level spectrum results. Consider electrons partially fill-

ing the lowest Landau level (LLL) at a fractional filling

0 ≤ f ≤ 1, and define a Hilbert space where all higher

Landau levels are projected out (formally m → 0). The

resulting problem has a particle-hole symmetry, where

one can either consider electrons or holes partially fill-

ing the Landau level. Formally, this is a combination of

charge conjugation C and time reversal T , where the first

transformation exchanges electron creation and annihila-

tion operators cr ↔ c†r, while the second anti-unitary op-

erator involves complex conjugation. If we choose a basis

φi(r) for the orbitals in the LLL, then the operators that

create, c†i , and destroy, ci, LLL states are exchanged:

ci =

∫
r

φ∗i (r)cr
C−→
∫
r

φ∗i (r)c
†
r
T−→
∫
r

φi(r)c
†
r = c†i (25)

Since the kinetic energy is quenched, the Hamiltonian

only contains interaction terms. If we restrict to 2

body interactions, after projection to the LLL the sys-

tem is invariant under particle-hole symmetry. Indeed,

if δρ(r) represents the density deviation in the LL from

half filling (δρ(r) = ρ(r) − 1
2

1
2πl2B

), then under particle-

hole: δρ(r) → −δρ(r). Two body interactions Hint =∫
r1,r2

V (r1, r2)δρ(r1)δρ(r2) are therefore invariant. Fur-

thermore, the filling f → 1−f , so particle-hole symmetry

applies to the half filled Landau level f = 1/2. Therefore

Hint, when projected into the LLL at half filling admits

a particle-hole symmetry. Furthermore, we will see that

this coincides with the particle-hole symmetry of the sur-

face state of the ν = 1 chiral TI.

Connection to ν = 1 chiral TI: The surface state of

ν = 1 cTI is usually taken to be a single Dirac cone Ψe,

(1), with particle-hole symmetry acting as,

CT : Ψe → εΨ†e, i→ −i (26)

In our previous discussion of the cTI, we referred to

this anti-unitary symmetry simply as time-reversal, how-

ever, the term particle-hole is more appropriate in the

present context. We observe that an orbital magnetic

field can be applied in Eq. (1), preserving all the sym-

metries of the cTI. This leads to Dirac Landau levels

En = sgn(n)
√

2|Bn|, n = 0,±1,±2, . . ., with the posi-

tive energy levels empty and the negative energy levels

filled. Additionally, the zeroth Landau level is automat-

ically half filled due to particle-hole symmetry symme-

try. Here, even without projection into the zeroth Lan-

dau level, particle-hole symmetry is present. Moreover,

the problem is essentially identical to the non-relativistic

2DEG at f = 1/2 if in addition we impose projection into

the zeroth Landau level, with the particle-hole symme-

try of the Dirac fermion (26) mapping to the particle-hole

symmetry of the LLL (25).

There are, however, two differences between the sur-
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face and purely 2D cases that are important to note.

First, usually particle-hole symmetry (CT ) forbids a Hall

conductance, and, indeed, cTI surface states with op-

posite values of σxy are related by this symmetry, i.e.

σxy
CT−−→ −σxy. However, in the 2D LLL context we have

σxy
CT−−→ 1− σxy, that is, a particle-hole symmetric state

has σxy = 1/2 (in units of e2/h). Therefore, for the

2D LLL problem, we must add to the Lagrangian that

is manifestly particle-hole symmetric an additional piece

that keeps track of this fact:

L[A] = Lph[A] +
1

8π
εµνλAµ∂νAλ (27)

One way to view this is to imagine the opposite surfaces

of a slab of ν = 1 cTI, the top surface provides the first

term, and is manifestly particle-hole symmetric, while

the bottom surface has a broken CT -symmetry, leading

to a gap for the Dirac node which yields the Hall con-

ductance of 1/2 (second term in Eq. (27)). Importantly,

CT -symmetry breaking on the bottom surface does not

‘contaminate’ the perfect CT -symmetry of the top sur-

face.

It may seem surprising that we can simulate the sur-

face of a 3D topological phase, purely in two dimensions,

while maintaining the relevant symmetries. The key ob-

servation here is that the particle-hole symmetry when

realized in 2D is a nonlocal symmetry, and is not imple-

mented as a site local symmetry as in the 3D chiral TI.

