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A highlighting feature of Majorana bound states in two-dimensional topological superconductors
is that they gain a phase factor of π upon being orbited by a vortex. This work focuses on the vortex
degree of freedom itself and demonstrates that the change in the Majorana state is accompanied by
a fermion parity change within the vortex. Such a parity flip is interpreted as a higher dimensional
analog of the fermion parity pump mechanism in superconducting wires as well as through general
topological arguments. It is demonstrated in terms of level crossings in three different situations - in
i) spin-triplet paired superconductors, and in proximity-induced superconducting systems involving
ii) quantum spin Hall-ferromagnet hybrids and iii) Chern insulators.

Zero energy Majorana bound states (MBS) are ex-
otic quasiparticles1–4 that support non-local storage of
quantum information and non-abelian quantum opera-
tions5–9. They are predicted to appear as topologically
protected boundary states in several condensed mat-
ter systems, such as on p-wave superconducting wires7,
which can be realized by proximity induced supercon-
ducting strong spin-orbit coupled nanowires in mag-
netic fields10–18, ferromagnetic atomic chains on a super-
conductor19, quantum spin Hall insulator (QSHI) - su-
perconductor (SC) - ferrormagnet (FM) heterostructure
junctions20 and at crystalline defects in two dimensional
topological superconductors21,22. A highlighting feature
is the fermion parity switch induced in such Majorana
pairs by a phase slip or the encircling of a vortex between
them. In this Letter, we explore the “back-reaction” of
such a switch on the vortex and show that a unique fea-
ture emerges, namely, the internal states of the vortex
itself undergo a change in parity.

More precisely, Majorana fermions are described by
hermitian operators γi that satisfy the Clifford relation
{γi, γj} = γiγj + γjγi = 2δij . A pair of MBS encodes a
two-level system |0〉 and |1〉 = c†|0〉, for c = (γ1 + iγ2)/2
the Dirac fermion operator generated by the MBS pair.
In a superconducting medium, an electronic quasiparti-
cle acquires a −1 quantum phase when orbiting around
a quantum vortex of magnetic flux φ0/2 = hc/2e. As a
Majorana operator is a linear combination of electronic
operators, a MBS also picks up a minus sign when a
well separated flux vortex moves adiabatically around it.
A paradox now arises from the non-local fractionaliza-
tion of the electronic degree of freedom into a MBS pair.
If the flux vortex only encircles one MBS, say γ2, the
Dirac fermion operator is conjugated, c = (γ1 + iγ2)/2↔
c† = (γ1 − iγ2)/2, and the two-level system flips |0〉 ↔
|1〉. Alternatively, the fermion parity operator, given by
(−1)F = iγ1γ2, changes sign when γ2 → −γ2. If the
pair of MBS and the quantum vortex are well isolated
from all other low energy modes, their total fermion par-
ity (−1)F+Fvortex cannot change as tunneling of an elec-
tronic quasiparticle is thermodynamically suppressed by
the excitation energy gap. The switch of fermion parity

in the two-level system must therefore be compensated
by a fermionic excitation at the quantum flux vortex.
This manifests as a topologically protected level crossing
among the Caroli-de Gennes-Matricon vortex states23.
We refer to this vortex evolution as a fermion parity flip.
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FIG. 1. Numerical results on a 32 × 32 periodic lattice. A
single level-crossing as a vortex orbits (a) the superconduct-
ing QSH-NI-FM interface eq.(3), and (b) the SC trench in
a Chern insulator eq.(7). (c) and (d) respectively show the
wavefunction magnitudes of the zero energy MBS pair and
the vortex state at the crossing for (b).

It is important to note that in contrast, topological
phases that support Ising anyons as quantum excita-
tions – such as the Moore-Read fractional quantum Hall
state24 and the spinless p+ip superconductor6,8,25 – can-
not realize vortex parity flips. Each vortex in these sys-
tems hosts a single MBS and does not associate a local
fermion parity. Or in more sophisticated language the
addition of a fermion ψ to an Ising anyon σ does not
change its anyon type, i.e. ψ × σ = σ. Thus, there is no
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measurable change in fermion parity. While an even vor-
tex with even number of Majorana’s carries well-defined
fermion parity (−1)Fvortex = inγ1 . . . γ2n, it does not flip
when the vortex orbits an Ising anyon as each vortex
Majorana mode γi changes sign under the cycle. Vortex
fermion parity flips are therefore unique in systems where
MBS bind not to vortices but to semiclassical defects.

