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Phase Structure of 1d Interacting Floquet Systems II: Symmetry-Broken phases

C.W. von Keyserlingk and S. L. Sondhi

Recent work suggests that a sharp definition of ‘phase of matter’ can be given for periodically
driven ‘Floquet’ quantum systems exhibiting many-body localization. In this work we propose a
classification of the phases of interacting Floquet localized systems with (completely) spontaneously
broken symmetries – we focus on the one dimensional case, but our results appear to generalize to
higher dimensions. We find that the different Floquet phases correspond to elements of Z(G), the
centre of the symmetry group in question. In a previous paper we offered a companion classification
of unbroken, i.e., paramagnetic phases.

I. INTRODUCTION

In this, the second of a series of two papers, we con-
tinue our investigation of Floquet drives which are many
body localized (having a near complete set of bulk in-
tegrals of motion) and which also exhibit eigenstate or-
der thus sharply defining phases for driven quantum sys-
tems. In our first paper1, henceforth I, we discussed Flo-
quet drives with unbroken quantum order, which includes
drives with symmetry protected topological (SPT) order
(see Refs. 2–4 for closely related work). In the present
work we discuss Floquet drives with spontaneous sym-
metry broken (SSB) order.

Here we briefly summarize the logic that leads to I and
the present work – we direct readers to the Introduction
to I for a more complete account of the setting of this
work, as well as indirectly related references. We consider
many body Floquet localized systems whose eigenstates
are non-thermal. In particular – in part to avoid the run-
away heating effect discussed in Refs. 5–7 – we assume
that such localized Floquet systems are characterized by
a set of commuting local integrals of the motion (which
we call ‘l-bits’) of the same form as those characteriz-
ing undriven many body localized systems8–10. Thus the
task of classifying possible Floquet phases reduces to clas-
sifying commuting stabilizer11 unitaries much as the task
of classifying possible MBL phases reduces to classifying
commuting stabilizer Hamiltonians12.

In this paper we carry out this task for symmetry
broken phases. Further we consider only finite sym-
metry groups G – for continuous groups, spontaneously
broken states have Goldstone bosons which cannot be
localized13. For simplicity we further restrict to finite on-
site unitary symmetry groups G, and assume that G has
been completely spontaneously broken. In this task we
again begin with the results obtained in Ref. 14 which an-
alyzed one dimensional driven spin chains with Ising/Z2

symmetry and showed that they exhibited two symmetry
broken phases, one of which has no analogue in the un-
driven setting. While we will improve upon the analysis
in Ref. 14 in understanding the structure and generality
of the results obtained there and then generalize to ar-
bitrary finite groups, we will rely on the computational
evidence assembled there to argue that our classification
describes stable Floquet phases of matter.

We can summarize our main result: We find that for

G Classification (Z(G))

Zn Zn
Q8 Z2

Dn>2 Z 3+(−1)n

2

Sn>2 Z1

TABLE I. This table gives examples of our proposed Z(G)
classification scheme for MBL Floquet drives in 1d with finite
on-site symmetry group G, and fully SSB eigenstate order.
Z1 denotes the trivial group with one element. Only cer-
tain many-body localizable12 eigenstate orders are expected
to persist in the Floquet setting14. For this reason we restrict
attention to SSB orders with finite G (see discussion in Sec. I).

MBL Floquet drives with a completely (spontaneously)
broken on-site finite unitary symmetry group G, the dis-
tinct Floquet drives are in correspondence with the el-
ements Z(G) of the center of the group. Unlike in I
where for unbroken (i.e., SPT) phases we considered sys-
tems with edges, our classification here is done for a bulk
system and the presence or absence of edges is not im-
portant. We show that the full period unitary U(T ) has
a specific structure that reflects the center of the group.
We also show that the evolution of the correlations inside
the period have a characteristic form that derives from
this structure on the lines discussed in Ref. 14 for the
Ising case.

Table I gives examples of predictions arising from our
framework. Groups G with trivial centre – e.g., the sym-
metric group Sn on n ≥ 3 elements, or the odd dihe-
dral groups D2m+1 for m ≥ 1 – have just one Floquet
phase with completely SSB order. The opposite extreme
is abelian G, for which there are |G| different Floquet
fully SSB phases. On the other hand, the even dihedral
groups G = D2n have a Z2 classification.

This work is set out as follows. In Sec. II, we inves-
tigate Floquet drives with Ising symmetry broken order,
verifying that there are two qualitatively different such
drives. In Sec. II B we bring together some of our obser-
vations in this special case, discuss the stability of the
Ising Floquet phases, and generalize them to drives with
Zn completely SSB order, showing that there are n qual-
itatively different drives. Then in Sec. IV we extend all
of these observations to consider fully symmetry broken
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orders for general finite G, and discuss the stability of
these phases in general. Here we find |Z(G)| qualita-
tively distinct Floquet phases. In Sec. V we give a gen-
eral prescription for constructing drives which realize the
predicted Floquet phases. Finally in Sec. VI we reflect on
the structure of the spectra of these Floquet phases and
make a connection to recent work on ‘time crystals’15,
before concluding in Sec. VII.

II. MOTIVATING EXAMPLE: ISING CHAINS

t1
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⇡/2

0
0
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FIG. 1. (Color Online): This shows the phase diagram for
the binary drive in Eq. (1). The red and blue line separate
distinct Floquet phases. The lists involving (u, p) summarize
the protected multiplets in the spectrum for an open chain
e.g., in the 0π trivial phase, if there is a state with Uf , P
eigenvalues (u, p) then there are guaranteed to be states at
(−u, p), (u,−p), (−u,−p) for the same u, up to exponentially
small corrections in system size.

We begin with a discussion of our motivating case—
that of spin chains with Ising symmetry. This was first
discussed in Ref. 14 and in more detail in I as the case of
Class D fermionic chains. Our discussion will be mostly
in the character of a review albeit with many details filled
in.

A. Solvable binary drives

To this end we consider a set of binary drives which
are exceptionally convenient and lead to the phase dia-
gram Fig. 1 with two paramagnetic and two ferromag-
netic phases1,14,16. Indeed, they are spin versions of the
Class D free fermion drives considered in I. The drives

are constructed from the Hamiltonians

H0 =−
∑
s

hsXs

H1 =−
∑
s

JsZsZs+1 ,

where X,Z are Pauli-matrix operators and hs, Js are
made random to obtain localization, but for the purposes
of obtaining the phase boundaries will be taken to be
(almost) spatially uniform. Both Hamiltonians commute
with a Z2 global Ising symmetry operator P =

∏
sXs.

