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We develop an approach based on edge theories to calculate the entanglement entropy and related quantities
in (2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing meth-
ods using replica trick and Witten’s method of surgery, and applies to a generic spatial manifold of genus g,
which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be also
straightforwardly studied within our framework. By considering a generic superposition of states with differ-
ent Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy, the
topological data of Chern-Simons theories, e.g., the R-symbols, monodromy and topological spins of quasipar-
ticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as the
mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity of
two adjacent non-contractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian
topological orders.
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I. INTRODUCTION

Quantum entanglement plays a central role in character-
izing and distinguishing various phases realized in quantum
many-body systems.1–4 For example, quantum entanglement
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as measured by the bipartite entanglement entropy may be
used to distinguish different topological phases, and to char-
acterize properties of critical points.1–6 Quantum entangle-
ment has also been extensively studied in the context of quan-
tum gravity, in particular in the context of the AdS/CFT
correspondence.7,8

In this work, we will mainly focus on the quantum
entanglement between spatial regions in topological quan-
tum field theory (TQFTs) in (2+1) dimensions. TQFTs
were extensively studied after Witten’s seminal work on the
Chern-Simons gauge theory and its relation to the Jones
polynomial.9,10 In particular, in condensed matter physics,
TQFTs are widely used to describe emergent topological
phases of matter in many-body systems, such as the fractional
quantum Hall states,11–13 gapped quantum spin liquids,14 a
px+ ipy superconductor,15,16 and quantum dimer models.17,18

Quantum entanglement has been verified to be very useful in
characterizing and extracting the topological data of TQFTs.
For example, it was found that the quantum entanglement can
be used to extract the modular S and T matrices, which en-
code the properties of quasi-particles in topological phases.19

There are different measures of quantum entanglement
or correlations, which have their own merits depending on
the case under study. Let us start by listing entangle-
ment/correlation measures of our interest in this work.

A. Different entanglement/correlation measures

First, when the total system is bipartitioned into two sub-
systems (regions) A and B, the von Neumann entropy of the
region A is defined by

SvN
A = −TrρA ln ρA, (1.1)

where ρA = TrBρ is the reduced density matrix of the sub-
systemA. Note that when ρ is a pure state, ρ = |Ψ〉〈Ψ| where
|Ψ〉 is, e.g., the ground state of the total system, SvN

A = SvN
B .

An alternative measure of bipartite entanglement is the
Renyi entropy

S
(n)
A =

1

1− n
ln TrρnA, (1.2)

which also satisfies S(n)
A = S

(n)
B when ρ is a pure state.

The Renyi entropy can provide more information than the von
Neumann entropy, in that, by knowing the Renyi entropy for
arbitrary n, we reconstruct the entanglement spectrum, i.e.,
all the eigenvalues of ρA. The von Neumann entropy and the
Renyi entropy are related by SvN

A = limn→1 S
(n)
A , or

SvN
A = − lim

n→1
∂nTrρnA. (1.3)

For a mixed state, it is found that the quantum and classical
correlations cannot be explicitly separated in these entangle-
ment measures. As an example, let us consider two subsys-
tems A1 and A2 which are embedded in a larger system. A1

and A2 are not necessarily complementary to each other, and
therefore ρA1∪A2

may correspond to a mixed state. In this

case, a useful quantity that can be constructed based on the
entanglement entropy is the (Renyi) mutual information

I
(n)
A1A2

= S
(n)
A1

+ S
(n)
A2
− S(n)

A1∪A2
, (1.4)

which by definition is symmetric in A1 and A2. By taking the
n → 1 limit, we define the (von Neumann) mutual informa-
tion:

IA1A2 = lim
n→1

I
(n)
A1A2

. (1.5)

However, it is found that the mutual information does not have
all the proper features to be a quantum entanglement measure.
(See, e.g., Ref. 20, where it is shown that the mutual informa-
tion is finite for most of the separable mixed states.) It will
mix the classical and quantum information together, and can
only be considered as a correlation measure.

A yet another quantity, entanglement negativity has been
recently calculated in different many-body systems, such
as conformal field theories and exactly solvable lattice
models.21–24 The entanglement negativity turned out to be a
computable and useful entanglement measure.25,26 To be con-
crete, given a reduced density matrix ρA1A2

which describes a
mixed state in the Hilbert spaceHA1

⊗HA2
, we take a partial

transposition with respect to the degrees of freedom in region
A2 as follows

〈e(1)
i e

(2)
j |ρ

T2

A1∪A2
|e(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA1∪A2

|e(1)
k e

(2)
j 〉,

(1.6)
where T2 means the partial transposition on A2, |e(1)

i 〉 and
|e(2)
j 〉 are arbitrary bases in HA1 and HA2 respectively. Then

the entanglement negativity are defined as

EA1A2 = ln Tr
∣∣∣ρT2

A1∪A2

∣∣∣ . (1.7)

The entanglement negativity in quantum filed theories can be
computed by using the replica method as21,22

EA1A2
= lim
ne→1

ln Tr
(
ρT2

A1∪A2

)ne
. (1.8)

The trace of the partial transposition of the density matrix on

the replica space Tr
(
ρT2

A1∪A2

)n
has different forms depend-

ing on whether n is even or odd. Here we consider the ana-
lytic continuation of the even sequence at ne → 1. The for-
mula above has been proved to be of great use in the study of
the entanglement negativity in quantum field theories for both
equilibrium cases21,22 and non-equilibrium cases.27–30

B. Different entanglement/correlation measures for a
topological quantum field theory

These different entanglement/correlation measures have
been calculated in TQFTs in (2+1) dimensions. The topo-
logical entanglement entropy (TEE) was first introduced by
Kitaev-Preskill and Levin-Wen.1,2 First, for topologically or-
dered systems in two spatial dimensions, it was shown that the
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von Neumann entanglement entropy for a simply connected
region A behaves, in the limit of zero correlation, as

SvN
A = αL− γ, (1.9)

where α is a nonuniversal coefficient, L is the length of the
smooth boundary of A, and −γ is a universal negative con-
stant which is named the ‘topological entanglement entropy’.
For a general TQFT, γ is given by

γ = lnD = ln

√∑
i

d2
i , (1.10)

where di is the quantum dimension of quasiparticle i, and D
is the total quantum dimension (see Appendix).

Dong et al. extended the Kitaev-Preskill results to more
general manifolds like torus and a sphere with quasiparticles
by using the replica trick and surgery method.31 They found
that the entanglement entropy depends on the universal data of
a TQFT, e.g., the quantum dimensions and the fusion rules. In
certain cases such as the torus geometry, the entanglement en-
tropy also depends on the choice of ground state. Later, Zhang
et al. studied the entanglement entropy of topological phases
on a torus19. By tuning the ground state and introducing dif-
ferent entanglement cuts, they found that the modular S and
T matrices can be extracted from the entanglement entropy.

Besides the entanglement entropy, other entangle-
ment/correlation measures such as the entanglement negativ-
ity and mutual information which are powerful in the case of
mixed states, turn out to be very useful in characterizing the
properties of a TQFT. Recently, the entanglement negativity
was used to study the topological ordered systems such
as the toric code model.23,24 It was found that there is a
universal topological entanglement between two adjacent
non-contractible regions on a torus. On the other hand, if
the two regions are disjoint, independent of whether they
are contractible or not, there is no universal topological
entanglement between them. It should be noted that the
above results are obtained based on an exactly solvable lattice
model. It is hence desirable to have a more understanding
of these results by studying general TQFTs. The difficulty
may be that the operation of ‘partial transposition’, which is
used in the definition of the entanglement negativity [see Eq.
(1.6)], is difficult to realize in practice when one considers a
general three dimensional manifold where a TQFT lives.

Most recently, Ref. 32 used mutual information to study
the topological ordered phases in (2+1) dimensions, as well
as higher dimensions where topological orders are identified
as condensates of membranes. Therein, the mutual informa-
tion can be utilized to define the topological uncertainty prin-
ciple, which reflects the non-commuting property of non-local
order parameters in topological ordered phases32. Compared
to the entanglement entropy of topological ordered phases, it
is noted that the mutual information has the merit of being
ultraviolet finite for two disjoint regions.

C. Our motivations

In this work, our motivations to revisit the topological en-
tanglement entropy and other entanglement/correlation mea-
sures of a TQFT are mainly as follows.

1. In the calculation of the topological entanglement en-
tropy of a Chern-Simons theory on a general manifold,
one needs to evaluate the Chern-Simons path integral
on a 3-manifold. In particular, when using the replica
trick, one needs to consider a n-sheeted Riemann sur-
face spacetime and glue them together, which may be
very complicated. In this work, we hope to develop an
alternative edge theory approach, which may simplify
the calculation. It should be noted that the edge the-
ory approach to the topological entanglement entropy
of a TQFT on a simple manifold such as a sphere, or
a cylinder with definite topological flux, has been stud-
ied in several works1,33–36. However, as far as we know,
there are still many open issues to be understood. For
example, how do we use the edge theory approach to
study the topological entanglement entropy of a TQFT
on a general manifold of genus g? How is the effect of
fusion and braiding of Wilson lines/quasiparticles re-
flected in the edge theory approach? How do we extract
topological data of the underlying theory from the edge
theory approach?