Indeed, it is only present in the artificial limit of LLL

projection - in any physical 2D system it is necessarily

broken by inter-Landau level mixing. The nonlocal na-

ture of the symmetry can be divined from the following

facts - particle-hole symmetry proceeds by exchanging

filled and empty LLL states. However, these are nec-

essarily not well localized states54, hence the symmetry

cannot be implemented in a local way. Furthermore, un-

like any other local symmetry, particle-hole of the LLL

interchanges σxy = 0 and σxy = 1, states that differ

in their topological properties. Obviously, these states

have different edge degrees of freedom, but due to the

nonlocal nature of LLL particle-hole symmetry it is nec-

essarily broken in samples with boundaries. In contrast,

local symmetries can be defined in samples of any geom-

etry. Finally we note that local symmetries allow for a

symmetric ‘vacuum’ state which is a product state - one

simply makes singlets from a finite set of the existing de-

grees of freedom. However, there is no such symmetric

vacuum for LLL particle-hole since it will necessarily in-

volve a Hall conductance σxy = 1/2, for which no short

range entangled state exists.

Duality: Let us now discuss the consequences of the

previously discussed duality for the LLL problem with

particle-hole symmetry. First, we have noted the rela-

tion to the surface of the ν = 1 cTI. Next, utilizing the

duality in Section VI, which relates the gauged ν = 1 cTI

with the gauged ordinary TI, we can consider obtaining

the ungauged version by a Higgs condensation process,

entirely analogous to our duality in Section II. However,

in this case we assume we have a trivial band of ‘electrons’

Ψe that transform under CT ×U(1) (rather than our pre-

vious discussion where they were Kramers doublets under

time reversal). Binding electrons to the electric charges

of the gauged cTI and condensing removes the dynamical

gauge field and yields a chiral TI. However, on the other

side of the duality we have confined the gauged topolog-

ical insulator by condensing a bound state of a double

monopole and electron Ψe. The resulting bulk phase is

again the chiral TI, except it inherits a different surface

state - the topological insulator surface but coupled to a

2+1 dimensional dynamical gauge field.

Thus we have:

Le = Ψ̄eiγ
µ[∂µ − iAµ]Ψe (28)

is dual to

Lcf = ψ̄cf iγ
µ[∂µ − iaµ]ψcf −

1

4π
εµνλAµ∂νaλ (29)

except that now Ψe are electrons that respect particle-

hole symmetry (26), which translates into time reversal

when acting on the composite fermions ψcf ,

CT : ψcf → εψcf , i→ −i (30)

As already discussed, a finite background magnetic field

B in equation (28) preserves the CT symmetry and leads

to a half filled Landau level. On the dual side, this im-

plies that the dual fermion ψcf is at a finite filling set by

the relation: ψ†cfψcf = B/4π. In other words electrons

in the half filled Landau level can be mapped to a fi-

nite density of composite fermions in zero magnetic field.

Indeed, this was the content of the Halperin-Lee-Read

(HLR) theory of the half filled Landau level31. However,

the additional insight that has been gained here is the

role of particle-hole symmetry, that has remained myste-

rious within the HLR theory. Here we see that particle-

hole is simply implemented as time reversal symmetry

(30) on the composite fermions. Moreover, to account

for the anomaly of the half filled Landau level the com-

posite fermions must be Dirac like - that is they are like

the surface of a topological insulator at finite density.
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Their defining physical characteristic is a Berry phase

of π on circulating once around the composite fermion

Fermi surface. Thus, putting together all the pieces we

obtain for the effective dual theory of the half filled Lan-

dau level in an external field B and coupled to a vector

potential Aext = AB+δA, where the first term yields the

background field, we have:

Lcf = ψ̄cf iγ
µ[∂µ − iaµ]ψcf −

B

4π
a0

− 1

4π
εµνλδAµ∂νaλ +

1

8π
εµνλAµ∂νAλ (31)

where we have included the offset in the Hall conductance

as described in Eq. (27).

Precisely such a Dirac composite fermion picture was

conjectured by Son in a prescient recent paper37, where

he showed the theory (31) consistently accounted for sev-

eral physical facts while maintaining particle-hole sym-

metry. Indeed, our discussion here can be viewed as pro-

viding a derivation of the same result, and is another

consequence of the duality in section VI.