H0 is a paramagnetic fixed point Hamiltonian; its
eigenstates exhibit zero correlation length in the Ising
order parameter Zs. It has a complete set of N local
conserved quantities (or l-bits) {Xs} for a chain of length
N , which themselves make up the terms in the Hamilto-
nian and are Ising symmetric. On the other hand, H1

is a ferromagnetic fixed point Hamiltonian. Its eigen-
states resemble classical configurations of the Ising order
parameter Zs, and indeed have perfect long range corre-
lations in this order parameter. We say that H1 has Z2

SSB eigenstate order because its eigenstates break the Z2

symmetry. H1 is somewhat special in that its eigenstates
can be chosen to be eigenstates of the Zs. For a more
general SSB Hamiltonian, the exact eigenstates of the
system come in nearly degenerate doublets of feline/cat
states, consisting (roughly) of symmetric and antisym-
metric combinations of Ising reversed order parameter
configurations. Such pairs of cat states are labelled in
part by l-bits of the form Bs = ZsZs+1 which track the
positions of domain walls. Only N − 1 of these l-bits
are independent for an N site chain. The one additional
integral of the motion needed to specify the eigenstates
is the global Ising generator P which commutes with H1

and all the Bs – P = ±1 determine (roughly) whether
or not the cat state is a symmetric or anti-symmetric
combination of spin configurations. The operator Zr for
any site r can be used to toggle between these cat states,
because it commutes with H1 and anti-commutes with
P . In summary, Bs, P are a complete set of integrals of
motion for Hamiltonians with SSB Ising order, although
P clearly cannot appear in any local Hamiltonian.

Following Ref. 14 (see also Ref. 17) we now define
binary Floquet drives using the reference Hamiltonians
H0, H1:

U(t) =

e−iH0t 0 ≤ t < t0

e−iH1(t−t1)e−iH1t0 t0 ≤ t < t0 + t1 .

The final Floquet unitaries are of the form

Uf ≡ U(T ) = e−iH1t1e−iH0t0 . (1)

If we choose spatially uniform couplings hs = Js = 1
the phase transition lines are easily derived and lead to a
phase diagram with four distinct phases as in Fig. 1. In
reality we will need disorder for a proper realization of the
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phases listed thereon but much can be learned by simply
working on the boundaries of the diagram. For the same
reasons as explained in I, it suffices to consider Floquet
drives with t0, t1 ∈ [0, π/2] (see Fig. 1). We will pri-
marily be interested in those regions labelled FM, as our
previous work covers the cases with paramagnetic bulk
order, but we discuss the latter as well for completeness
(Sec. II A 2).

1. Ferromagnetic Phases

In the region labelled FM, all of the eigenstates have
long range Ising symmetry broken order. A representa-
tive Floquet unitary is obtained by setting t0 = 0 i.e.,
Uf = e−iH1t1 . The eigenstate properties of this unitary
are simply those of the local Hamiltonian H1 which is the
so-called Floquet Hamiltonian for this drive, i.e. the log-
arithm of Uf . Clearly, the l-bits which commute with Uf
are then the set Bs and there is one global integral of the
motion P . Note that P does not appear in Uf . This uni-
tary inherits the spectral pairing characteristic of the SSB
broken order present in the eigenstates of H1. That is to
say, as Zr commutes with H1 but anti-commutes with
P , eigenstates at a given quasienergy come in P = ±1
pairs. The time dependence of the order parameter in
the Floquet eigenstates is also interesting—it returns to
itself at the end of the period14.

The πFM phase is unique to the driven setting. To
understand the nature of this phase, we work along the
line t0 = π/2 and 0 < t1 <

π
2 where

Uf = e−it1H1

∏
s

Xs ∝ e−it1H1P .

This Uf looks like the unitary associated with a FM drive
(discussed above) multiplied by P . Observe that Uf is
not the exponential of a local Hamiltonian although it
is a local unitary generated by a local time dependent
Hamiltonian. The complete set of integrals of the motion
are again the Bs and P but now P does appear in Uf .
The consequence of this last fact is that whereas in the
FM case considered above, there was spectral pairing at
any given quasienergy, there is now spectral pairing be-
tween states split by quasienergy π. That is to say, as Zs
anti-commutes with both Uf and P , eigenstates come in
(u, p), (−u,−p) pairs as opposed to (u, p), (u,−p) pairs.

The fact that Zl anti-commutes with Uf in the π FM
case can be reinterpreted as a dynamical statement about
the order parameter Zl – namely, that it changes sign
over the course of a Floquet cycle. This observation
formed the basis for the spin-correlation based diagnos-
tic reported in Ref. 14. Thinking just about our family
of binary drives it would appear that what is at issue is
a rotation of the order parameter about the x-axis and
thus there may exist Floquet phases corresponding to ro-
tation of the Zl order parameter for any multiple of π.
However this is not the case for more general drives—in
App. D we show that only the angle of rotation modulo

2π matters, which is consistent with our seeing only two
distinct Floquet phases. Finally, we note we were able to
distinguish the FM phases by looking just at their bulk
spectra – there was no need to examine their edge spec-
tra. We will later argue in Sec. IV A in general that for
SSB drives there is no analogue of the ‘pumped charge’
appearing at the edges, which gave rise to protected edge
modes in the unbroken SPT ordered drives examined in
I.

2. Paramagnetic Phases

As an aside, we very briefly comment on the param-
agnetic phases. The physics of these regions is covered
in I, where we argued that the Floquet paramagnetically
ordered drives with unitary finite symmetry group G are
classified by ClG × AG where ClG is the SPT classifica-
tion for G and AG are the 1D reps of G. In the present
case G = Z2, for which Cl = {0} and A = Z2 so that
there are two qualitatively different Floquet drives with
PM order. In contrast to the FM case it turns out that
in line with I, both of these drives have the same bulk
spectral properties, and the difference between them is
only visible on a system with a boundary. We present
examples of drives in these two classes in App. A.

Two additional observations may interest the reader.
First, as noted in Ref. 14, the PM phases are related
to the FM phases by duality and hence can be diagnosed
by bulk dual order parameter correlations which are non-
local in the spin variables. Second, the two PM and two
FM phases are related by Jordan-Wigner transformation
to the class D drives examined in Ref. 1 – the FM regions
correspond to those drives with bulk SPT (Kitaev wire-
like order), while the PM regions correspond to the drives
with trivial (non-SPT) bulk order.

B. Generalizing to the MBL regime

We have examined two idealized Floquet drives (FM
and π FM) with Ising ferromagnetic order, and shown
that they have markedly different spectral structure. The
goal of this section is to argue, based on assumptions
to be stated, that the differences between these Floquet
drives is robust to adding interactions and strong disorder
– in other words to show that the FM and π FM drives are
representatives of two sharply defined phases. We then
attempt to distill the previous section’s observations into
a more readily generalizable framework, which we apply
to drives with spontaneously broken Zn eigenstate order
in Sec. III. Building on this in Sec. IV we present the
general case of Floquet drives with spontaneously broken
non-abelian symmetry.