2. Till now, some other entanglement measures such as
the entanglement negativity of a TQFT has not yet
been studied with the field theory approach. Although
some results have been obtained based on the lattice
models23,24, it is still desirable to understand the gen-
eral structure of the entanglement negativity for a gen-
eral TQFT. Can we use the edge theory approach to ful-
fill this aim? Moreover, in Refs. 23 and 24, the lat-
tice model under study is in an Abelian topological or-
dered phase. Then it is natural to ask what is the result
for a non-Abelian topological ordered phase? Is there
any qualitative difference between Abelian and non-
Abelian theories? We hope to answer these questions
in this work.

D. Summary of main results

Using the edge theory approach, we found a systematic way
to study the topological entanglement entropy, mutual infor-
mation and the entanglement negativity for a (2+1) dimen-
sional Chern-Simons theory on a general manifold. The ef-
fect of braiding and fusion of Wilson lines can be straightfor-
wardly incorporated in the calculations. In particular, we have
obtained the following results.

1. On topological entanglement entropy. By using the
edge theory approach, we calculated the entanglement
entropy for given spatial regions in Chern-Simons the-
ories defined on a general manifold. Our results agree
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with the path integral calculations for all the cases con-
sidered in Ref. 31. A technical advantage of our ap-
proach, as compared with the path integral (surgery)
calculations, is that the edge theory approach greatly
simplify the calculation in that we do not have to con-
sider complicated 3-manifolds which may appear in
the surgery method. The effect of braiding Wilson
lines can be also considered, instead of using skein
relation9,31, by simply introducing the braiding matrix
or R-symbols, which makes the calculation more trans-
parent. We also found that, in the presence of multiple
Wilson lines, By considering a generic superposition
of states, the R-symbols, monodromy and topological
spins of quasiparticles/anyons can be detected in the en-
tanglement entropy, through an interference effect. Fi-
nally, we also applied our edge theory approach to more
general manifolds of g-genus, which may be difficult
to handle in the replica trick due to the complicated 3-
manifolds which may arise as a result of surgery.

2. On topological mutual information and entanglement
negativity. We gave explicit calculations of the topolog-
ical mutual information and the entanglement negativity
in Chern-Simons theories. In particular, to our knowl-
edge, the results on the entanglement negativity in a
Chern-Simons field theory are given for the first time.
Moreover, compared with the previous works on lattice
models, we obtained some new results for two adjacent
non-contractible regions on a torus. In Ref. 23, it was
found that the entanglement negativity in this case is in-
dependent of the choice of ground state. Based on our
field theory result, it was found that the entanglement
negativity is dependent (independent) on the choice of
ground state if the system is in a non-Abelian (Abelian)
topological ordered phase.

Along with these results, we will also point out that, when
using edge theories to calculate entanglement/correlation
measures, the boundary states must be regularized/normalized
properly. In the previous works33,34, the proposed state, which
is a superposition of different Ishibshi states, is regularized
as a whole (see next section for details). We found that this
regularization scheme cannot recover the correct topological
entanglement entropy for a Chern-Simons theory on a gen-
eral manifold. In this work, we regularized each Ishibashi
state separately. Then a general quantum state can be ex-
pressed as a superposition of different regularized Ishibashi
states. With this new regularized state, we can obtain the cor-
rect topological entanglement entropy as well as other entan-
glement/correlation measures for a Chern-Simons theory.

The rest of the paper is organized as follows. In Sec. II, we
start by introducing a new regularizd state, based on which we
can calculate the spatial topological entanglement entropy in a
Chern-Simons field theory. Subsequently in Sec. III, we apply
our method to the calculation of the Renyi and von Neumann
entanglement entropy for a Chern-Simons theory defined on
various kinds of manifolds. The effects of braiding and mon-
odromy of quasiparticles are also studied in this section. In
Sec. IV, we study the spatial mutual information in Chern-

Simons theories. We consider different tripartitions of a torus,
and calculate the mutual information accordingly. In Sec. V,
we show how to calculate the left-right entanglement negativ-
ity for a general regularized state. Then we apply this method
to the calculation of the entanglement negativity on a torus
with different tripartitions. Finally,we conclude our work in
Sec. VI. We also include several appendices containing a brief
review of modular tensor categories (Appendix A), the topo-
logical data of SU(2)k Chern-Simons theories, and an alter-
native method of calculating the entanglement negativity for
several cases (Appendix B).

II. LEFT-RIGHT ENTANGLEMENT ENTROPY

A. Regularized state at the interface

In this section, we introduce basics of boundary states in
(1+1) dimensional conformal field theories. These boundary
states will be used later to describe the reduced density ma-
trices of (2+1) dimensional topologically order phases, but in
this section, we study boundary states and quantum entangle-
ment in isolation. In particular, we will discuss how we need
to regularize these boundary states properly.

In the study of quantum entanglement, the regularized
boundary state was first introduced in the quantum quench
problem37,38. Later, this concept was used to study the spa-
tial entanglement entropy of a topological ordered system33.
Most recently, the similar idea was used to study the entangle-
ment entropy between the left and right moving modes of the
regularized boundary state34. To be concrete, in Ref. 33 and
34, the regularized boundary state has the expression

|B〉 =
e−εH√
NB
|B〉, (2.1)

where e−εH is a regularization factor, H is the Hamiltonian,
NB is a normalization factor, and the conformal boundary
state |B〉 can be expressed as a linear combination of Ishibashi
states |ha〉〉, which are solutions to the conformal boundary
condition

Ln|b〉 = L−n|b〉, ∀n ∈ Z. (2.2)

a in |ha〉〉 is used to label the primary field in a CFT, or the
type of quasiparticles in the corresponding TQFT. Ln is the
generator of chiral conformal transformations which is de-
fined through a Laurent expansion of the stress-energy tensor,
T (z) =

∑
n∈Z z

−n−2Ln, and Ln is the generator of anti-
chiral conformal transformations which is defined in a similar
way. Note that the Hilbert space of a CFT can be written in
terms of holomorphic and antiholomorphic sectors, i.e.,

H =
⊕
h,h̄

nh,h̄Vh ⊗ V h̄, (2.3)

where the non-negative integer nh,h̄ denotes the number of
distinct primary fields with conformal weight (h, h̄). For
simplicity, here we only consider the diagonal CFTs with
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nh,h̄ = δh,h̄. Then the Ishibashi state |ha〉〉 which satisfies
Eq. (2.2) can be expressed as a linear combination of states in
Vha ⊗ V h̄a . By using dha(N) to label the dimension of sub-
space for level N of the conformal family, we can denote an
orthonormal basis |ha, N ; j〉 for Vha , and similarly |ha, N ; j〉
for V h̄a , with 1 ≤ j ≤ dha(N). Then the concrete form of
Ishibashi state |ha〉〉 can be written as

|ha〉〉 ≡
∞∑
N=0

dha (N)∑
j=1

|ha, N ; j〉 ⊗ |ha, N ; j〉. (2.4)

For a rational CFT (RCFT), in which there are finite number
of primary fields, the conformal boundary state may be ex-
pressed as

|Bi〉 =
∑
a

ψai |ha〉〉. (2.5)

The concrete form of ψai is related with the modular S-matrix
as follows

ψai =
Sia√
S0a

. (2.6)

In Refs. 33 and 34, the regularized boundary state in Eq.
(2.1) was suggested to study the spatial entanglement entropy
for a topological ordered system in (2+1) dimensions. As
will be studied in detail later, it is found that this state can
not recover the topological entanglement entropy for a Chern-
Simons theory on a general manifold. There are mainly two
reasons as follows:

– For a conformal boundary state defined in Eq. (2.5), the
amplitude ψai is fixed through the modular S matrix. How-
ever, to study the topological entanglement entropy for a
Chern-Simons theory on a general manifold such as a torus,
the ground state can be chosen as an arbitrary superposition of
the minimum entangled states (MESs)19. There is no reason
to fix the coefficient ψai as in Eq. (2.5). This indicates that we
should choose a state that can be in an arbitrary superposition
of Ishibashi states |ha〉〉.

– The regularization factor e−εH√
NB

in Eq. (2.1) acts on the
state in a ‘collective’ way (i.e., the regularization factor is
not defined for each Ishibashi state independently, but for the
whole superposition thereof). This is, however, not the only
way to regularize the state. We may instead regularize each
Ishibashi state separately. This suggests that we may arrange
a regularization factor e

−εH
√
na

to each Ishibashi state |ha〉〉, with
the normalization factor na depending on the primary field a.
As will be shown later, this ‘individual’ way of regularization
can correctly recover the spatial topological entanglement en-
tropy for Chern-Simons theories while the ‘collective’ way of
regularization cannot.