Before we proceed, we would like to emphasize the non-
trivial nature of this result by drawing the distinction
from the level crossing in a 1D weak link between p-wave
wires7. In the 1D case, the level-crossing occurs at the
two Majorana zero modes at the weak link. It is not
at all obvious, a priori, that similar parity flip behavior
could be supported by 2D vortices, which do not neces-
sarily carry low energy modes (see fig 1(a)) and are now
spatially separated from the defect bound MBS.

In what follows, we first trace the conceptual origin
of vortex fermion parity flip to the fermion parity pump
in one-dimensional (1D) p-wave superconductors7,26,27,
which in turn is the superconducting analog of the Thou-
less charge pump28. Having established the parity flip
argument in 1D and the associated energy level crossing,
we explore a range of instances for vortex parity flip in
two dimensions (2D), each recently proposed as an excit-
ing means of nucleating Majorana bound states.

As an explicit 1D example, the p-superconducting Ki-
taev wire represented by the lattice Hamiltonian7

H − µN =
∑
r

tc†rcr+1 − µc†rcr + ∆c†rc
†
r+1 + h.c. (1)

is topological and carries zero energy boundary MBS
when the electron hopping strength |t| is bigger than the
chemical potential |µ|. The low energy states of a su-
perconducting ring with two weak links, one at r = 0
and the other at r = L/2, are labeled by the two local
fermion parities (−1)F0 and (−1)FL/2 . When the phase of
the pairing ∆ = |∆|eiϕ winds adiabatically by 2π along a
segment, say [0, L/2], there is a level crossing at each of
the links. This drives the vortex to an excited state after
a cycle with an extra fermion, which is pumped across
the bulk although there is a finite bulk pairing gap.
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FIG. 2. Level crossing of a proximity induced superconduct-
ing nanowire when a hc/2e flux vortex passes across.

Towards generalizing the fermion parity pump argu-
ment to higher dimension, considering passing a quantum
flux vortex across a proximity induced superconducting
nanowire described by Eq.(1). The vortex brings spatial

variation to the pairing phase ∆r = |∆|eiϕr , where ϕr
is the polar angle of site r from the vortex core. Fig-
ure 2 shows the level crossing of a 20-site system for
t = |∆| = 2µ. When the flux vortex crosses the nanowire,
a Bogoliubov - de Gennes (BdG) state on the nanowire is
brought down to zero energy with a wavefunction local-
ized at the point where the vortex intersects the wire. At
the same time the fermion parity of the MBS pair flips.
This mimics the fermion parity pump because the pairing
phase winds by 2π within the nanowire segment enclosed
by the vortex trajectory. After a cycle the bulk nanowire
is left with a fermionic excitation, which compensates for
the parity flip of the MBS pair.
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FIG. 3. (a) Spatial configuration of the d vector around a
half-quantum vortex (HQV) of a p + ip SC. (b) Zero energy
Majorana modes of a half-quantum vortex (HQV) and a full
quantum vortex (FQV).

Our first proposed 2D generalization of these argu-
ments is in the context of the spin-triplet chiral super-
conductor having px + ipy pairing29–37 celebrated for its
prospects for supporting non-Abelian vortex Majorana
modes6,8. Assuming two spin degrees of freedom s =↑, ↓,
a half quantum vortex (HQV)38–41 in such a system hosts
a zero energy Majorana bound state, γH , at its core.