Recall that the idealized drives in Sec. II have Flo-
quet unitaries with a set of exactly local bulk l-bits of
form ZsZs+1. How might this picture change away from
the ideal point, in the presence of strong disorder and
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interactions? Returning to the discussion of the Ising
ordered drives in Sec. II A 1, recall that the Ising order
parameter Zr operators can be used to toggle between
the degenerate (or π quasi-energy split) Ising even/odd
eigenstates. Using the specialized drives Eq. (1) these
degeneracies (or π quasi-energy pairings) are exact. Per-
turbing symmetrically away from the fixed point, and in
the presence of sufficiently strong disorder, we expect the
degeneracies (or π quasi-energy pairings) to be exact up
to exponentially small corrections in system size18. In
line with the expected behavior of MBL phases in the
undriven setting10,18, and the observed behavior of the
Floquet spectra in numerics14, we will henceforth assume
that upon perturbing symmetrically away from the fixed
point the SSB ordered Floquet drives obey the following
conditions: There exist smeared out (but local) analogues
of Zs (which we continue to denote Zs) which are Ising
odd, obey Z2

s = 1, and which commute amongst them-
selves all up to exponentially small corrections in the sys-
tem size. In particular, the operators ZsZs+1 continue to
be Ising even, and are the l-bits of the new system, also
up to exponentially small corrections in the system size.
The upshot is that we are working now with l-bits and
order parameters very like those in the idealized models,
but many of the previous relations between these oper-
ators hold only up to exponentially small corrections in
system size, which we henceforth ignore.

With these assumptions in place, we can constrain the
general form of an Ising symmetric Floquet unitary Uf
with full SSB eigenstate order. Such a Floquet unitary
has a set of l-bits Bs = ZsZs+1 only N − 1 of which are
independent. Note however that P,Bs gives a set of N
independent integrals of the motion. By this we mean
there is a complete eigenbasis labelled by P = p,Bs = bs

Uf | p, {bs}〉 = uf (p, {bs}) | p, {bs}〉 (2)

where the eigenvalues uf depend on the p, bs eigenvalues.
It follows straightforwardly that we can write Uf entirely
in terms of operators Bs, P

Uf = Uf (P, {Bs}) . (3)

We now use the locality of the instantaneous drive Hamil-
tonians H(t′) to constrain the functional dependence on
P . To begin, note that Uf commutes with ZlZr for any
l, r. In other words, using notation [A : B] = ABA−1B−1

for unitaries A,B we have

[Uf : ZlZr] = 1 (4)

As Uf is a local unitary, UfZlU
−1
f = Zlθl and

UfZlU
−1
f = θrZr, where θl,r are unitaries with expo-

nentially localized support near l, r respectively using
Lieb-Robinson bounds19. However, Eq. (4) implies that
θl = θ−1r , for l, r arbitrarily distant from one another.
The only possible resolution is that θl = θ−1r = eiϕ1 for
some phase eiϕ. This phase is moreover constrained to
be eiϕ = ±1, using Z2

l = 1 and the resulting equality

1 = UfZ
2
l U
−1
f = θ2l 1. It follows that

ZlUf (P, {Bs})Z−1l = Uf (−P, {Bs})
= ±Uf (P, {Bs}) , (5)

where the second equality reflects the conclusion eiϕ =
±1 in the paragraph above, while the first equality follows
from the fact that Zl anti-commutes with global Ising
generator P . In the +1 case Uf is independent of P ,
while in the −1 case it is odd in P , i.e.,

Uf = U ′f ({Bs}) or PU ′f ({Bs})

for eiθ = ±1 respectively, where U ′f ({Bs}) is some uni-
tary depending only on the bond operators Bs. These
two distinct types of Floquet unitaries are consistent with
the different structures of the FM and 0π FM examined
in the examples in Sec. II A 1. Indeed, by the same rea-
soning as in Sec. II A 1, they have the same spectral prop-
erties. Namely, labelling the eigenstates of Uf , P by pairs
(u, p): In the eiϕ = 1 case there are protected doublets of
eigenstates with (u,+1), (u,−1), while in the eiϕ = −1
example there is a π quasi-energy spectral pairing ,i.e.,
doublets of states with (u, 1), (−u,−1).

In summary we have argued that there are two funda-
mentally different kinds of Ising symmetric Floquet uni-
tary with FM Ising order, distinguished by their com-
mutation with the Ising order parameter [Uf : Zl] = ±1.
The FM and 0π FM Floquet drives examined in Sec. II
are idealized examples of these two kinds of unitary. We
have not yet argued, however, that these distinct kinds of
Floquet unitary define genuinely distinct Floquet phases
stable to sufficiently small perturbations to the unitary.
We will return to this issue when we treat the general
case, but we give a summary of the argument here.

We now argue that the eigenstate properties of the Flo-
quet drives constructed above are stable to sufficiently
small Ising symmetric changes to the Floquet drive. As-
suming a small change in Uf leads to a small change in
the Zl operators, then [Uf : Zl] must change by a small
amount as well. However, we have argued that this quan-
tity is independent of l and discrete – above we argue it
is equal to ±1. Hence it cannot change continuously,
so it does not change at all. In this way, making the
stated assumptions about the forms of the l-bits and their
dependence on Uf , we have argued that our diagnostic
[Uf : Zl] = ±1 distinguishing different Floquet drives
is robust. Hence we expect the two distinct drives con-
structed in Sec. II correspond to genuinely distinct Flo-
quet phases. Having discussed the Ising case in general
we now examine more briefly how these results generalize
to Floquet drives with Zn completely SSB order.

III. Zn SSB DRIVES

Here we extend the results in the previous section to
theories with completely broken Zn symmetry, and in-
troduce a notation which more readily generalizes to the
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non-abelian cases studied in Sec. IV. In the Ising case our
on-site Hilbert space consists of Z = ±1 on-site Ising de-
grees of freedom. In the rest of the paper, we consider the
more general Hilbert space H, where the on-site Hilbert
space consists of gr ∈ G degrees of freedom, where G is
an on-site unitary global symmetry group.

It is convenient to view G = Zn as a subset of U(1)
generated by ω = e2πi/n. Let us now define some useful
linear operators (which live in L(H)). First, there are the
global Zn symmetry generators V : G → L(H) of form
V (g) =

∏
r Vr(g) where

Vr(x) | {gs}〉 =| {xδrsgs}〉 (6)

for any x, gr ∈ G. In the Ising problem Vr(±1) = 1, Xr

respectively, and V (±1) = 1, P respectively. Addition-
ally, define a unitary operator

gr | {gs}〉 = gr | {gs}〉 ,

where gr ∈ G is taken to be an nth root of unity. In the
G = Z2 case, gr = Zr. The commutator

[Vr(x) : gr] = x−1 ∈ U(1) , (7)

follows from these definitions, as does

[V (x) : gr] = x−1 ∈ U(1) . (8)

At this point, let us describe more precisely what we
mean by SSB eigenstate order. It is useful to give an
example of a fixed point Hamiltonian with SSB Zn order

H1 =
∑
r

Jr(g
†
rgr+1) , (9)

where Jr is some disordered Hermitian function of the
Zn variables. Note that H1 commutes with the global
symmetry generators V (x) using Eq. (8). We interpret
gr as our new Zn valued order parameter, and as in the
Ising case we will assume that away from the fixed point
model Hamiltonian Eq. (9), there are smeared out ana-
logues of gr which commute amongst themselves, obey
Eq. (8) with the global symmetry generators V (x), as
well as gnr = 1, all up to exponentially small corrections in
system size which we ignore. As a corollary, Br ≡ g†rgr+1

are a set of l-bits. These we take to be the defining fea-
tures of Zn eigenstate order.