Based on the above analysis, we consider an appropriate
regularized state as follows

|ψ〉 =
∑
a

ψa|ha〉〉 where |ha〉〉 =
e−εH
√
na
|ha〉〉, (2.7)

with na being a normalization factor so that

〈〈ha|hb〉〉 = δab. (2.8)

Note that na depends on the type of primary field (or topo-
logical sector) a. The amplitude ψa in Eq. (2.7) is a complex
number which depends on the choice of ground state of the
Chern-Simons field theory on a general manifold. For the
form of the Hamiltonian H , following Refs. 33 and 34, we
consider

H =
2π

l

(
L0 + L0 −

c

12

)
, (2.9)

where l is the length of the circle where the state |ψ〉 is de-
fined, e.g., the interface between the subsystems A and B in
Fig. 1 (a). c is the central charge of the underlying CFT. The
term proportional to c arises from the conformal transforma-
tion from the plane to the cylinder. It is also instructive to
rewrite the Hamiltonian in Eq. (2.9) as a sum of ‘chiral Hamil-
tonian’ (or left-moving Hamiltonian) and ‘anti-chiral Hamil-
tonian’ (or right-moving Hamiltonian) as H = HL + HR,
where HL = 2π

l

(
L0 − c

24

)
, and HR = 2π

l

(
L0 − c

24

)
.

Now we are ready to calculate the normalization factor na
in |ha〉〉 as follows

〈〈ha′ |ha〉〉

=
1

√
na′
√
na
〈〈ha′ |e−2εH |ha〉〉

=
1

√
na′
√
na
δa′a

∞∑
N=0

dha (N)∑
j=1

e−
8πε
l (ha+N− c

24 )

=:
δa′a
na

χha

(
e−

8πε
l

)
,

(2.10)

where we have used

L0|ha, N ; j〉 = (ha +N)|ha, N ; j〉 (2.11)

and ha = h̄ā. By requiring that 〈〈ha|hb〉〉 = δab, one can
obtain the normalization factor na as

na = χha

(
e−

8πε
l

)
. (2.12)

Note that for different primary fields or topological sectors a,
na are usually different.

For later use, let us introduce the modular transformation
property of the character χ in CFT, i.e.,

χha

(
e−

8πε
l

)
=
∑
a′

Saa′χha′
(
e−

πl
2ε

)
, (2.13)

which follows from applying the Poisson summation for-
mula to the explicit expressions of the character χ in Eq.
(2.10), with Saa′ being the matrix elements of the modular
S matrix39. In RCFTs, S is a finite dimensional unitary ma-
trix indexed by primary fields (or the types of quasiparticles in
TQFTs) {I, a, b, c · · · }, where I = 0 labels the identity oper-
ator. The anti-quasiparticle of a is denoted by ā, which is the
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unique quasiparticle that can fuse with a into I (see appendix
for more details).

To avoid confusions, it is helpful to remind ourselves that
we will use primary fields, quasiparticles, anyons and topo-
logical sectors back and forth when referring to the label a in
|ha〉〉.

In addition, throughout this work, we are interested in the
spatial entanglement on different closed two-manifold M.
Following Ref. 31, we consider each two dimensional spatial
manifold as the boundary of a three-dimensional spacetime
manifold B, i.e.,M = ∂B, so that it is convenient to include
the effect of braiding Wilson lines, etc. (See Ref. 31 for more
details.)

B. Left-right entanglement entropy

We now study the reduced density matrix associated to the
(regularized) boundary states, when we take the partial trace
over the right-moving sector. In particular, we will com-
pute the “left-right” entanglement entropy associated to the
reduced density matrix. This calculation is a necessary ex-
ercise for later sections where we calculate various entangle-
ment/correlation measures in topological quantum liquid.

To see the connection between the left-right entanglement
entropy and the topological entanglement entropy in the sim-
plest setup, let us consider the geometry in Fig. 1 (a) for ex-
ample. Following Refs. 33, one can use the ‘cut and glue’
strategy. By cutting the sphere into two semispheres A and
B, one has a left-moving chiral CFT (with Hamiltonian HL)
and a right-moving antichiral CFT (with Hamiltonian HR)
on the two physical edges of A and B, respectively. In this
case, the left- and right-moving CFTs are the low energy ex-
citations of the subsystems A and B, respectively. Next, by
turning on a relevant inter-edge coupling λHLR between the
two edges, the total Hamiltonian for the coupled edge states is
HL+HR+λHLR. For a small enough λ, the bulk states in the
subsystems A and B are almost not affected. Therefore, the
entanglement between the subsystem A and subsystem B are
reduced to the entanglement between the left and right moving
edge states.

Now let us calculate the left-right entanglement entropy of
the regularized state in Eq. (2.7) explicitly. We start by evalu-
ating the reduced density matrix for the left-moving sector

ρL = TrR (|ψ〉〈ψ|)

= TrR
(∑

a′

∑
a

ψa′(ψa)∗|ha′〉〉〈〈ha|
)

=:
∑
a

|ψa|2ρL,a,

(2.14)

where we have defined

ρL,a = TrR(|ha〉〉〈〈ha|)

=
∑
N,j

1

na
e−

8πε
l (ha+N− c

24 )|ha, N ; j〉〈ha, N ; j|. (2.15)

(The reduced density matrix for the right-moving part will
give the same final result since SL = SR for a bipartite system

in a pure state.) To obtain the von Neumann entropy or Renyi
entropy, it is convenient to first calculate TrL (ρL)

n as follows

TrL (ρL)
n

=
∑
a,N,j

|ψa|2nTrL(ρL,a)n

=
∑
a

|ψa|2n

nna
χha

(
e−

8πnε
l

)
=
∑
a

|ψa|2n

nna

∑
a′

Saa′χha′
(
e−

πl
2nε

)
,

(2.16)

where in the last step we have used the modular transforma-
tion of the character χha . By using the explicit form of na in
Eq. (2.12), TrL (ρL)

n can be further written as

TrL (ρL)
n

=
∑
a

|ψa|2n
∑
a′ Saa′χha′

(
e−

πl
2nε

)
[∑

a′ Saa′χha′
(
e−

πl
2ε

)]n
→ e

πcl
48ε (

1
n−n)

∑
a

|ψa|2n(Sa0)1−n,

where in the second line, we took the thermodynamic limit
l/ε→∞, and noted

lim
l/ε→∞

∑
a′

Saa′χha′
(
e−

πl
2nε

)
= Sa0 × e

πcl
48nε , (2.17)

i.e., only the identity field I , labeled by “0” here, survives the
limit. Then based on the definition in Eqs. (1.2) and (1.3),
one can immediately obtain the Renyi entropy and the von
Neumann entropy as

S
(n)
L =

1

1− n
ln

TrL (ρL)
n

(TrLρL)
n

=
1 + n

n
· πc

48
· l
ε
− lnD +

1

1− n
ln
∑
a

|ψa|2nd1−n
a

− n

1− n
ln
∑
a

|ψa|2,

SvN
L =

πc

24
· l
ε
− lnD +

∑
a |ψa|2 ln da∑

a |ψa|2
−
∑
a |ψa|2 ln |ψa|2∑

a |ψa|2

+ ln
∑
a

|ψa|2, (2.18)

where we have used Sa0 = da/D (see Eq. (A15)). The first
terms in S(n)

L and SvN
L in Eq.(2.18) are ultraviolet divergent

and non-universal, corresponding to the so-called ‘area law’
term in Eq. (1.9). The left terms in Eqs.(2.18) are independent
of the details of the system. They are determined by the topo-
logical property of the system as well as the choice of states,
and therefore are universal.

As a comparison, if one follows the method in Refs. 33 and
34 to regularize the state in a ‘collective’ way [see Eq. (2.1)],
then one gets34

SvN
L =

πc

24
· l
ε

+ ln
∑
a

|ψa|2Sa0 −
∑
a Sa0|ψa|2 ln |ψa|2∑

a Sa0|ψa|2

(2.19)
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which will not recover the correct topological entanglement
entropy for a Chern-Simons field theory on a general man-
ifold. Nevertheless, it is noted that for the specific case
|ψa′ |2 = δaa′ , namely the state under consideration is in a def-
inite topological sector a, there is no difference between the
two methods of regularization. In this case, both Eq. (2.18)
and (2.19) will lead to SvN

L = πc
24 ·

l
ε − lnD + ln da.

In the rest parts of this work, for most cases we have∑
a |ψa|2 = 1, and then the Renyi entropy and the von Neu-

mann entropy for the left moving CFT (or the right moving
CFT) can be further simplified as

S
(n)
L =

1 + n

n
· πc

48
· l
ε
− lnD +

1

1− n
ln
∑
a

|ψa|2nd1−n
a ,

SvN
L =

πc

24
· l
ε
− lnD +

∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2.