CT-Pfaffian: A particle-hole symmetric quantized Hall

state at half filling: Duality is most useful in accessing a

strongly interacting state of the original variables, which

has a simple description in dual vortex fields. Indeed,

just such a situation occurs here: we can describe an in-

compressible plateau state with ν = 1/2 by Cooper pair-

ing of composite fermions. In particular, since composite

fermions form the surface of a topological insulator, we

can consider Cooper pairing of composite fermions with

opposite momentum and spin, 〈ψcf,↑(~p)ψcf,↓(−~p)〉 ∼ ∆,

as envisaged by Fu and Kane.55 Since the Higgs phe-

nomenon gaps out the gauge field, and pairing gaps out

fermions, this is a gapped quantum Hall phase. More-

over, this pairing respects time reversal symmetry (30),

which in the original electron variables implies that it

is particle-hole symmetric. Combining these observa-

tions we readily see σxy = 1/2. The excitations in this

phase correspond to vortices and quasiparticles of the

Fu-Kane superconductor. The unit vortex (hc/2e), cor-

responds, by the conversion between a flux and global

charge, to a e/4 excitation. Moreover, by the Fu-Kane

analysis it traps a Majorana mode. Indeed, a more

detailed analysis26,27 reveals that this is just the CT-

Pfaffian state discussed previously, which has the same

topological order as the T-Pfaffian in Table II, but dif-

fers in the symmetry action under CT , which reverses

the electric charge. Indeed, exactly this topological or-

der was proposed to describe the surface of ν = 1 chi-

ral TI in Ref. 17 based on satisfying various physical

requirements. However, here we have obtained a deriva-

tion of this surface topological order, which was missing

until the present time. Indeed, the CT -Pfaffian may be

viewed as a candidate for an incompressible state with

denominator 2 (such as 5/2 state). However, numerical

simulations seem to show that with Coulomb interactions

in the n = 1 LL, the 5/2 state spontaneously breaks

particle-hole symmetry, leading to the Read-Moore Pfaf-

fian state (and its degenerate particle-hole conjugate, the

anti-Pfaffian).56–60 These correspond to pairing of com-

posite fermions in l = ±2 angular momentum channel,

〈ψcf,↑(~p)ψcf,↓(−~p)〉 ∼ ∆(px± ipy)|l|, that breaks time re-

versal symmetry in the dual description.37 Nevertheless,

it is interesting whether the CT-Pfaffian may be realized

in the more broad phase diagram of two dimensional elec-

tron systems in a magnetic field.

VIII. CONCLUSIONS AND FUTURE

DIRECTIONS

In summary, we have derived a new description of

the surface of an electronic topological insulator, given

by QED3 with a single gapless two-component Dirac

fermion. We argued that these fermions are related to

2hc/e vortices of the electron fluid. QED3 represents a

dual description of the surface Dirac electrons at the level

of Hilbert spaces, operators and symmetries. The dual

description allows us to derive well known surface phases

of the TI, and also to derive a previously proposed surface

topological order - the T-Pfaffian.

An interesting question for future research is whether a

“strong” version of this particle-vortex duality holds, i.e.

whether a dynamical equivalence exists between Nf = 1

QED3 and Nf = 1 free Dirac fermion, with Nf denot-

ing the number of fermion flavors of the two component

fermion fields. Although the conventional folklore holds

that QED3 is unstable at small values of Nf , we note

that our Nf = 1 surface theory has no Chern-Simons

term. Therefore, it does not fit into the conventional

folklore and perhaps can remain gapless in the IR. If

so, information about this conformal field theory may be

available from the conformal bootstrap61. Much work on

particle vortex dualities (or mirror symmetry) have been

on supersymmetric (SUSY) theories, which may appear

to be irrelevant to the present discussion. However, in

Refs. 62, 63 it was argued that the critical point between

the Dirac surface state of a TI and a surface supercon-

ductor is described by a Wess-Zumino model with emer-

gent N = 2 SUSY. Thus far a dual theory of this precise

model has not appeared, although closely related models
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have successfully been dualized64,65.
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cation of this work, Ref. 69 appeared, which presents an

explicit derivation of dynamical duality between a sin-

gle free Dirac cone and Nf = 1 QED3. This derivation

gives a direct map between the operators in the two the-

ories. An important point is that the dual QED3 theory

of Ref. 69 is in the strong coupling limit (g2 ∼ ΛUV
in Eq. (16)). Thus, Ref. 69 does not, strictly speaking,

establish the strong form of the duality, as defined in

section III C, between the free Dirac theory and weakly

coupled QED3. Nevertheless, it makes such a strong form

of duality not implausible.