We now investigate unitaries Uf with the aforemen-
tioned eigenstate order – i.e., with a set of gr operators,
and a set of local integrals of motion Br = g−1r gr+1. The
variables Br, V (ω) constitute a complete set of conserved
quantities which all commute with the global symmetry
generators – there are N −1 independent l-bits, taking n
possible values, and the global symmetry generator V (ω)
taking n possible values. The set is complete because
the total degrees of freedom Nn coincides with the total
Hilbert space size. Note that we call the Br = g†rgr+1

variables l-bits, even though they take values in the nth

roots of unity. Just as was argued in the Ising case (near
Eq. (2)) the unitary must have functional dependence

Uf = Uf ({g†sgs+1}, V (ω)) .

Using a straightforward extension of the argument below
Eq. (3) where we showed [Uf : Zl] = ±1, it follows that
[Uf : gl] = ω−k ∈ Zn for some k. This in turn ensures
that the Floquet unitary takes the form

Uf = Uf ({g†sgs+1})V (ωk) , (10)

for some k = 0, 1, . . . , n − 1. In fact, we can read-
ily construct any such unitary taking local Hamiltonian
H0 =

∑
s log(Vs(ω

k)) and combining it with H1 defined
in Eq. (9) according to the prescription Eq. (1). We are
thus led to the conclusion that there are n distinct Zn
completely symmetry broken drives.

Let us briefly mention the kinds of spectral pair-
ing in this model. Fixing k in Eq. (10), we
find the Floquet spectrum has degenerate multi-
plet of n states at each quasi-energy. This fol-
lows from choosing a simultaneous eigenbasis of
Uf , V (ω) labelled by (u, v). Applying the operators

1, gl, . . . , g
n−1
l to this state generates a multiplet of states

(u, v), (uω−k, vω−1), . . . , (uω−k(n−1), vω−(n−1)). So, for
k = 0 the eigenstate order is simply that of a SSB un-
driven Zn state, exhibiting the characteristic n-fold de-
generacy. For k 6= 0 mod n there is no undriven ana-
logue: we find a multiplet of n states with protected
quasi-energy gaps. We can also argue that no protected
edge modes arise when we restrict such a unitary to a
system with edges – see Sec. IV A.

Last we argue that the eigenstate properties of the
newly predicted Floquet drives constructed above are
stable to small symmetric perturbations. If we assume
that the operators gr change continuously as we perturb
Uf symmetrically, then [Uf : gr] changes continuously
too – the analogue of this quantity in the Ising case was
[Uf : Zr]. However, we have argued that this quantity
is a pure phase and discrete – it is an nth root of unity.
Hence, it cannot change continuously. So it does not
change at all. In this way, with some assumptions about
how the l-bits vary with small changes in Uf , we have ar-
gued that our diagnostic distinguishing different Floquet
drives is robust. Hence we expect that the n types of
Floquet unitaries – listed in, and constructed explicitly
below Eq. (10) – correspond to distinct and stable Flo-
quet phases. We have extended many of the arguments of
Sec. II B to drives with Zn SSB eigenstate order, paving
the way for the case of general finite G.

IV. GENERAL FINITE G SSB ORDER

Here we classify Floquet unitaries with SSB eigenstate
order, for general potentially non-abelian G. This sec-
tion is structured as follows. After setting up some no-
tation, we state more comprehensively what we mean by
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SSB eigenstate order for general G. Using this defini-
tion, and certain more technical locality arguments in
Sec. B, we constrain the form of a Floquet unitary to
Eq. (19), showing that the different classes of fully SSB
ordered Floquet unitaries Uf are labelled by the elements
of Z(G), the center of the group G. Thus, we predict a
Z(G) classification for completely spontaneously broken
Floquet drives. Last in Sec. IV A we argue that there
are no protected edge modes for the predicted fully SSB
Floquet phases.

Consider a Hilbert space with on-site gr ∈ G degrees of
freedom, with G potentially non-abelian. It is useful to
identify each such gr with its matrix {gr,ij} taken in some
complex faithful representation of G (e.g., the regular
representation always works) so that in particular

d∑
k=1

gikhkj = (gh)ij , (11)

where d is the dimension of the representation.
As in Eq. (6) we define on-site symmetry genera-
tor Vr(x)| {gs}〉 =| {xδrsgs}〉, and right multiplication
V op
r (x)| {gs}〉 =| {gsxδrs}〉. As for the Zn case, we define

‘order parameter’ operators gr, except these operators
are matrix valued with

gr,ij | {gs}〉 = gr,ij | {gs}〉 (12)

where i, j = 1, . . . , d. It follows from Eq. (11) that gr is
a unitary matrix in the sense that

d∑
k=1

g†r,kigr,kj = δij1 .

Similarly, we obtain commutation relations

Vr(x)gr,ijV
−1
r (x) =

∑
k

(xr)
−1
ik gr,kj , and (13)

V (x)gr,ijV
−1(x) =

∑
k

(xr)
−1
ik gr,kj . (14)

To describe more precisely what we mean by SSB eigen-
state order for non-abelian G, it is useful examine the
fixed point Hamiltonian

H1 =
∑
r

Jr(g
†
rgr+1) , (15)

where the matrix indices on gr are left implicit. Here Jr :
G → R is some random set of functions associated with
the r, r + 1 bond. Eq. (15) is our prototypical example
of SSB for general finite group G. Using Eq. (13), H1 is
G symmetric. Note too that

Br ≡ g†rgr+1 (16)

is a near complete set of local conserved quantities, which
entirely determine the positions of domain walls in a

‘spin-glass’ configuration of a group valued order param-
eter gr – specifically, these operators tell us how the or-
der parameter changes as we hop across the bond. Now
pick a particular site r = 1. The operators Br, g1 give a
complete set of labels on the whole Hilbert space. That
is, a spin glass configuration is completely specified by
the order parameter at a particular site g1 = g1 and
the manner in which the order parameter changes site to
site Br = Br. In analogy with the results in the pre-
vious section, perturbing symmetrically away from the
fixed point model, we expect a smeared out analogue of
the gr operators obeying commutation relation Eq. (14)
with the global symmetry generator V (x). Additionally,
we expect modified l-bits of form Br = g†rgr+1, with
Br = Br, g1 = g1 giving a complete set of conserved
quantities (all commuting up to exponentially small cor-
rections in system size).