(2.20)

Before ending this section, it is worth mentioning that we
will come across in later section the state of the form

|ψ〉 =
⊕
a

ψa|ha〉〉 (2.21)

in the study of multi Wilson lines. Then the reduced density
matrix ρL can be expressed as ρL =

⊕
a |ψa|2ρL,a, with the

same ρL,a defined in Eq. (2.15). It is straightforward to check
that TrL (ρL)

n has the same expression as Eq. (2.16). This
indicates that our results in Eqs. (2.18) and (2.20) still hold
for this case.

III. TOPOLOGICAL ENTANGLEMENT ENTROPY

In this section, by using the edge theory approach, we study
the entanglement entropy associated for a given spatial region
in Chern-Simons theories defined on different kinds of two
spatial manifolds.

A. Sphere

1. Sphere

As shown in Fig. 1 (a), let us consider a Chern-Simons the-
ory which lives on the simplest closed manifold in two spatial
dimensions, i.e., a sphere. We are interested in the entangle-
ment entropy for the subsystem A (B). For simplicity, let us
first assume that there is no quasiparticle on the sphere, and
therefore no Wilson lines thread through the interface b. In
this case, one has |ψa|2 = δa0 for the regularized state in Eq.
(2.7). Then by using the results in Eqs. (2.20), one can imme-
diately obtain

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD,

SvN
A =

πc

24
· l
ε
− lnD. (3.1)

(a)  (b)  

A B

b

A B

b

aa

a

b

a1

a2

aN-1

aN

(c) (d)

A B A B
b b

...

a

b

a1

a2

aN-1

aN

FIG. 1. Various setups discussed in Sec. III A. (a) A S2 is bipartited
into two subsystems A and B, with the interface labeled by b. (b)
A S2 with a quasiparticle a and an anti-quasiparticle ā. A Wilson
line connecting the two quasiparticles threads through the interface
b. The two quasiparticles correspond to two punctures, and therefore
the geometry in (b) is equivalent to a cylinder in topology. (c) A S2

with two pairs of quasiparticles. (d) A S2 with N pairs of quasipar-
ticles.

Based on the equation above, one can find that the topological
entanglement entropy is independent of the Renyi index n,
and only depends on the total quantum dimension D.

The above calculation is based on a S2 with a single inter-
face between A and B. It is straightforward to generalize it to
a S2 with multiple (=M ) interfaces between A and B. In this
case, the wave function under consideration can be expressed
as

|ψ〉 = ⊗Mi=1|hiI〉〉, (3.2)

where i labels the i-th component interface, and I refers to the
identity primary operator. By using the method in Sec. II, one
obtains the Renyi and the von Neumann entropy as

S
(n)
A =

1 + n

n
· πc

48
·
M∑
i=1

li
ε
−M lnD,

SvN
A =

πc

24
·
M∑
i=1

li
ε
−M lnD, (3.3)

where li represents the length of the i-th component of AB
interface. For the universal part of the entanglement entropy,
one can find that each interface contributes − lnD.
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2. Sphere with two quasiparticles = cylinder

As shown in Fig. 1 (b), let us now consider a sphere with
two quasiparticles, with ā in subsystem A and a in subsystem
B. This configuration corresponds to a S2 with two punctures,
which is equivalent to cylinderical topology. In this case, there
is a Wilson line corresponding to topological sector a thread-
ing through the AB interface. Then one has |ψa′ |2 = δa′a
for the regularized state |ψ〉 =

∑
a′ ψa′ |ha′〉〉. Then, based on

Eq.(2.20), the Renyi and the von Neumann entropy for sub-
system A have the expressions as follows

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD + ln da,

SvN
A =

πc

24
· l
ε
− lnD + ln da. (3.4)

Again, the universal part of entanglement entropy is indepen-
dent of the Renyi index n. Compared with the results on a
sphere with no quasiparticles, the entanglement entropy here
is increased by ln da. The physical picture is as follows: For
da > 1, the underlying theory is non-Abelian. The quasipar-
ticle a and antiparticle ā can fuse into, apart from the identity
I , other types of quasiparticles. This increases the uncertainty
that is shared by the two semispheres. If the underlying the-
ory is Abelian, then da = 1 and ln da = 0. This is because in
the Abelian case, a and ā can only fuse into I , and therefore
cannot increase the uncertainty shared by A and B.

3. A sphere with N Wilson lines

As a generalization of the previous part, it is natural to ask
what is the entanglement entropy of the subsystem A(B) if
there are more than one Wilson lines (or more than one pair of
quasiparticles) on a sphere, as shown in Fig. 1 (c) and (d). The
strategy we will use is to fuse the quasiparticles (or anyons)
based on the fusion rule:

a⊗ b =
⊕
c

N c
abc, (3.5)

where the fusion coefficients N c
ab are non-negative integers,

and a, b, c represent the topological or anyon charges. In the
following discussions, for simplicity, we will consider the
multiplicity free case, i.e., N c

ab = 0 or 1. For the case with
N c
ab > 1, one needs to include an orthonormal set of bases to

count the number of times that c appears by fusing a and b.
As a warm-up, let us first consider the case with two Wilson

lines. As shown in Fig. 1 (c), the two Wilson lines are in
topological sectors a and b, respectively. After the fusion, the
state at the interface may be expressed as

|ψ〉 =
⊕
c

ψcab|hab→c〉〉. (3.6)

For the regularized Ishibashi state |hab→c〉〉, it has the same
expression as |hc〉〉, as defined in Eq. (2.7). However, we use

|hab→c〉〉 instead of |hc〉〉 to emphasize that now the orthonor-
mal property of |hab→c〉〉 also depends on the fusion history,
i.e.,

〈〈hab→c|ha′b′→c′〉〉 = δaa′δbb′δcc′ . (3.7)

In the surgery method31, to obtain this result, one needs to glue
Wilson lines a and b with Wilson lines a′ and b′, respectively,
resulting in the factor δaa′δbb′ . From the topological field the-
ory, it can be shown that ψcab in Eq. (3.6) satisfies1 (see also
Appendices)

|ψcab|2 = Pab→c = N c
ab

dc
dadb

, (3.8)

where di is the quantum dimension of the quasiparticle i, and
Pab→c is the probability of fusing a and b into c. It is required
that

∑
c Pab→c = 1, and therefore

dadb =
∑
c

N c
abdc. (3.9)

The density matrix corresponding to the state (3.6) can be
written as

ρ =
⊕
c

|ψcab|2ρc, (3.10)

with ρc = |hab→c〉〉〈〈hab→c|. Based on the discussion around
Eq. (2.21), one can directly use the results in Eq. (2.20). Then
the Renyi entropy for subsystem A is expressed as

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD +

1

1− n
ln
∑
c

|ψcab|2nd1−n
c .

(3.11)

By using Eqs. (3.8) and (3.9), one can further obtain

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD +

1

1− n
ln
∑
c

N c
abdc

(dadb)n

=
1 + n

n
· πc

48
· l
ε
− lnD + ln da + ln db,

SvN
A =

πc

24
· l
ε
− lnD + ln da + ln db. (3.12)

Based on the above example, now we are ready to study the
more general case with N Wilson lines threading through the
interface, as shown in Fig. 1 (d). Suppose that the N Wilson
lines are in topological sectors a1, a2, · · · , aN respectively, let
us fuse them in the following order. We first fuse a1 and a2

into b1, and then fuse b1 and a3 into b2. By repeating this
procedure, we finally fuse bN−2 and aN into c. The state we
need to consider can be expressed as

|ψ〉 =
⊕
{bi},c

ψca1,a2,··· ,aN (b1, b2, · · · , bN−2) |ha1···aN→c〉〉.

(3.13)
Note that the direct sum is not only over c, but also over {bi},
which means that the final fusion result also depends on the fu-
sion channels {bi} in the middle. For a specific fusion channel
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(a) (b) 

b1 b2A

BB

b1

b2
A B

FIG. 2. A T 2 with a two-component AB interface. The region B is
connected in (a) and disconnected in (b). b1 and b2 denote the inter-
face that separates A from B. The red solid line represents a Wilson
loop which may fluctuate among different topological sectors.

in {bi}, one has∣∣ψca1,a2,··· ,aN (b1, b2, · · · , bN−2)
∣∣2

=
N c
aNbN−2

dc

daNdbN−2

· · ·
N b2
a3b1

db2
da3db1

N b1
a1a2db1
da1da2

= N c
aNbN−2

· · ·N b2
a3b1

N b1
a2a1

dc
daN · · · da2da1

.

(3.14)

Based on the wave function (3.13), and relabeling
ψca1,a2,··· ,aN (b1, b2, · · · , bN−2) as ψca(b) to simplify nota-
tions, the Renyi entropy of the subsystem A can be expressed
as

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD

+
1

1− n
ln
∑
c

∑
b1

∑
b2

· · ·
∑
bN−2

∣∣ψca(b)
∣∣2nd1−n

c .