The pairing ∆ss′c
†
sc
†
s′ associated with such a vortex can

be described by ∆ ∼ |∆|eiϕ/2{∂x− i∂y, (σ ·d)σy}eiϕ/232,
where the Pauli-matrices σ act on spin degree of freedom.
The phase of the order parameter, ϕ winds by π around
the vortex and so does d, the direction of triplet pairing
(see figure 3(a)). The π-winding of the d vector can be
generated by the transformation ∆ → e−iθσz/4∆eiθσz/4,
where θ is the polar angle about the HQV. Together with
the eiθ/4 phase from the hc/4e flux, a fermion circling
the vortex picks up a minus sign for s =↑ or a trivial
phase for s =↓. Thus the zero energy Majorana mode
γH occupies only the spin-up sector. Note that here the
HQV plays the role of a semiclassical defect in a spin-
ful p + ip superconductor. Unlike a full vortex, it re-
quires rigorous external stabilization41 and cannot freely
move around. Furthermore it hosts a MBS and does
not associate a local fermion parity. Of interest here,
the full quantum vortex (FQV), whose order parameter
winds by 2π while the d-vector shows no winding, con-
tains a spectrum of bound states. Ideally, each of the
spin species s =↑, ↓ hosts a zero energy Majorana γsF , in
contrast to the HQV, where effectively the single Majo-
rana state is attributed to one of the spin species. Unlike
in the HQV, the degenerate FQV Majorana modes are
fragile towards perturbations and typically hybridize by
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the effective Hamiltonian H = λ(−1)F into a level-split
±λ energy pair with the two members characterized by

different parities (−1)F = iγ↑F γ
↓
F . Here, we specifically

consider the energy splitting, λ, that arises due to a Zee-
man field, B. In Ref.42, which proposed measuring non-
Abelian statistics via the Aharonov-Casher effect, it was
shown that λ = µB · d, where µ is the Bohr magne-
ton. For the case where the d vector lies in-plane, in the
presence of a HQV, the tunnel splitting takes the form
µ|d|(Bx cos(θ/2) + By sin(θ/2)). As the FQV encircles
the HQV as θ goes from 0 to 2π, the splitting changes in
magnitude and sign. There is exactly one energy crossing
when tan(θ/2) = −Bx/By and is protected as the FQV
ground state flips fermion parity. This parity flip can

be qualitatively understood by seeing both γH and γ↑F
switch signs after a cycle while γ↓F , which lives on a sepa-
rate spin sector, is unaffected by the process. As a result

the Dirac operator c = (γ↓F +iγ↑F )/2 associated to the low

energy FQV modes is conjugated to c† = (γ↓F − iγ
↑
F )/2.

For a similar reason, fermion parity flip occurs in
a (p + ip) ↑ ×(p − ip) ↓ topological superconductor
(TSC). The TSC belongs to class DIII as per the Altland-
Zirnbauer classification43 and its topology is protected by
time reversal symmetry44,45. Upon spin-orbit coupling,

the two spin-degenerate MBS γ↑F , γ
↓
F at a FQV split in

energy due to the time reversal breaking magnetic flux.
When the FQV circles around a HQV hosting a single
MBS in one of the spin sector, there is one (or in general
an odd number of) level crossing among the vortex states
in the FQV.

Fermion parity flips have a general topological origin.
Their presence is guaranteed by the change of sign of a
single (or in general odd number of) MBS. In 2D, the
BdG Hamiltonian H(k, θ, t) that describes the bulk su-
perconducting medium around the MBS varies adiabati-
cally by the polar angle θ centered at the MBS as a func-
tion of the adiabatic/temporal parameter t. This class D
adiabatic cycle has a non-trivial Z2 topological index ac-
cording to the classification of topological defect27. The
BdG Hamiltonian is topologically equivalent to a massive
Dirac model

H(k, θ, t) = kxΓx + kyΓy +mΠ(θ, t) +O(k2) (2)

where Γx,Γy,Π(θ, t) are mutually anticommuting matri-
ces and Γ2

x = Γ2
y = 1. The mass parameter Π lives in the

classifying space BO = O(2n)
O(n)×O(n) ×Z, where O(n) is the

orthogonal group and n is related to the number of bands
in the system46. The adiabatic evolution defines a map
(θ, t)→ Π(θ, t) homotopically classified by π2(BO) = Z2,
whose non-zero element characterizes a non-trivial wind-
ing and topologically protects the fermion parity flip.