Having defined SSB order, we move to the Floquet
problem. Consider a local symmetric unitary Uf which
has SSB ordered eigenstates as per the above specifica-
tion. The unitary Uf must commute with all of the l-bits
Br, implying

Uf =
∑
g,g′

u′{B}(g
′, g) | g′, {B}〉〈g, {B} |

where g, g′ is the value of the group element at site
1 and we have chosen to label our basis states by
g1 = g1,Br = Br. We are interested only in some such
operators which commute with the global symmetry gen-
erators V (x). This imposes condition u′{B}(g

′, g) =

u′{B}(xg
′, xg) for any x, which is equivalent to the state-

ment that

Uf =
∑
g,g′

u{B}(g
−1g′) | g′, {B}〉〈g, {B} |

=
∑
g,g′

∑
x

δ(x = g−1g′)u{B}(x) | gx, {B}〉〈g, {B} |

=
∑
x

u{B}(x)
∑
g

| gx, {B}〉〈g, {B} |︸ ︷︷ ︸
Q(x)

. (17)

where u′{B}(g
′, g) = u{B}(g

−1g′) defines u. In the orig-

inal convention for labelling basis vectors with their gr
eigenvalues, this newly defined operator Q acts like

Q(x) | {gr}〉 =| {g1xg−11 gr}〉 . (18)

For x ∈ Z(G) the centre of G, Q(x) just acts like the
global left symmetry action V (x), and in particular Q(x)
is a local circuit. For non-central x this operator is not
low depth (see App. B). Moreover we show in App. B
that Uf is local only if u{B}(x) vanishes except for x = z,
where z is a particular element in the center. In other
words

Uf = u{Br}V (z) , (19)
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where u{Br} is some unitary function of the l-bits and
z ∈ Z(G) is a particular element of the center. We thus
arrive at the conclusion that Floquet unitaries with full
SSB order are characterized by some z ∈ Z(G). Using the
methods of I, u{Br} can be argued to be a local functional
of domain wall configurations.

Last we might ask if there is an operator diagnostic
allowing us to discern the value of z appearing in Eq. (19).
Indeed there is. Let gχij be a matrix presentation of g ∈
G within irreducible representation χ of G, with i, j ∈
1, . . . ,dimχ. Define, in analogy with Eq. (12),

gχr,ij | gr〉 = gχr,ij | gr〉 . (20)

Using Eq. (13), and the fact that z ∈ Z(G) acts like a
phase in any irreducible representation, it follows that

V (z)gχr,ijV
−1(z) =

χ(z)

χ(1)
gχr,ij , (21)

where χ is the irreducible character, and χ(z)/χ(1) is a
pure phase again because z ∈ Z(G). Multiplying Eq. (21)

by g†r,j1, setting i = 1, and summing over j gives

∑
j

V (z)gχr,1jV
−1(z)g†,χr,j1 =

χ(z)

χ(1)
.

Now using the orthogonality of the character table

∑
χ

χ∗(C)χ(C ′) = δC,C′
|G|
|C| (22)

for conjugacy classes C,C ′ we find that for any z′ ∈ Z(G)

1

|G|
∑
j,χ

V (z)gχr,1jV
−1(z)g†,χr,j1χ

∗(z′) = δz,z′ .

Using this identity, and the fact that gχ commute with
the l-bits, we extract z from Uf in Eq. (19) using opera-
tion

1

|G|
∑
j,χ

Ufg
χ
r,1jU

−1
f g†,χr,j1χ

∗(z′) = δz,z′ . (23)

Having argued that Uf takes canonical form Eq. (19) for
some z ∈ Z(G), we now argue that the Floquet drives
corresponding to different z correspond to distinct sta-
ble Floquet phases. We argue for the stability of these
phases much as we did in Sec. III. In the present case
the quantity Eq. (23) for any z′ ∈ Z(G) entirely deter-
mines the z ∈ Z(G) characterizing the Floquet unitary
Eq. (19). It is discrete (either 0, 1), and appears to de-
pend continuously on Uf , so by the argument in Sec. III
it is expected to be stable to sufficiently small symmetric
perturbations.

A. The absence protected edge modes in SSB
ordered drives

Having classified completely SSB Floquet phases ac-
cording to their bulk spectra, we now argue that they
have no protected edge modes – this is in contrast to the
unbroken examples in I, where the non-triviality of the
Floquet drives manifested itself through the presence of
additional (or modified) edge modes. Consider an SSB
drive on a system with boundary. Using arguments like
those in I (App.’s A and B), together with Eq. (19), we
can argue that the Floquet unitary on a system with large
number N sites takes the form

Uf = vLvRe
−ifV (z) , (24)

where z ∈ Z(G), f is a local function only of bulk l-bits,
and vL, vR are unitaries local to the L,R edge of the
system which commute with all the bulk l-bits . As in I,
we can show that vL, vR commute with global symmetry
V (g) up to some phase characterized by a pumped charge
[V (g) : vL] = κ(g) for some 1D representation κ of G.
However it turns out that due to the bulk SSB order, the
pumped charge is just an artifact of the particular way
we have decomposed the unitary in Eq. (24), rather than
a robust feature of the unitary.

To see why, form operators gκr corresponding to the
1D representation κ. As κ is a 1D representation, gκr
is a scalar unitary operator with eigenvalues which are
roots of unity (as opposed to a matrix valued operator
like gr,ij). Now redefine vL,R by multiplying them with
gκ operators based at the left/right of the system respec-

tively: v′L,R = vLg
†,κ
L , vRg

κ
R. Simultaneously, redefine

f by adding a local Hermitian functional of the l-bits

f ′ = f + i
∑R−1
s=L log(gκsg

†,κ
s+1). Using the identity

e
∑R−1
s=L log(gκs g

†,κ
s+1) =

R−1∏
s=L

gκsg
†,κ
s+1 ∝ gκLg

†,κ
R , (25)

together these modifications leave Uf unchanged, but
v′L,R now commute with the global symmetries. There-
fore we may as well assume vL, vR are symmetric. This
means we can exchange them for any local symmetric
edge unitaries while preserving the symmetry of Uf . In
particular, there are no protected edge states. The phys-
ical intuition behind this calculation is as follows. In the
dual language, we can view SSB order as a condensate
of particles carrying representations of G – e.g., in dual
variables, the Ising ferromagnet is a condensate of Ising
odd particles. In such a situation, there is no solid notion
of pumped charge – any charge pumped into the edge is
immediately screened by the delocalized soup of charges
in the bulk.

V. CONSTRUCTING DRIVES

The explicit Ising symmetric drives we examined at
the start of this work inspired a more general classifica-
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tion of SSB Floquet phases. We saw that Floquet MBL
phases with a fully spontaneously broken finite symme-
try group G are classified by Z(G). We now construct
explicit (fixed point) drives for each of the new predicted
phases. Pick a z ∈ Z(G) labelling the desired phase and
let

Kz = −
∑
r

i log(Vr(z)) . (26)

As Vr(z) is a unitary operator, a logarithm log Vr(z)
exists – for concreteness, we define this explicitly in
Eq. (C1). Now take the random SSB spin-glass Hamil-
tonian H1 from Eq. (15). The unitary circuit

U(t) =

e−iKzt 0 ≤ t < 1

e−iH1(t−1)e−iKz 1 ≤ t < 1 + t1

(27)

has Floquet unitary

Uf = e−iH1t1V (z) ,

where V (z) is a global symmetry generator, and H1 has a
fixed point spin-glass order and is a functional only of the
Br operators from Eq. (16). This unitary explicitly of the
form Eq. (19), for the phase corresponding to z ∈ Z(G).