(3.15)

After some simple algebra, one obtains

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD +

∑
i

ln dai ,

SvN
A =

πc

24
· l
ε
− lnD +

∑
i

ln dai . (3.16)

This results (3.16) can be easily understood by considering
the additivity property of entanglement entropy. Each Wilson
line in the topological sector ai increases the entanglement
entropy by ln dai .

B. Torus

In this part, we consider a torus with a two-component AB
interface. There are many ways to slice the spatial surface,
and here we mainly focus on the two slicing shown in Figs. 2
(a) and (b), respectively.

1. Connected B region

As shown in Figs. 2 (a) and (b), for the torus geometry, the
Wilson loop can in general fluctuate among different topolog-
ical sectors a with probability |ψa|2. In this case, the ground
state may be written as

|Ψ〉 =
∑
a

ψa|Wa〉, (3.17)

where |Wa〉 represents the state that the Wilson loop is in a
definite topological sector a. In Ref. 19, |Wa〉 are also called
minimal entangled states (MESs). It is noted that here we use
the bulk wavefunction |Ψ〉 to distinguish it from |ψ〉 which
represents the state at the interface.

For the configuration in Fig. 2 (a), the Wilson loop threads
through both b1 and b2. Then the wavefunction at the interface
may be written as

|ψ〉 =
∑
a

ψa|hb1a 〉〉 ⊗ |hb2a 〉〉

where |hbia 〉〉 =
e−εHi√

nbia
|hbia 〉〉, i = 1, 2

Hi =
2π

li

(
Li0 + L

i

0 −
c

12

)
,

nbia = χha

(
e
− 8πε

li

)
. (3.18)

li represents the length of the i-th component of interface.
Then by following similar procedures in the case of single
interface on a cylinder, we can get the reduced density matrix
for the subsystem A as

ρA =
∑
a

|ψa|2ρb1A,a ⊗ ρ
b2
A,a, (3.19)

with

ρb1A,a =
1

nb1a

∑
N1,j1

e−
8πε
l1 |hb1a , N1; j1〉〈hb1a , N1; j1|,

ρb2A,a =
1

nb2a

∑
N2,j2

e−
8πε
l2 |hb2a , N2; j2〉〈hb2a , N2; j2|,

(3.20)

where we have considered that the chirality of edge states at
b1 and b2 are opposite to each other, if there is a physical cut.
Then one can get

TrA (ρnA) =
∑
a

∣∣ψa∣∣2n ∏
i=1,2

[∑
ai
Saaiχhai

(
e−

πli
2nε

)]
[∑

ai
Saaiχhai

(
e−

πli
2ε

)]n
(3.21)

where we have used the modular transformation of characters
χhai . In the thermodynamic limit l/ε→∞, Eq. (3.21) can be
further simplified as

TrA (ρnA) = e
πc(l1+l2)

48ε ( 1
n−n)

∑
a

|ψa|2n(Sa0)2−2n. (3.22)
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Then by using the definition in Eq. (1.2), one obtains the
Renyi and von Neumann entropy for subsystem A as follows

S
(n)
A =

1 + n

n
· πc

48
· l1 + l2

ε
− 2 lnD

+
1

1− n
ln
∑
a

|ψa|2nd2−2n
a ,

SvN
A =

πc

24
· l1 + l2

ε
− 2 lnD

+ 2
∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2. (3.23)

The first term above is the area law term. The left terms, which
are universal, are exactly the same as the results obtained with
replica trick and surgery method in Ref. 31. The topological
entanglement entropy in this case depends not only on quan-
tum dimensions but also on the choice of ground state. On the
other hand, it is noted that the formulas in Refs. 33 and 34 can
not recover this result, because of the inappropriate regular-
ization scheme.

2. Disconnected B regions

As shown in Fig. 2 (b), this case is trivial compared with
the configuration in Fig. 2 (a), since there is no Wilson loop
threading through the interface b1 and b2. In this case, we sim-
ply make |ψa|2 = δa0 in Eq. (3.23). Then one can obtain the
Renyi entropy and the von Neumann entropy for subsystemA
as follows

S
(n)
A =

1 + n

n
· πc

48
· l1 + l2

ε
− 2 lnD,

SvN
A =

πc

24
· l1 + l2

ε
− 2 lnD. (3.24)

The universal parts of the entanglement entropy in Eq. (3.24)
agree with the results in Ref. 31, as expected. In addition, by
comparing with Eq. (3.3), it is found that the results here are
the same as the entanglement entropy for a S2 with a two-
component AB interface. This is reasonable by considering
that the Wilson loop in Fig. 2 (b) does not thread through the
AB interface, and therefore has no effect on the entanglement
entropy of the subsystem A (B).

3. Effects of the modular S matrix

Now we consider the bipartition of a torus as shown in Fig.
3. In this case, it is convenient to consider the Wilson loop that
threads through the entanglement cut, i.e., the Wilson loop
threading through the exterior of the torus around the merid-
ional cycle. As shown in Fig. 3, by labeling the basis of the de-
generate ground state as |Wa〉l and |Wb〉m respectively (l rep-
resents ‘longitudinal’ and m represents ‘meridional’), where
|Wa〉l (|Wb〉m) represents the state that the Wilson line along
the longitudinal(meridional) circle carries a definite topologi-
cal flux a (b), we can express the state in Eq. (3.17) with either

b1

B

b2

A
a

b

FIG. 3. A T 2 with a two-component AB interface labeled by b1

and b2. Compared to Fig. 2, the bipartition is along the other non-
contractible cycle on T 2. The red (magenta) solid line represents
the Wilson loop threading through the interior(exterior) of the torus
along the longitudinal(meridional) circle.

set of bases. In particular, the two sets of bases are related by
the modular S matrix as follows19,40

|Wa〉l =
∑
b

Sab|Wb〉m. (3.25)

Then the state in Eq. (3.17) may be rewritten as

|Ψ〉 =
∑
a

ψa|Wa〉l

=
∑
b

(∑
a

ψaSab

)
|Wb〉m

=:
∑
b

φb|Wb〉m,

(3.26)

where we have defined φa =
∑
i ψiSia. Then the state at the

interface can be expressed as

|ψ〉 =
∑
a

φa|hb1a 〉〉 ⊗ |hb2a 〉〉. (3.27)

By using the formulas (3.23), one can immediately obtain the
Renyi and the von Neumann entropy of subsystem A as

S
(n)
A =

1 + n

n
· πc

48
· l1 + l2

ε
− 2 lnD

+
1

1− n
ln
∑
a

|φa|2nd2−2n
a ,

SvN
A =

πc

24
· l1 + l2

ε
− 2 lnD

+ 2
∑
a

|φa|2 ln da −
∑
a

|φa|2 ln |φa|2. (3.28)

As an example, let us consider the specific case ψa = δa0 in
Eq. (3.17), i.e., the Wilson loop a in the longitudinal circle
is in the identity topological sector I . For the entanglement
cut in Fig. 2 (a), the universal parts of S(n)

A and SvN
A are both

−2 lnD, which is in the minimal value. On the other hand, for
the entanglement cut in Fig. 3, we have φa = S0a = da/D,
and then it is straightforward to check that the universal parts
of S(n)

A and SvN
A are both 0, which is in the maximal value.

This is as expected by considering that the Wilson loop oper-
ators corresponding to the longitudinal and meridional circles
do not commute with each other.
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b1 b2

B

A
b3

ba

FIG. 4. A manifold of genus g = 2. We have three components
of AB interfaces labeled by b1, b2 and b3, respectively. The red
solid lines a and b represent two independent Wilson loops threading
through the interior of the double torus along the longitudinal circles.

C. Manifolds of genus g

In this part, we consider general manifolds of genus g. As a
warm-up, we will first consider a simple case with g = 2, and
then move on to the general case with arbitrary g.