The model (2) having a slowly varying mass term uni-
fies 2D fermion parity flip scenarios in different systems47,
two more of which we now present. The first is a prox-
imity induced superconducting (SC) interface between a
quantum spin Hall insulator (QSH)48–51 and a trivial nor-
mal insulator (NI). The presence of protected zero energy

MBS20 requires time reversal (TR) breaking and can be
facilitated by coating an (anti)ferromagnet (FM) along
the interface (see figure 1(a)). We take an 8-band square
lattice model

H(r, t) = HQSH-NI(r)⊗ τz
+ ∆x(r, t)τx + ∆y(r, t)τy + h(r)µy (3)

HQSH-NI(r) = t(sin kxσx + sin kyσy)µx

+ [m(r) + ε(2− cos kx − cos ky)]µz (4)

where σ, µ, and τ act on spin, orbital, and Nambu degrees
of freedom, respectively. The Nambu basis is chosen to

be (c↑,µ, c↓,µ, c
†
↓,µ,−c

†
↑,µ) so that (3) has a particle-hole

symmetry Ξ = σyτyK, for K the complex conjugation
operator. Eq.(4) describes the QSH-NI interface where
the mass gap m(r) changes sign. We assume strong SC
proximity so that the induced pairing order ∆ = ∆x+i∆y

is non-vanishing throughout the system. The antiferro-
magnet couples strongly to a strip neighborhood of the
interface (see figure 1) where the FM order |h(r)| out-
weights the pairing |∆| but vanishes elsewhere.

The QSH-NI interface hosts a gapless 1D helical mode
with opposite spins counter-propagating electrons. The
helical mode is unstable to TR or charge conservation
breaking perturbations. Its removal by magnetic field
was seen in the earliest experiment of QSHI50 and an-
tiferromagnetic (FM) gapped edge was achieved in a
graphene QSH state52. Moreover, induced SC in QSH
edge has been observed in HgCdTe quantum wells53.

FM and SC are competing orders along the interface
and a FM-SC domain wall – where |h|− |∆| changes sign
– bounds a protected zero energy MBS. A pair of MBS
are therefore located at the ends of the ferromagnet in
figure 1(a). The superconducting QSH-NI interface – ex-
cept being TR symmetric and can only be realized holo-
graphically as the edge of a 2D system – can be treated as
a Kitaev p-wave wire and thus carries protected bound-
ary MBS. When a hc/2e flux vortex passes across the
superconducting QSH-NI interface, it is akin to traveling
across a Kitaev p-SC where there is a single protected
level-crossing among the vortex states. This signals a
vortex parity flip as the vortex is excited with one extra
fermion after a cycle.

We have numerically verified the vortex parity flip phe-
nomenon via its signature level crossing by putting the
model (3) on a periodic 32 × 32 square lattice (see fig-
ure 1(a)). The QSH-NI interface is located along the
diagonal line and the four sides, which are sandwiched
between the upper and lower triangular regions with op-
posite insulating mass m. We choose the hopping t = m,
a uniform pairing strength |∆| = 0.5m and the anti-
ferrormagnetic coupling h = 0.8m on a strip over half
of the QSH-NI interface. To avoid monopole effects54,
we arrange a vortex and an anti-vortex with opposite
flux, depicted by ⊗ and � in figure 1(a). The vortices
bring spatial and temporal variation to the SC pairing
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∆(r, t) = |∆|eiϕ(r,t), for

eiϕ(r,t) =
(z − w1(t))(z − w2)

|(z − w1(t))(z − w2)|
(5)

where z = x + iy is the complex coordinates for lattice
point r = (x, y), and wl = xl + iyl are complex positions
for the two vortex cores for l = 1, 2. The temporal de-
pendence of (5) comes from the circular motion of the
first vortex as it orbits around a MBS when t goes from
0 to 2π. The second vortex is kept stationary. The cor-
responding matrices in (2) in this system are

Γx = σxµxτz; Γy = σyµxτz;

Π(θ(t)) = mµzτz + ∆xτx + ∆yτy + hµy (6)

Here, ∆ = ∆x+i∆y = |∆|eiϕ is determined by (5) where

w1(t) = |w1|eiθ(t). Figure 1(a) shows a level-crossing of
vortex states and confirms the fermion parity flip. At
the crossing, a unit of fermion is pumped between the
vortex and the MBS pair. Unlike the p-wave wire case
(see figure 2) where the fermionic excitation is confined
along the wire, here the excitation stays localized at the
vortex as it moves away from the QSHI-NI interface until
it is brought to the bulk bands and hybridizes with the
rest of the system.