VI. STRUCTURE OF THE FLOQUET
SPECTRUM AND TIME CRYSTALS

The Floquet phases predicted above are character-
ized by a central element. The spectral properties of
these drives are obtained by considering a subspace cor-
responding to some fixed configuration of domain walls
{B}. We wish to consider the possible values of Uf on
this subspace. We can certainly decompose this subspace
into irreducible representations of G. Starting in a state
which is a singlet under global symmetry, we can toggle
to a state living in irreducible representation χ using op-

erator gχr,ij . However, Ufg
χ
ijU
−1
f = χ(z)

χ(1)g
χ
ij where χ(z)

is the character evaluated at z ∈ Z(G) corresponding to
irreducible representation χ. In other words, the Flo-
quet evolution flips our non-abelian generalization of a
spin glass order parameter gχij . We see that states living
in irreducible representation χ have their spectra shifted
by χ(z)/χ(1) relative to the original state – this is a
pure phase because χ is an irreducible representation and
z ∈ Z(G)20.

With the basic structure of the spectra in place, we
note a connection between our work and time crystals15.
The Hamiltonians H(t) for the Floquet phases considered
above not only have an on-site symmetry group G, but
also have a symmetry under time translation H(t+T ) =
H(t). In this sense, the total symmetry group is G× Z,
where Z represents time translation. As stated above
the additional information characterizing the drives is an
element of the center z, or equivalently a homomorphism

from the abelian group of time translations to the global
symmetry group ϕ : Z→ G.

The drives above spontaneously and completely break
the symmetry G, but there is also a sense in which they
spontaneously break the Floquet time translation sym-
metry t → t + T , in a manner characterized by the cen-
tral element z alluded to above. For z 6= 1 the order
parameter oscillates non-trivially

gχij(nT ) =

[
χ(z)

χ(1)

]n
gχij(0) ,

with period larger than T , even though the Hamiltonian
has period T. In other words, the order parameter time
dependence does not enjoy t→ t+T translation symme-
try. In the πFM Ising case of Sec. II, this is the statement
that the order parameter oscillates Z(nT ) = (−1)nZ(0)
with period 2T oven though the underlying Hamiltonian
has period T . The connection between this statement,
and time crystals was pointed out to us by E. Altman21.
This oscillation is detectable if one prepares a spin-glass
configuration state and measures the SG order parame-
ter stroboscopically, although the full time dependence
of spins in such systems is much more complicated as
we will discuss elsewhere22. This notion of time crystal
is close in spirit to the attempted definition in Ref. 23,
where a no-go theorem was proved concerning sponta-
neous breaking of continuous time translation symmetry.
This no-go theorem is inapplicable to the present systems
for a number of reasons, in particular our Hamiltonians
explicitly break continuous time evolution symmetry.

VII. GENERALIZATIONS AND CONCLUSION

We have put forward a classification scheme for 1d
many-body localized Floquet SPT states with completely
spontaneously broken on-site symmetry G, and with on-
site group valued degrees of freedom. We conjecture that
there are |Z(G)| different possible Floquet drives, each of
which can be brought into a canonical form Eq. (19). We
have argued that these putative Floquet phases are sta-
ble to sufficiently small modifications to the unitary Uf
in the bulk, although our arguments are only heuristic
and make certain assumptions about the behavior of l-
bits away from our exactly solvable fixed points.

The current work can be extended in several directions.
Although we have focussed on 1d, none of the arguments
seem specific to 1d, so we tentatively conjecture a Z(G)
classification for higher dimensional completely symme-
try broken phases too. However, with the nature and
stability of MBL order in higher dimensions currently in
question, we make this proposal very tentatively. As in
our previous work I, there remains the challenge of under-
standing the dynamical stability of these new phases for
realistic drives, and the need for proposals for realizing
and detecting them in experiments.



9

ACKNOWLEDGMENTS

We thank V. Khemani, R. Moessner and A. Lazarides
for many discussions and for collaboration (with SLS) on
prior work. We are grateful to E. Altman for suggest-
ing a connection between our work and time crystals.
CVK is supported by the Princeton Center for Theoreti-
cal Science. SLS would like to acknowledge support from
the NSF-DMR via Grant No. 1311781 and the Alexander
von Humboldt Foundation for support during a stay at
MPI-PKS where this work was begun.

Appendix A: Ising paramagnetic regions

In this section, we investigate binary drives of form
Eq. (1) corresponding to the PM regions in Fig. 1. To
distinguish the two possible Floquet unitaries, we will
need to consider the drives on a system with boundary.
We will here demonstrate the existence of two distinct
such paramagnetic Floquet drives by looking at specific
points on the Fig. 1 phase diagram. The two distinct
drives correspond to two possible phases of the ClG ×
AG = Z2 classification for G = Z2 in I.

In the region labelled PM in Fig. 1, all of the eigen-
states have paramagnetic order. A representative uni-
tary is obtained by setting t1 = 0 i.e., Uf = e−iH0t0 , in
which case that the eigenstate properties of this unitary
are simply those of the topological hamiltonian H0 with
l-bits of form Xs. Note that a such a PM hamiltonian (in
the disordered setting) does not have the spectral pairing
present in the FM problem.

Finally consider the 0π (PM) on an open system. For
ease of explanation set Js = 1 and hs disordered. As an
example, set t0 <

π
2 and t1 = π/2.

Uf =

N−1∏
s=1

ZsZs+1e
−it0H0 → Z1ZNe

−it0
∑N−1
s=2 hsXs

(A1)

where we performed a local symmetric unitary change of
basis to simplify the unitary near the edges. Now in the
bulk (s = 2, . . . , N−1), the Uf eigenstates are eigenstates
of the local bulk integrals of motion Xs. In total Uf looks
like a bulk PM drive multiplied by an Ising tunneling op-
erator Z1ZN . Note that the edge degrees of freedom are
completely decoupled from the bulk so we can separately

diagonalize the bulk hamiltonian e−it0
∑N−1
s=2 Xs and the

two site unitary

Uf,edge = Z1ZN

This two-site Hamiltonian has two useful independent
integrals of motion Uf,edge = Z1ZN and Pedge = X1XN

– note these are also integrals of motion of the original
unitary Uf . Picking a reference eigenstate | 1, 1〉, we can
toggle between the four eigenstates of Uf,edge.

Uf,edge Pedge

|1, 1〉 1 1

X1 |1, 1〉 −1 1

Z1 |1, 1〉 1 −1

X1Z1 |1, 1〉 −1 −1

TABLE II. This table shows the structure of the spectrum of
an Ising symmetric Floquet drive with paramagnetic order.

Combining these edge results with the bulk uni-
tary, we conclude that for the drive in question,
eigenstates of the full unitary |u, p〉 of the Floquet
drive come in quadruplets with Uf , P eigenvalues
(u, p), (u,−p), (−u, p), (−u,−p).