Appendix A: Band Structure of Class AIII Chiral

Topological Insulator

Here we write down an explicit band structure for

fermions in class AIII chiral topological insulator phase.

Consider a cubic lattice model with four orbitals per site

labelled by τz = ±1 and νz = ±1. Consider the 1-particle

Bloch Hamiltonian:

H0 = t [sin kxαx + sin kyαy + sin kzαz]

+m [λ− (cos kx + cos ky + cos kz)]β5

We have xixj + xjxi = 2δij where xi ∈
(αx, αy, αz, β0, β5). An explicit representation is

(αx, αy, αz, β0, β5) = (τx, τzνx, τzνz, τy, τzνy). This

Hamiltonian has a chiral symmetry β0H0β0 = −H0.

Time reversal symmetry in the second quantized rep-

resentation takes the form: ψ → β0ψ
† (and, being an

antiunitary symmetry i → −i). In contrast to regular

time reversal symmetry particles are taken to holes, so

the conserved U(1) is like spin rather than charge.

For λ > 3 the model is in a trivial phase. However,

for 1 < λ < 3 the sign of the mass term changes sign at

the origin in momentum space indicating this is a ν = 1

topological phase in the AIII class. In order to access

SL×, the gauged chiral topological insulator, we require

the fermionic partons to take up a band structure with

the same topology.

Appendix B: Compactness of the gauge field in the

surface theory

It is often stated that a single Dirac fermion in 2 + 1

dimensions suffers from the parity anomaly, namely it

cannot be consistently coupled to a U(1) gauge field pre-

serving the time-reversal symmetry.29 When the Dirac

fermion appears as the surface state of a 3+1 dimensional

insulator (either the ordinary TI in class AII with symme-

try U(1)oT or class AIII with symmetry U(1)×T ) this

anomaly has a well-known resolution: when one gauges

the U(1) symmetry, the U(1) gauge-field lives in the 3+1

dimensional bulk, and the θ = π bulk EM response “can-

cels” the anomaly of the surface. Now, our surface the-

ory (15) has a dynamical u(1) gauge field aµ, which is

confined to live just on the surface (we switch off the

background electromagnetic field Aµ for now). Thus, the

standard argument for the evasion of the anomaly via the

3+1 dimensional bulk does not directly apply in this case.

Rather, the anomaly is resolved by modifying the com-

pactification of the gauge-field aµ in the surface theory.

For instance, we already saw that only configurations of

aµ with magnetic flux 2πm with m-even are allowed on

the surface. There is a related restriction on the electric

fluxes that one can place through the space-time 2-cycles

of the surface.

As an example, imagine that our D-condensed phase

occupies a solid torus, so that its boundary is a torus
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T 2, with periodic x and y direction of length L. We will

choose the x cycle to wrap the hole of the solid torus,

while the y cycle can be contracted within the solid torus.

To simplify the discussion, let us break the T -symmetry

on the surface by adding a mass term mψ̄cfψcf to the

surface theory. The low-energy surface action then be-

comes,

L =
ik

4π
εµνλaµ∂νaλ (B1)

with k = 1
2 sgn(m) (for definiteness, let us choose m > 0

so that k = 1/2). It is a standard statement that the

level k of the 2 + 1 dimensional Chern-Simons theory

must be an integer, which seems inconsistent with our

finding of k = 1/2. Let us recall what this statement is

based on. Let’s integrate out the temporal component of

the gauge field aτ . This enforces the constraint ∂xay −
∂yax = 0. Then ai(~x, τ) = ∂iα(~x, τ) + θi(τ)

L , so that the

only remaining physical degrees of freedom are θ1 and

θ2 corresponding to the flux of a through the x and y

1-cycles. The effective action then takes the form,

L = − ik
2π
θ1∂τθ2 (B2)

Now, in a standard 2+1 dimensional theory, large gauge-

transformations, a1 → a1 + 2π
L , a2 → a2 + 2π

L are allowed,

corresponding to θ1 → θ1 + 2π, θ2 → θ2 + 2π. In the

path-integral treatment these transformations are imple-

mented by allowing θ1,2 to wind by 2π around the tempo-

ral circle: θi(β) = θi(0) + 2πni, with ni - integers. This

corresponds to placing electric fluxes 2πni through the

space-time 2-cycles of the system. Now, imagine there is

an electric flux 2π through the τ − y cycle. We see that

in this case the action (B1) changes by S → S − 2πik

as we shift θ1 → θ1 + 2π. Thus, the partition function

remains invariant only if k is an integer. In particular,

for k = 1/2 the partition function acquires a phase −1.