As another instance, vortex parity flip can also occur
on proximity induced superconducting Chern insulators
(CI)55–57 shown in figure 1(b). It can be described by
the 4-band BdG Hamitlonian on a square lattice

H =t(sin kxσx + sin kyσy)τz (7)

+ [m+ ε(2− cos kx − cos ky)]σz + ∆xτx + ∆yτy

where σ, τ again act on spin and Nambu degrees of free-
dom similar to the previous case (3). Without the SC
pairing, (7) describes an insulator with Chern number
1 when −2ε < m < 0. The σz term is a TR breaking
Zeeman coupling that competes with the induced s-wave
pairing. We assume the pairing |∆| is weaker than the
insulating mass |m| so that the 2D system is not in the
chiral p+ ip phase58 and a full quantum vortex does not
hold a zero energy MBS.

The consequence of the bulk Chern invariant is that the
CI carries a gapless chiral edge mode that propagates in a
single direction55,56. When two uncoupled CI’s with the
same chirality are juxtaposed side by side, the interface
bounds a pair of counter-propagating electron channels
with opposite spins ψR↑, ψL↓. This gapless helical inter-
face can be gapped out by TR breaking backscattering

mψ†R↑ψL↓ or U(1) breaking pairing ∆ψ†R↑ψ
†
L↓ between

the two boundaries. These orders compete and a domain
wall, where |m|−|∆| changes sign, traps a protected zero
energy MBS. This can be realized by inserting a single-
layer thick strongly superconducting trench in the 2D
system, where |∆trench| > |m| (see figure 1(b)). We again
identify the matrices corresponding to (2) by

Γx = σxτz; Γy = σyτz; Π = mσz + ∆xτx + ∆yτy (8)

As with the superconducting QSH-NI interface consid-
ered above, the SC trench in a CI behaves like the 1D
Kitaev p-wire and flips the fermion parity of a passing
quantum vortex. We numerically verify this by putting
the SC-CI model (7) on a 32× 32 periodic lattice. Simi-
lar to the previous case, we arrange a vortex anti-vortex
pair and consider a circular vortex trajectory around the
end of the SC trench where a MBS sits. The pairing
phase ∆(r, t) = ∆x + i∆y = |∆|eiϕ(r,t) is also given by
(5). Figure 1(b) shows the adiabatic evolution of ener-
gies throughout the cycle. States between ±|m−∆| are
vortex states and are localized at the two vortex cores.
There is a single level-crossing signifying the parity flip of
the vortex as it travels across the SC trench. Figure 1(c)
and (d) shows the localized wavefunctions of the zero en-
ergy MBS pair and the vortex state near the crossing
respectively. The SC-CI setup is even more prefarable
than the previous cases in demonstrating the vortex par-
ity flip. Unlike the SC QSH-NI interface, the vortex exci-
tation here stays localized at the vortex core throughout
the evolution and never hybridizes with the bulk. This
means that in the absence of accidental fermion poison-
ing, the vortex would carry a different electric charge
after a complete cycle.

Finally, we discuss how vortex parity flip has an analog
in the recent context of twist defects in topological phases
with anyonic symmetries25,59–63. This new interpretation
is immensely powerful and applies even to fractional MBS
(or parafermions)64–67. Two-dimensional s-wave super-
conductors are fermion parity protected quasi-topological
phases68,69. They have the same topological order70 as
a Z2 gauge theory71–73. A quantum vortex of φ = hc/2e
takes the role of the Z2 flux m, and an excited vortex
with an addition BdG fermion ψ realizes the Z2 charge
e = m × ψ. These quasiparticles appear in the prox-
imity induced SC QSH-NI interface, and a MBS at the
SC-QSH-FM heterostructure serves as a dislocation twist
defect25,59 that switches e↔m when they orbits it.

SC-CI hybrids on the other hand have a different topo-
logical order. The anyonic content is identical to a U(1)2,
or equivalently SO(2)1, theory63. A hc/2e vortex, de-
noted by m, supported by the SC traps a fractional
charge e∗ = e/2 (modulo 2e) on the CI by the Laugh-
lin argument74 and carries semionic statistics. After a
cycle around a MBS at the end of the SC trench, the
vortex m is excited with an additional fermion and has
different charge −e∗ (mod 2e), and becomes the antipar-
ticle m = m × ψ. A MBS at a SC-CI heterostructure
can thus be regarded as a twist defect that conjugates
orbiting quasiparticles. We emphasize that despite the
difference in their topological orders, as shown above,
the SC-QSH and the SC-CI heterostructures share the
same vortex parity flip feature. For a discussion of the
topological orders in the SC-CI and SC QSH-NI please
refer to the appendix.