Appendix B: Locality arguments

In this section we assume Uf is local, and has a full
set of l-bits of the form explained in Sec. IV. Using
these assumptions we will show first that the operator
Q(x) defined in Eq. (18) is local iff x ∈ Z(G). We
then show that the full Floquet unitary takes the form
Uf = u{B}(z0)V (z0) where z0 ∈ Z(G). The reader
should beware that these two target equations, and many
others in this section will hold only up to exponentially
small corrections in system size.

1. Q(x) local iff x ∈ Z(G)

We argue now that Q(x) as defined above in Eq. (17)
is local iff x ∈ Z(G). If x is central, the conclusion fol-
lows readily from the fact that Q(x) = V (x) =

∏
r Vr(x),

which is manifestly local. If x is not central, consider
the operator V1(y) which has support on site 1. Were
Q(x) local, a Lieb-Robinson bound would imply that
[Q(x) : V1(y)] commutes with operators based at sites s
very distant from 1 (up to exponentially small corrections
in |s|). Let F be an operator F | {gr}〉 ≡ δ(gs, 1) | {gr}〉
– clearly the operator has support only at site s. We
will show that the commutator [[Q(x) : V1(y)], F ] does
not decay with s. It suffices to show that some matrix
elements of the commutator do not decay with s. Thus,
we will have shown that Q(x) is not a local unitary if
x /∈ Z(G).

First, let us look at the matrix elements of
[Q(x) : V1(y)]. For clarity we will calculate these step
by step. First, recall

Q(x) | {gr}〉 =| {g1xg−11 gr}〉
Q−1(x) | {gr}〉 =| {g1x−1g−11 gr}〉

(B1)
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so that Q−1(x) = Q(x−1). Next note that

V −11 (y) | g1, {gr}′〉
=| y−1g1, {gr}′〉
Q−1(x)V −11 (y) | g1, {gr}′〉
=| y−1g1x−1, {y−1g1x−1g−11 ygr}′〉
V1(y)Q−1(x)V −11 (y) | g1, {gr}′〉
=| g1x−1, {y−1g1x−1g−11 ygr}′〉
Q(x)V1(y)Q−1(x)V −11 (y) | g1, {gr}′〉
=| g1, {g1xg−11 y−1g1x

−1g−11 ygr}′〉 .

where the notation | g1, {gr}′〉 isolates the group element
on site 1 from all of the labels on other sites {gr}′ = {gr :
r 6= 1}. This allows us to calculate a group commutator
between kets

〈{g′r} | [[Q(x) : V1(y)], F ] | {gr}〉
= (F (gs)− F (g1xg

−1
1 y−1g1x

−1g−11 ygs))

× δg′1,g1δg′r,g1xg−1
1 y−1g1x−1g−1

1 ygr
(B2)

Using F (gs) = δgs,1 and taking matrix elements be-
tweens some state with g′1 = g1 = 1, gs = 1 and
g′r = g1xg

−1
1 y−1g1x

−1g−11 ygr for r > 1, we get

〈{g′r} | [[Q(x) : V1(y)], F ] | {gr}〉
= (1− δxy−1x−1y,1)

This latter expression is equal to 1 provided we can find a
y which fails to commute with x. This statement is true
regardless of have large we choose s. Hence the operator
norm of the commutator does not decrease exponentially
with s.

2. Uf local only if u{B}(x) ∝ u{B}(z0)δx,z0 where
z0 ∈ Z(G)

Given a local unitary of form

Uf =
∑
x

u{B}(x)Qx (B3)

we wish to show that u{B}(x) = u{B}(z0)δx,z0 holds up
to exponentially small corrections in system size, where
z0 ∈ Z(G). We prove this statement in two steps. We
first show that u{B}(x) must vanish if x /∈ Z(G). We then
show that there can only be one term in the superposition
Eq. (B3).

The first part of the proof begins by examining the
commutator of Uf with V1(y) as in the previous subsec-
tion. As Uf is unitary, Q†x = Q−1x , and the {B} operators
commute with all Qx,

[[Uf : V1(y)], F ]

=
∑
x,x′

u∗{B}(x)u{B}(x
′)[QxV1(y)Q−1x′ V

−1
1 (y), F ] (B4)

where again F is chosen to be a function with support on
some distant site s. As Uf is local, any matrix elements of
this commutator (with respect to some local basis) should
tend to zero exactly or exponentially fast for large s.
Examine matrix elements {g′r, }, {gr} where g′1 = g1 = a.
Such matrix elements disappear on terms in the double
sum Eq. (B4) unless x = x′.

〈a, {g′r, }′ | [[Uf : V1(y)], F ] | a, {gr, }′〉
=
∑
x

|u{B}(x)|2〈a, {g′r, }′ | [QxV1(y)Q†xV
†
1 (y), F ] |a, {gr, }′〉

=
∑
x

|u{B}(x)|2(F (gs)− F (axa−1y−1ax−1a−1ygs))

× δg′r,axa−1y−1ax−1a−1ygr (B5)

where again the notation | g1, {gr}′〉 isolates the group
element on site 1 from the group labels on other sites
{gr}′ = {gr : r 6= 1}. We now show that |uB(x)| must
vanish for x = x0 non-abelian. Choose

F | {gr}〉 = δgs,t | {gr}〉

for some fixed t ∈ G, noting F is clearly an operator
localized to site s. Then the a = 1, gs = t component of
Eq. (B5) becomes∑

x

|u{B}(x)|2(1− δxy−1x−1y,1)δg′r,xy−1x−1ygr .

Further restrict attention to the g′r = x0y
−1x−10 ygr com-

ponent of Eq. (B5), obtaining∑
x

|u{B}(x)|2(1− δxy−1x−1y,1)δx0y−1x−1
0 y,xy−1x−1y .

The second delta function is non-vanishing only for a
certain subset of those x (which includes x0) which fail to
commute with y, hence the expression further simplifies
to ∑

x

|u{B}(x)|2δx0y−1x−1
0 y,xy−1x−1y . (B6)

Using a Lieb-Robinson bound, this expression (a matrix
element of a commutator) should tend to zero exponen-
tially fast as |s| → ∞. But Eq. (B6) bounds |u{B}(x0)|2
above, so that |u{B}(x0)|2 also tends to zero exponen-
tially fast as we send |s| → ∞. But Eq. (B6) is actually
independent of s, so |u{B}(x0)|2 must be exponentially
small in the system size for any non-abelian x0. Hence,
all x appearing appreciably in the expression for Uf must
be in Z(G) i.e.,

Uf =
∑

z∈Z(G)

u{B}(z)V (z) (B7)

where we used the fact Q(z) = V (z) for z ∈ Z(G) alluded
to in Sec. IV. We show that as a consequence of Uf being
local, u{B}(z) is non-vanishing for only one z = z0 ∈
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Z(G). Recall that the operators gχr,ij defined in Eq. (20)
obey commutation relations

V (z)gχr,ijV
−1(z) =

χ(z)

χ(1)
gχr,ij (B8)

because z ∈ Z(G) acts like scalar multiplication in
all irreducible representations χ. Using Lieb-Robinson
bounds, and the form of Eq. (B7), it follows that

Ufg
χ
s,i′j′U

−1
f = gχs,i′j′ηχ,s (B9)

where ηχ,s is an operator that depends only on χ and is
localized around s. However, it follows immediately from

Eq. (B8) that gχ,†l,ijg
χ
s,i′j′ commutes exactly with Uf for

any sites l, s however widely separated. In conjunction
with Eq. (B9), this implies

η†χ,lg
χ,†
l,ijg

χ
s,i′j′ηχ,s = gχ,†l,ijg

χ
s,i′j′ .