1. Double torus

Let us consider a double torus with three components of
AB interfaces as shown in Fig. 4. We consider two inde-
pendent Wilson loops that thread through the AB interface
along the longitudinal circles41. For the configuration in Fig.
4, where the Wilson loops a and b fluctuate independently, the
bulk wave function may be written as

|Ψ〉 =

(∑
a

ψa|Wa〉

)⊗(∑
b

ψb|Wb〉

)
. (3.29)

Focusing on the AB interface b1, b2 and b3, the wave function
may be expressed as

|ψ〉 =
∑
ab

ψaψb|hb1a 〉〉⊗
(
⊕cψcab|h

b2
ab→c〉〉

)
⊗ |hb3b 〉〉, (3.30)

where we have used bi with i = 1, 2, 3 to label the i-th com-
ponent of AB interface. The fusion probability at interface b2
has the form |ψcab|2 = N c

abdc/dadb. Then the reduced density
matrix for the subsystem A may be written as

ρA = TrB |ψ〉〈ψ|

=
∑
a,b

|ψa|2|ψb|2
1

nanb∑
N1,j1

e−
8πε
l1

(ha+N1− c
24 )|hb1a , N1; j1〉〈hb1a , N1; j1|

⊗
∑
N3,j3

e−
8πε
l3

(hb+N3− c
24 )|hb3b , N3; j3〉〈hb3b , N3; j3|

⊗
(
⊕c

N c
ab

nc

dc
dadb

·
∑
N2,j2

e−
8πε(hc+N2−

c
24

)

l2

× |hb2c , N2; j2〉〈hb2c , N2; j2|
)
. (3.31)

Note that for the configuration in Fig. 4, imagining a physi-
cal cut along b1, b2 and b3, then there may be an ambiguity
in defining the chirality of edge states for the subsystem A
(B). Here, for simplicity, we choose all the edge states to
be left-moving. In fact, it can be checked that the freedom
of choosing the chirality of edge states has no effect on the
entanglement entropy. In the rest of this work, once there is
an ambiguity in defining the chirality of edge states, without
affecting the results, we may choose it to be left-moving.

Based on ρA in Eq. (3.31), one can obtain

Tr (ρnA) =
∑
a,b,c

|ψa|2n|ψb|2n
(

1

nanbnc

)n(
dc
dadb

)n
N c
ab

× χha
(
e−

8πnε
l1

)
χhb

(
e−

8πnε
l3

)
χhc

(
e−

8πnε
l2

)
.

(3.32)

In particular, for n = 1, this reduces to

Tr(ρA) =
∑
a,b,c

|ψa|2|ψb|2
dc
dadb

N c
ab

=
∑
a,b

|ψa|2|ψb|2

=
(∑

a

|ψa|2
)(∑

b

|ψb|2
)
,

(3.33)

as expected. Here we consider the normalization condition∑
a |ψa|2 =

∑
b |ψb|2 = 1, and therefore Tr(ρA) = 1. By us-

ing the modular transformation property of the character χhi ,
Tr(ρnA) in Eq. (3.32) may be rewritten as

Tr (ρnA) =
∑
a,b,c

|ψa|2n|ψb|2n
(

dc
dadb

)n
N c
ab

∏
i=a,b,c

∑
a′ Sia′χ

(
e−

πli
2nε

)
[∑

a′ Sia′χ
(
e−

πli
2ε

)]n . (3.34)

Taking the thermodynamic limit li/ε→∞, we obtain

Tr (ρnA) =
∑
a,b,c

|ψa|2n|ψb|2n
(

dc
dadb

)n
N c
ab·

×
(
da
D
· db
D
· dc
D

)1−n

e
πc
48 ·

l1+l2+l3
ε ( 1

n−n),

(3.35)

which, after some simple algebra, can be further simplified as

Tr (ρnA) =

(∑
a

|ψa|2nd2−2n
a

)(∑
b

|ψb|2nd2−2n
b

)

× 1

D3−3n
e
πc
48 ·

l1+l2+l3
ε ( 1

n−n).

(3.36)

Then the Renyi and the von Neumann entropy of subsystem
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b1 b2

B
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b3

A

B

A
bN+1bN

B

a1 a2 aN

. . . .

FIG. 5. A manifold of genus g with g = N . We have a (N + 1)-component interface labeled by b1, b2, · · · , bN+1, respectively. We consider
N independent Wilson loops that thread through the interior of the manifold along the longitudinal circles. Each Wilson loop (red solid lines)
can fluctuate among different topological sectors independently.

A can be obtained as

S
(n)
A =

1 + n

n
· πc

48
· l1 + l2 + l3

ε
− 3 lnD

+
1

1− n
ln
∑
a

|ψa|2nd2−2n
a

+
1

1− n
ln
∑
b

|ψb|2nd2−2n
b ,

SvN
A =

πc

24
· l1 + l2 + l3

ε
− 3 lnD

+ 2
∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2

+ 2
∑
b

|ψb|2 ln db −
∑
b

|ψb|2 ln |ψb|2. (3.37)

Compared with Eq. (3.23) for a torus with g = 1, the above
result is easy to understand by considering the additivity prop-
erty of the entanglement entropy. Take the Renyi entropy for
example, each component of interface contributes to − lnD;
and each Wilson loop contributes to 1

1−n ln
∑
i |ψi|2nd

2−2n
i .

2. Manifolds of genus g

Now we study the case of a manifold of genus g with
g = N . As shown in Fig. 5, we consider N independent
Wilson loops labeled by a1, a2, · · · , aN threading through the
interior of the manifold along the longitudinal circles. Each
Wilson loop can fluctuate among different topological sectors
independently. Then the bulk wave function may be written
as

|Ψ〉 =

N⊗
i=1

(∑
ai

ψai |Wai〉

)
. (3.38)

Now we choose the entanglement cut as shown in Fig. 5, so
that we have a (N + 1)-component interface. Then the state

at the interface can be expressed as

|ψ〉 =
∑

a1a2···aN

ψa1ψa2 · · ·ψaN |hb1a1〉〉

⊗
(
⊕c2 ψc2a1a2 |h

b2
a1a2→c2〉〉

)
⊗ · · ·

⊗
(
⊕cN ψcNaN−1aN |h

bN
aN−1aN→cN 〉〉

)
⊗ |hbN+1

aN 〉〉,
(3.39)

where the probability of fusing quasiparticles ai−1 and ai into
ci is |ψci+1

aiai+1 |2 = N
ci+1
aiai+1dci+1/daidai+1 . Following similar

procedures in the previous part, one can get

Tr (ρnA)

=
∑

a1,2,...,N

|ψa1 |2n|ψa2 |2n · · · |ψaN |2n
(

1

nb1a1n
bN+1
aN

)n

×
∑

c2,3,...,N

|ψc2a1a2 |
2n

(nb2c2)n

|ψc3a2a3 |
2n

(nb3c3)n
· · ·
|ψcNaN−1aN |

2n

(nbNcN )n

× χha1
(
e−

8πnε
l1

)
χhaN

(
e
− 8πnε
lN+1

) N∏
i=2

χhci

(
e
− 8πnε

li

)
.

By using the modular transformation property of the character
χhi , and taking the thermodynamic limit li/ε → ∞, Tr(ρnA)
can be simplified as

Tr (ρnA)

=
∑

a1,2,··· ,N

|ψa1 |2n|ψa2 |2n · · · |ψaN |2n

×
∑

c2,··· ,cN

( dc2
da1da2

)n
N c2
a1a2 · · ·

( dcN
daN−1

daN

)n
N cN
aN−1aN

×
(da1
D
· daN
D
·
N∏
i=2

dci
D

)1−n
e
πc
48 ·

∑N+1
i=1

li
ε ( 1

n−n).

(3.40)

The sum
∑
c2,··· ,cN can be easily done by considering that∑

ci
N ci
ai−1aidci/dai−1ai = 1. Then Eq. (3.40) can be further
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simplified as

Tr (ρnA)

=
∑

a1,2,··· ,N

|ψa1 |2n|ψa2 |2n · · · |ψaN |2n

×
( N∏
i=1

dai

)2−2n( 1

D1+N

)1−n
e
πc
48 ·

∑N+1
i=1

li
ε ( 1

n−n)

=

N∏
i=1

(∑
ai

|ψai |2nd2−2n
ai

)( 1

D1+N

)1−n
e
πc
48 ·

∑N+1
i=1

li
ε ( 1

n−n),

based on which we can immediately obtain the Renyi entropy
and the von Neumann entropy of subsystem A as follows

S
(n)
A =

1 + n

n
· πc

48
· l1 + · · ·+ lN+1

ε
− (N + 1) lnD

+
1

1− n

N∑
i=1

ln

[∑
ai

|ψai |2n (dai)
2−2n

]
,

SvN
A =

πc

24
· l1 + · · ·+ lN+1

ε
− (N + 1) lnD

+

N∑
i=1

(
2
∑
ai

|ψai |2 ln dai −
∑
ai

|ψai |2 ln |ψai |2
)
.

(3.41)

For N = 1 and 2, we recover the results (3.23) and (3.37),
respectively. It is found that the coefficient in front of − lnD
equals the number of components of the AB interface. For
each Wilson loop ai that threads through the entanglement
cut with probability |ψai |2, it contributes to the Renyi and von
Neumann entropy as

∆S
(n)
A,ai

=
1

1− n

N∑
i=1

ln

[∑
ai

|ψai |2n (dai)
2−2n

]
,

∆SvN
A,ai =

∑
ai

|ψai |2 ln
d2
ai

|ψai |2
. (3.42)

In fact, we also checked the Renyi entropy and the von Neu-
mann entropy for a g-genus manifold with replica and surgery
methods. The results we obtained are exactly the same as the
universal parts in Eq. (3.41).