In this Letter, we have shown that a highlighting fea-
ture of Majorana defect bound states in two-dimensional
superconductors, namely the gaining of a phase factor
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of π upon being orbited by a vortex, is necessarily ac-
companied by a fermion parity switch in the vortex it-
self. We have presented this scenario in several possible
geometries relevant to recent theoretical and experimen-
tal explorations of topological systems. In principle, the
parity flip would be detectable through charge sensitive
measurements and would constitute not only a signature
of MBS physics but also a unique parity process in and
of itself.
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Appendix A

In this appendix we expand upon the comments in the
main text about fermion parity protected quasi topologi-
cal phases realized by the proximity induced SC QSH-NI
phase and the SC CI phase.

The first indicator of the differing topological phases
is the distinct edge state structure in the two cases.
The QSH/NI interface has two counter propagating edge
states and has chiral central charge 0 as opposed to the
CI which a single edge state and thus has chiral central
charge 1.

In (2+1) dimensions the topological field theory takes
the form of a Chern Simons theory in the bulk with La-
grangian density

L =
1

4π
KIJε

µνλaIµ∂νaJλ (A1)

The indices I, J run over the flavors of the gauge fields.
KIJ is an integer valued symmetric matrix.75. The edge
of the bulk theory A1 is (1+1)d theory

Ledge =
1

4π
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ (A2)

The velocity matrix VIJ is a positive definite non univer-
sal matrix. φIµ are the bosonic edge degrees of freedom.
The chiral central charge that is responsible for thermal
transport of the edge is given by the signature of the K
matrix, i.e. the difference between the number of positive
and negative eigenvalues.

1. Topological order in the proximity induced SC
QSH/NI

Let us analyze the s wave superconductor first.68,69.
There are four types of quasiparticles 1, e,m, ψ. 1 rep-

resents the vacuum, which consists of the condensate of
Cooper pairs. ψ corresponds to fermionic BdG excita-
tions. The bosonic Z2-flux m is identified with the hc/2e
quantum flux vortex. It brings a -1 braiding phase to the
quantum state of an orbiting fermion. The Z2-charge e
is identified with an excited quantum flux vortex with an
addition fermion e = m × ψ. It evolves from m by a
level-crossing and a switch in fermion parity. It is also
bosonic because the the minus sign from a 2π twist of ψ
cancels that of the braiding phase between m and ψ. A
-1 braiding phase between e and m comes from the ad-
ditional fermion that braids non-trivially around a flux.
This is topologically identical to the Kitaev’s toric code
model73. The K matrix corresponding to equation A1 is
2σx. The quasiparticles 1, e,m, ψ are represented by two
dimensional vectors (0, 0), (1, 0), (0, 1), (1, 1). The parity
flip of the topological theory is realized by the matrix
M = σx that changes quasiparticle u → Mu. This ex-
changes e and m while leaving the fermion ψ and the
K matrix invariant and is an anyonic symmetry of the
theory63 corresponding to the twist defect outlined in the
main text. The K matrix 2σx has a vanishing signature
and therefore the edge of the 2d system is non-chiral,
c− = 0.

2. Topological order in the proximity induced SC
CI

A fundamental fermionic excitation ψ of a Chern in-
sulator lives at a hc/e flux, which by the Laughlin argu-
ment74 carries a unit of electric charge. The presence of
an underlying 2D superconductor adds a fractional quasi-
particle, the quantum vortex m with flux hc/2e, which
carries a half charge e/2. As a pair of vortex is fermionic,
m2 = m ×m = ψ, this requires the statistical angle of
the hc/2e vortex to be δm = eiπ/4. Since m4 = ψ × ψ
gives the Cooper pair and condenses to the vacuum, a
minimal theory including an electron and a hc/2e flux
contains the four quasiparticles 1,m,m2 ≡ ψ,m ≡ m3.
The topological order of the CI is captured by the single
component K matrix K = 4 with the m quasiparticle to
be 1. Here the anyonic symmetry is realized by M = −1
which exchanges m↔m while keeping ψ and K invari-
ant. Also, unlike the non-chiral SC QSH case, here the K
matrix K = 4 has a positive signature and therefore the
edge of the system has a non-trivial chiral central charge
c− = 1. This agrees with that of the chiral edge mode of
a Chern insulator.
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