Using the mentioned locality properties of the operators,

and
∑
k g

χ,†
l,ikg

χ
l,kj = δij , it is readily verified that

η†χ,sηχ,l = 1 .

But, as these two operators are localized very far from
one another, yet inverse to one another, they must act
by scalar multiplication up to exponentially small correc-
tions in system size. Dropping the s site label for now
we find therefore that

Ufg
χ
ijU
−1
f = eiθχgχij

for all i, j and irreducible representations χ where eiθχ ∈
U(1), from whence it follows

∑
k

gχ,†1k Ufg
χ
k1 =

∑
k

gχ,†1k g
χ
k1e

iθχUf

= eiθχUf .

But we can evaluate the LHS of this expression using
Eq. (B7) and Eq. (B8), to find∑

z

u{B}(z)V (z)
χ(z)

χ(1)
=
∑
z

u{B}(z)V (z)eiθχ . (B10)

Now, each non-vanishing term in the sum is orthog-
onal (use usual inner product for operators 〈A | B〉 =
Tr(A†B)), so the two sums must be equal component-
wise i.e.,

u{B}(z)

[
χ(z)

χ(1)
− eiθχ

]
= 0 (B11)

for all z ∈ Z(G) and all irreducible representations χ.
Suppose uB is nonzero for some z0. Then we have

χ(z0)

χ(1)
= eiθχ

for all χ. Substituting this back into Eq. (B11) we find

u{B}(z) [χ(z)− χ(z0)] = 0

for all z ∈ Z(G) and all χ. Now suppose z1 6= z0 is also
in the centre. Multiplying by χ∗(z1) and summing over
χ gives (using the orthogonality relation Eq. (22))

u{B}(z)δz,z1 = 0 .

Hence, u{B}(z1) = 0 for any z1 6= z0 as required. It
follows therefore that

Uf = u{B}(z0)V (z0) ,

as required.

Appendix C: Logarithms of V (g)

Suppose V is a unitary operator with finite order q.
Let ω be a primitive qth root of unity. Here is an explicit
expression for the logarithm of this operator log will take
the form (for an order N character)

q log(V )

2πi
= 0δ(V = 1) + 1δ(V = ω1) + . . .+ (q − 1)δ(V = ωq−1)

=

q−1∑
j=0

jδ(V = ωj)

=
1

q

q−1∑
k,j=0

jV kω−jk

=

q−1∑
k=0

V kck (C1)

where

ck =
((q − 1)ω−k(q−1) − qω−kq + ωk)

q(ω−k − 1)2
.

Appendix D: Order parameter correlations

In this appendix we argue that FM ordered binary
drives of the form Eq. (1) which involve a 2π rotation
of the order parameter can be continuously deformed to
drives which involve no rotation of the order parameter,
without encountering an eigenstate phase transition or
breaking Ising symmetry. To this end, it is convenient to
specialize to a system with an even number of site. We
show that a unitary of form

U(t) = e−it
∑N
r=1Xr ,

for 0 ≤ t ≤ π can be tuned to a constant path contin-
uously while maintaining Ising symmetry and fixing the
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endpoints U(0) = U(π) = 1. This implies that binary
Floquet drives of the form

U(t) =

e−it
∑N
r=1Xr 0 ≤ t < π

e−iH1(t−π)e−iπ
∑N
r=1Xr π ≤ t < π + t1 .

where H1 is potentially disordered, can be continuously
tuned fixing the value of Uf , to

U(t) = e−iH1t 0 ≤ t ≤ t1 .

As the system has an even number of sites, we can split

U(t) =
∏
r odd

e−it(Xr+Xr+1) .

It suffices to show that for each pair of sites, we can
continuously deform

Ur(t) = e−it(Xr+Xr+1) ,

to a constant unitary in an Ising symmetric manner, fix-
ing the end points Ur(0) = Ur(π) = 1. Pick an explicit
basis for this two site system (WLOG r = 1).

X1 ⊗ 12 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



11 ⊗X2 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



X = X1 ⊗X2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



The basis is labelled by X1, X2 eigenvalues in order
11, 11̄, 1̄1, 1̄1̄ where 1̄ = −1. At this point it is convenient
to change basis slightly (2↔ 4 swap) to give

X1 ⊗ 12 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



11 ⊗X2 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



X = X1 ⊗X2 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

The basis is now ordered 11, 1̄1̄, 1̄1, 11̄. We wish to find
all unitaries which commute with the two site Ising sym-
metry X. Such a unitary must take block diagonal form

W =

(
A 0

0 D

)
(D1)

with the only requirement being A,D ∈ U(2). Now con-
sider the unitary U(t) which in the current basis takes
form

U(t) = e−itX1e−itX2

=


e−it 0 0 0

0 eit 0 0

0 0 eit 0

0 0 0 e−it

×

e−it 0 0 0

0 eit 0 0

0 0 e−it 0

0 0 0 eit



=


e−2it 0 0 0

0 e2it 0 0

0 0 1 0

0 0 0 1


To see whether U(t) is deformable to a constant in the
space of unitaries of form Eq. (D1), we need only decide
whether

A(t) =

(
e−2it 0

0 e2it

)

can be deformed to a constant, fixing its endpoints
A(0) = A(π) = 12, within U(2). But note that A(t)
lies entirely in SU(2) ⊂ U(2) because detA(t) = 1. As
SU(2) is a simply connected space i.e, π1(SU(2)) = {1},
it must be the case that A(t) can be continuously de-
formed to a constant while fixing its endpoints. In other
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words, the closed loop defined by A(t) lies entirely in sim-
ply connected space SU(2), and can thus be deformed to
a point. We can WLOG reparameterize this unitary as

A(t) =

(
e−it 0

0 eit

)

0 ≤ t ≤ 2π. To deform this to a constant path, use an
interpolating family of unitaries

A(t;λ) =

(
(e−it − 1)c2λ + 1 cλsλ(1− e−it)
−cλsλ(1− eit) (eit − 1)c2λ + 1

)
,

where λ ∈ [0, 1], cλ = cos(πλ/2), and sλ = sin(πλ/2).
Then A(t, 0) = A(t) while A(t, 1) = 1 as required.
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7 P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Phys.
Rev. Lett. 114, 140401 (2015).
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