D. A sphere with four quasiparticles

Although we have studied the entanglement entropy for
several examples in the presence of quasiparticles, it is still
interesting to ask if we can extract more topological data of
Chern-Simons theories, such as the braiding property of Wil-
son lines and so on. In this part, we demonstrate that our edge
theory approach is powerful enough to study these more com-
plicated cases.

Following Ref. 31, we consider a S2 with four quasipar-
ticles, with two quasiparticles carrying anyon charge a, and
the other two carrying anyon charge ā. According to different

|Ψ1〉  

a

a

|Ψ2〉  

a

a

A B A B
b b

a

a

a

a

|Ψ1’〉  

a

a

a

a

|Ψ2’〉  

a

a

a

a

A BB A
b b

FIG. 6. Top row: A S2 with four quasi-particles, with the subsys-
tem A containing two quasiparticles a and ā. Each red solid line
represents a Wilson line connecting quasiparticles ā and a. The two
configurations represent two states |Ψ1〉 and |Ψ2〉, respectively. Bot-
tom row: A S2 with four quasi-particles, with two quasiparticles ā
and ā in the subsystem A, and the other two quasiparticles a and a
in the subsystem B. Each red solid line represent a Wilson line that
connects ā and a. The two configurations represent two states |Ψ′

1〉
and |Ψ′

2〉, respectively.

distributions of the four quasiparticles, we need to study the
entanglement entropy case by case, as discussed in the follow-
ing.

1. A with a and ā

Let us consider the case where there are two quasiparticles
a and ā in the subsystem A, with the other two quasiparticles
ā and a in subsystemB. As shown in Fig. 6 (top row) there are
two configurations which correspond to states |Ψ1〉 and |Ψ2〉,
respectively. We want to calculate the entanglement entropy
of the subsystem A for a general state

|Ψ〉 = a|Ψ1〉+ b|Ψ2〉. (3.43)

For |Ψ1〉, there is no Wilson line threading through the AB
interface, and therefore the corresponding state at the inter-
face is |haā→I〉〉, with I being the identity topological sector.
For |Ψ2〉, among different fusion channels, there is a fusion
channel a ⊗ ā → I . Then the state at the interface may be
expressed as

|ψ〉 =
⊕
c

ψcab|haā→c〉〉, (3.44)
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where

|ψcab|2 =


∣∣∣∣a+ b

1√
dadā

∣∣∣∣2 , c = I,

N c
aā

dc
dadā

|b|2, c 6= I.

(3.45)

Note that for a general TQFT, one always has dā = da. It is
also noted that for the state in Eq. (3.44),

∑
c |ψcab|2 6= 1, but

has the following expression

∑
c

|ψc|2 =
∣∣∣a+

b

da

∣∣∣2 + |b|2
(

1− 1

d2
a

)
. (3.46)

In this case, to obtain the Renyi and the von Neumann entropy,
we can use the results (2.18) directly. Let us check the von
Neumann entropy first. For convenience, we rewrite SvN in
Eq. (2.18) in the following form

SvN =
πc

24
· l
ε
− lnD +

∑
i |ψi|2 ln

(
di/|ψi|2

)∑
i |ψi|2

+ ln
∑
i

|ψi|2.

(3.47)

It is found that

di
|ψi|2

=


1

|a+ b/da|2
, i = I,

d2
a

|b|2
N i
aā, i 6= I,

(3.48)

is independent of di. Then the von Neumann entropy for the
subsystem A, after some straightforward algebra, can be ob-
tained as follows

SvN
A =

πc

24
· l
ε
− lnD − λ1 lnλ1 − (d2

a − 1)λ2 lnλ2, (3.49)

where λ1 and λ2 are defined as
λ1 =

|ada + b|2

|ada + b|2 + (d2
a − 1)|b|2

,

λ2 =
|b|2

|ada + b|2 + (d2
a − 1)|b|2

.

(3.50)

One can find that the universal parts of the entanglement en-
tropy in Eq. (3.49) are exactly the same as the results obtained
with the method of replica trick and surgery in Ref. 31.

Similarly, we can obtain the Renyi entropy as follows

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD

+
1

1− n
ln

[∣∣∣a+
b

dα

∣∣∣2n +

(
|b|
dα

)2n

(d2
α − 1)

]

− n

1− n
ln

[∣∣∣a+
b

dα

∣∣∣2 +
|b|2

d2
a

(
d2
a − 1

)]
.

(3.51)

2. Effect of braiding and R-symbols

In this part, we will study how the braiding of Wilson lines
can show up in the entanglement entropy. We consider a
generic superposition of two states

|Ψ′〉 = a|Ψ′1〉+ b|Ψ′2〉, (3.52)

where |Ψ′1〉 and |Ψ′2〉 are shown in Fig. 6 (bottom row). In
this case, the two quasiparticles in subsystem A are both in
topological sector ā. Compared to the configuration in |Ψ′1〉,
one can find that there is braiding of Wilson lines in |Ψ′2〉.

At the interface, the states corresponding to |Ψ′1〉 and |Ψ′2〉
may be expressed as{ |ψ′1〉 = ⊕cψcaa|haa→c〉〉,

|ψ′2〉 = ⊕cψcaaRaac |haa→c〉〉.
(3.53)

where |ψcaa|2 = N c
aadc/d

2
a, and Raac are the so-called

R-symbols, which describe the effects of braiding of
anyons/Wilson lines (see Appendix A for details). The R-
symbol is in general a unitary matrix, but reduces to a collec-
tion of phases in a fusion multiplicity free theory. In particu-
lar, Rabc represents the phase picked up by exchanging anyons
a and b which fuse into channel c. Then the state at the inter-
face may be written as

|ψ′〉 = a|ψ′1〉+ b|ψ′2〉,
= ⊕c (a+ bRaac )ψcaa|haa→c〉〉
=: ⊕cφc|haa→c〉〉.

(3.54)

Based on the wave function above, we can obtain the Renyi
entropy as well as the von Neumann entropy of the subsystem
A(B) by using Eq. (2.18) directly.

In the following, we are mainly interested in the SU(2)k
theory, in which the R-symbol has an explicit expression

Rj1,j2j = (−1)j−j1−j2q
1
2 [j1(j1+1)+j2(j2+1)−j(j+1)], (3.55)

where q = e−2πi/(2+k), and j represents the anyonic charge
of SU(2)k theory, which is labeled by integers and half-
integers as C = {0, 1

2 , 1, · · · ,
k
2}. (Here, for the definition

of q, we follow the convention in Ref. 31. It is noted that in
some literatures q = e2πi/(2+k) is used, and therefore the ex-
pression of R-symbols are slightly modified accordingly.) In
addition, the fusion rule in the SU(2)k theory is

j1 × j2 =

min{j1+j2,k−j1−j2}∑
|j1−j2|

j

= |j1 − j2|+ (|j1 − j2|+ 1) + · · ·
+ min{j1 + j2, k − j1 − j2}.

(3.56)

Relabeling a = ā = j and using Eq. (2.18), we can imme-
diately write down the Renyi entropy and the von Neumann
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entropy for the subsystem A as follows

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD

+
1

1− n
ln

min{2j,k−2j}∑
i=0

∣∣∣a+ bRjji
dj

∣∣∣2ndi
− n

1− n
ln

min{2j,k−2j}∑
i=0

∣∣∣a+ bRjji
dj

∣∣∣2di,
SvN
A =

πc

24
· l
ε
− lnD

+

∑min{2j,k−2j}
i=0

∣∣∣a+ bRjji

∣∣∣2di ln
∣∣∣ dj

a+bRjji

∣∣∣2∑min{2j,k−2j}
i=0

∣∣∣a+ bRjji

∣∣∣2di
+ ln

min{2j,k−2j}∑
i=0

∣∣∣a+ bRjji
dj

∣∣∣2di, (3.57)

where the quantum dimension dj is defined as

dj =
sin
(

(2j+1)π
k+2

)
sin
(

π
k+2

) . (3.58)

Before we end this part, it is emphasized that theR-symbols
usually depend on the choice of bases in the topological
Hilbert space, which indicates that R-symbols are usually
gauge dependent. An exception is Raab , which is gauge in-
variant (see Appendix A 1). That is to say, our results on the
entanglement entropy in Eq. (3.57) are gauge invariant, as it
should be.

(a) Specific case a = ā = 1
2

In Ref. 31, the specific case of a = ā = 1
2 is studied based

on the replica trick and surgery method. In this part, based on
our general formula in Eq. (3.57), we make a comparison with
the results in Ref. 31.