While we have demonstrated this effect in the T -broken

surface theory (B1), it is also present for the T -invariant

gapless Dirac fermion.29

One encounters the same difficulty if one attempts to

quantize the theory (B2) in real-time. The commutation

relation between θ1 and θ2 reads,

[θ1, θ2] = −2πi

k
(B3)

The operators U1,2 which implement the large-gauge

transformations θ1,2 → θ1,2 + 2π read U1 = e−ikθ2 ,

U2 = eikθ1 . Now,

U1U2 = e2πikU2U1 (B4)

Thus, the large gauge transformations along the two di-

rections commute only if k is an integer. In our theory

with k = 1/2, U1 and U2 anti-commute.

The above anomaly is resolved in our surface theory in

the following way. While large gauge transformation U1

shifting θ1 → θ1 + 2π is allowed, only the transformation

U2
2 , shifting θ2 → θ2 +4π is permitted. Thus, we are only

allowed to place electric flux 2πn with n - even along the

y − τ 2-cycle, while a flux 2πn with arbitrary integer n

can be placed along the x−τ 2-cycle. Note that from the

bulk point of view the two cycles are not equivalent: the

x cycle is uncontractible in the 3d solid torus, while the y

cycle is contractible. Now, U1 and U2
2 commute and we

can compute the ground state degeneracy. Working in

the θ1 basis and imposing U2
2 = 1 we must have θ1 = 2πl

with l - integer. Since θ1 is identified modulo 2π, we

have a unique physical ground state given by θ1 = 0.

This is consistent with our expectations. Indeed, the T -

broken surface state has no intrinsic topological order

so it should possess no ground state degeneracy on a

torus. The only excitation is the gapped ψcf . The Chern-

Simons field (B1) attaches flux 4π to ψcf , which preserves

its fermionic statistics. Now, a flux 4π instanton will

create ψcf with an attached flux 4π. Recalling that a

flux 4π instanton corresponds to the electron creation

operator, in the T -broken phase ψcf is identified with

the electron.

We can directly understand the restriction on the al-

lowed large gauge transformations of the surface theory

using our bulk construction. Let us imagine a process

where θ2(τ) = 2πτ/β, i.e. θ2 winds by 2π along the tem-

poral cycle. This gives rise to an electric field ~e = (0, 2π
βL )

along the surface. As discussed in the previous section

this electric field will be Meissner screened by a cur-

rent of D-dyons along the surface with surface density,

jDi = − 1
4π εijej = (− 1

2
1
βL , 0). Note that the dyon cur-

rent is along the uncontractible x-cycle of the solid torus.

The total number of D-dyons that have passed through

the x = 0 cross-section of the solid torus in the time

0 < τ < β is ND = −1/2. Now, if the system at time

τ = β comes back to its initial τ = 0 configuration then

an integer number of D-dyons must have passed through

the x = 0 cross-section. Therefore, we conclude that the

system has not returned to its initial configuration at

τ = β. Therefore, θ2 = 0 and θ2 = 2π are not indentical,

rather θ2 ∼ θ2 + 4π. On the other hand, θ1 is, indeed,

periodic modulo 2π. Indeed, when an electric field is ap-
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plied along the x direction, the dyons move along the

y cycle. Since this cycle is contractible, the number of

dyons that pass through any cross-section of the solid

torus is now zero. Thus, θ1 ∼ θ1 + 2π.

We conclude that the surface QED3 theory differs from

the conventional 2 + 1-dimensional u(1) gauge theory

in the allowed large gauge transformations. Once the

set of large gauge transformations is restricted, QED3

with a single Dirac cone becomes fully consistent with

T -symmetry.

Appendix C: Particle-vortex duality of bosons

In this appendix, we review the status of particle-

vortex duality of bosons in Eqs. (3) and (4).

As a field-theory, the vortex theory (4) is given by the

Abelian-Higgs model,

L = |(∂µ − iαµ)ϕ|2 +m2|ϕ|2 + u|ϕ|4 +
1

2e2
(εµνλ∂ναλ)2

(C1)

with couplings u, e2 � ΛUV . The properties of this

theory depend on the dimensionless parameter κ2 =

u/e2. For κ smaller than a critical value κc, analyti-

cal arguments70 and Monte-Carlo (MC) simulations71–73

indicate that the transition between the Higgs and

Coulomb phase is of first order. Thus, the interesting

region is κ > κc. Here, MC indicates that the tran-

sition is second order and in the inverted XY univer-

sality class.72,73 (The term “inverted XY” stems from

the dual boson Φ of Eq. (3) having 〈Φ〉 6= 0 in the

Coulomb phase, on the other hand, “condensation” of

the vortex field ϕ occurs in the Higgs phase). We, how-

ever, note that it is difficult to access the weakly coupled

regime u, e2 � ΛUV in MC simulations since to reach

the true infra-red physics one then needs to go to large

system size L � 1/u, 1/e2 � Λ−1
UV . Nevertheless, an at-

tempt to extrapolate to the u/ΛUV , e
2/ΛUV → 0 limit

was made in MC simulations of Ref. 73, which estimate

κc = (0.76± 0.04)/
√

2.

We remind the reader that an exact duality33 exists

between a certain lattice version of theory (C1), where

|ϕ| is frozen and only the phase of ϕ fluctuates, and a

lattice version of the XY model. More precisely,

SAH =
1

2g

∑
jµ

(dθ − α− 2πn)2
jµ +

1

4e2

∑
jµν

(dα)2
jµν (C2)

is exactly dual to

SXY =
e2

8π2

∑
j̄µ

(dχ− 2πm)2
j̄µ +

g

4

∑
j̄µν

(dm)2
j̄µν (C3)

The variable j (j̄) labels direct (dual) sites of a cubic

lattice. The vortex field ϕ ∼ eiθ, and Φ ∼ eiχ is the

XY field. Integers njµ and mj̄µ encode the periodic na-

ture of θ and χ. Eq. (C3) is the Villain version of the

usual lattice XY model; based on MC, at g = 0 it is

known to have a continuous transition in the XY uni-

versality class at e2
c ≈ 13, which must survive for small

g. Therefore, (C2) has an inverted XY transition in this

regime of e2, g. However, in this regime the lattice the-

ory (C2) is far from the continuum field theory (C1).

To make a connection with the continuum field theory

(C1), one should instead study the regime of small e2

in (C2). Indeed, when e2 = 0, gauge fluctuations are

completely frozen and (C2) has a transition in the (ordi-

nary) XY universality class at gc ≈ 3.00. If we perturb

this ordinary XY fixed point by a small e2 � 1, we will

recover the infra-red fixed point of field-theory (C1) in

the regime e2 � u � ΛUV . However, again, finding out

the true fate of the IR fixed point of (C2) for small e2

with MC is difficult, as one has to go to length-scales

L � 1/e2 (otherwise, one is dominated by the ordinary

XY transition fixed point). Instead, MC simulations have

been performed at intermediate e2 = 5 - the continuous

inverted XY transition survives here33 (see also a more

recent, larger system size study in Ref. 74 at e2 ≈ 5.8.) A

possibility generally assumed in the literature is that the

inverted XY transition survives all the way to infinitesi-

mal e2, although again we stress that this region has not

been investigated carefully. A study of a related model75

where the Villain term 1
2g (dθ − α− 2πn)2 in Eq. (C2) is

replaced by −J cos(dθ − α) found an inverted XY tran-

sition down to e2 ≈ 1.7.

We conclude by stressing that the present evidence for

particle-vortex duality of bosons at the level of IR fixed

point of continuum field theory relies on MC simulations

(and in the authors opinion has not been established be-

yond the shadow of doubt). We, thus, expect that an

equivalent “strong form” of duality between weakly cou-

pled QED3 and a free Dirac fermion can ultimately only

be settled by numerics.
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FIG. 2. Phase diagram of lattice Abelian-Higgs model
(C2). Points where MC simulations have been performed are
marked,33,74 solid line is a guide to the eye. An inverted XY
transition has been found at points marked by blue circles,
and an ordinary XY transition at the e2 = 0 point marked
by a red triangle. The near critical region with e2 � 1 has
the same IR fixed point as “weakly coupled” Abelian-Higgs
model (C1) with κ = u/e2 � 1.
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