For a = ā = 1
2 in a SU(2)k theory, the fusion rule of two

anyons a is simply

1

2
⊗ 1

2
= 0⊕ 1. (3.59)

For convenience, we label the quasiparticles with j = 0, 1
2 , 1

as ω, α and σ, respectively. Based on Eq. (3.58), it can be
checked that dω = 1, dα = 2 cos π

k+2 and dσ = 2 cos 2π
2+k +

1 =
sin 3π

k+2

sin π
k+2

. From Eq. (3.57), the universal parts of the von
Neumann entropy may be expressed as follows

SvN
A,top = − lnD +

∑min{2j,k−2j}
i=0

∣∣∣a+ bRjji

∣∣∣2di ln
∣∣∣ dj

a+bRjji

∣∣∣2∑min{2j,k−2j}
i=0

∣∣∣a+ bRjji

∣∣∣2di + ln

min{2j,k−2j}∑
i=0

∣∣∣a+ bRjji
dj

∣∣∣2di
=: − lnD − dωλ1 lnλ1 − dσλ2 lnλ2,

(3.60)

where λ1 and λ2 are defined as
λ1 =

|a+ bRααω |2

dω|a+ bRααω |2 + dσ|a+ bRαασ |2
,

λ2 =
|a+ bRαασ |2

dω|a+ bRααω |2 + dσ|a+ bRαασ |2
.

(3.61)

For a SU(2)k theory, one has{
Rααω = −q 3

4 ,

Rαασ = q−
1
4 .

(3.62)

Therefore, λ1 and λ2 in Eq. (3.61) can be rewritten as
λ1 =

|a− bq 3
4 |2

dω|a− bq
3
4 |2 + dσ|a+ bq−

1
4 |2

,

λ2 =
|a+ bq−

1
4 |2

dω|a− bq
3
4 |2 + dσ|a+ bq−

1
4 |2

,

(3.63)

which agrees with the result in Ref. 31. It is noted that if we
focus on either |Ψ′1〉 or |Ψ′2〉 separately, the universal parts
of the Renyi entropy or von Neumann entropy are simply

SvN
A,top = − lnD + 2 ln dα. Hence, the R-symbols cannot be

detected. In other words, the effects of braiding or R-symbols
can be detected only through the interference effect in the en-
tanglement entropy.

3. Effects of monodromy and topological spin

The effect of monodromy, or double braiding, of two quasi-
particles/Wilson lines a and b is governed by the monodromy
equation or ribbon equation as follows

∑
λ

[
Rabc

]
µλ

[
Rbac

]
λν

=
θc
θaθb

δµν , (3.64)

which is associated with the mutual statistics of a and b fused
into channel c. For the multiplicity free case we are interested
in here, Eq. (3.64) reduces to

Rabc R
ba
c =

θc
θaθb

=: Mab
c . (3.65)
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FIG. 7. Top row: A S2 with four quasi-particles, with two quasipar-
ticles ā and b̄ in subsystem A, and the other two quasiparticles a and
b in subsystem B. The red solid lines are Wilson lines which connect
ā(b̄) and a(b). The two configurations represent two states |Ψ1〉 and
|Ψ2〉, respectively. Bottom row: A S2 with four quasi-particles, with
two quasiparticles ā and ā in subsystem A, and the other two quasi-
particles a and a in subsystem B. The two configurations correspond
to the two states |Ψ′

1〉 and |Ψ′
2〉, respectively.

The topological spin θa, also known as twist factor, is related
to the spin or conformal scaling dimension ha of a as

θa = ei2πha . (3.66)

Therefore, Mab
c in Eq. (3.65) can be rewritten as Mab

c =
ei2π(hc−ha−hb). To see the effect of the monodromy on the
entanglement entropy, we consider a general state |Ψ〉 =
a|Ψ1〉+ b|Ψ2〉, where |Ψ1〉 and |Ψ2〉 are shown in Fig. 7 (top
row). It is noted that for the configuration in |Ψ2〉, the two
Wilson lines braid for two times. Compared to the configura-
tion in Fig. 6, this double braiding of two Wilson lines allows
us to study the case a 6= b.

At the interface, the states corresponding to |Ψ1〉 and |Ψ2〉
may be written as{

|ψ1〉 = ⊕cψcab|hab→c〉〉,
|ψ2〉 = ⊕cψcabMab

c |hab→c〉〉,
(3.67)

based on which one can write down the state corresponding to
|Ψ〉 as

|ψ〉 = a|ψ1〉+ b|ψ2〉,
= ⊕c

(
a+ bMab

c

)
ψcab|hab→c〉〉

= ⊕c
(
a+ b

θc
θaθb

)
ψcab|hc〉〉

=: ⊕cφc|hab→c〉〉.

(3.68)

where |ψcab|2 = N c
abdc/dadb. Then one can immediately ob-

tain the Renyi entropy and the von Neumann entropy of the
subsystem A(B) by using the results in Eq. (2.18).

Now we are interested in the SU(2)k theories, where the
topological spins are expressed as

θj = ei2π
j(j+1)
k+2 . (3.69)

Relabeling the anyonic charges as a = j1 and b = j2, then we
have

S
(n)
A =

1 + n

n
· πc

48
· l
ε
− lnD

+
1

1− n
ln

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

∣∣∣a+ b
θj

θj1θj2

∣∣∣2n dj
dnj1d

n
j2

− n

1− n
ln

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

∣∣∣a+ b
θj

θj1θj2

∣∣∣2 dj
dj1dj2

,

(3.70)

and

SvN
A =

πc

24
· l
ε
− lnD

+

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

∣∣∣a+ b
θj

θj1θj2

∣∣∣2dj ln
dj1dj2

|a+bθj/θj1θj2 |2∑min{j1+j2,k−j1−j2}
j=|j1−j2|

∣∣∣a+ b
θj

θj1θj2

∣∣∣2dj
+ ln

min{j1+j2,k−j1−j2}∑
j=|j1−j2|

∣∣∣a+ b
θj

θj1θj2

∣∣∣2 dj
dj1dj2

.

(3.71)

Similar with the previous calculation involving the R-
symbols, the effects of monodromy can be detected only
through the interference effect. One can check that for ei-
ther |Ψ1〉 or |Ψ2〉 separately, the universal parts of the Renyi
entropy and the von Neumann entropy are simply S(n)

A,top =

SvN
A,top = − lnD + ln dj1 + ln dj2 .
As a specific example, it is interesting to check the case

with anyonic charges j1 = j2 = 1
2 . As before, we label the

anyons with j = 0, 1
2 , 1 as ω, α and σ, respectively. Then

based on Eq. (3.71), one can obtain

SvN
A,top = − lnD − dωλ1 lnλ1 − dσλ2 lnλ2, (3.72)

where λ1 and λ2 are defined as

λ1 =

∣∣∣a+ b θω
θαθα

∣∣∣2
dω

∣∣∣a+ b θω
θαθα

∣∣∣2 + dσ

∣∣∣a+ b θσ
θαθα

∣∣∣2 ,

λ2 =

∣∣∣a+ b θσ
θαθα

∣∣∣2
dω

∣∣∣a+ b θω
θαθα

∣∣∣2 + dσ

∣∣∣a+ b θσ
θαθα

∣∣∣2 ,
(3.73)
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which may be further rewritten as
λ1 =

|a+ bq
3
2 |2

dω|a+ bq
3
2 |2 + dσ|a+ bq−

1
2 |2

,

λ2 =
|a+ bq−

1
2 |2

dω|a+ bq
3
2 |2 + dσ|a+ bq−

1
2 |2

,

(3.74)

where q = e−2πi/(2+k). Before we end this part, it is noted
that Mab

c = Rabc R
ba
c in Eqs. (3.70) and (3.71) is a gauge in-

variant quantity, althoughRabc for a 6= b is not gauge invariant
itself (see Appendix A 1). This is expected since that the en-
tanglement entropy should be gauge independent.

4. Discussion: Relative phase in interference effect

From the discussions above, it is found that both the R-
symbols and the monodromy can be detected through the in-
terference effect, in which theR-symbols and the monodromy
appear as relative phases between two sets of bases in |ψ1〉
and |ψ2〉. To understand this interference effect better, let us
consider another state

|Ψ′〉 = a|Ψ′1〉+ b|Ψ′2〉, (3.75)

where |Ψ′1〉 and |Ψ′2〉 are shown in Fig. 7 (bottom row). In
particular, the two Wilson lines are braided once in |Ψ′1〉 and
twice in |Ψ′2〉. Then the corresponding states at the interface
can be written as{ |ψ′1〉 = ⊕cψcaaRaac |haa→c〉〉,

|ψ′2〉 = ⊕cψcaaMaa
c |haa→c〉〉.

(3.76)

where |ψcaa|2 = N c
aadc/d

2
a, and Maa

c is defined through Eq.
(3.65), i.e., Maa

c = Raac R
aa
c . Note that for the multiplic-

ity free case we consider here, both Rabc and Mab
c are simply

complex phases. Then the state at the interface can be written
as

|ψ′〉 = a|ψ′1〉+ b|ψ′2〉,
= ⊕cRaac (a+ bRaac )ψcaa|haa→c〉〉
=: ⊕cφc|haa→c〉〉,

(3.77)

By comparing the states in Eq. (3.77) and Eq. (3.54), it is
straightforward to check that S(n)

A and SvN
A corresponding to

the state in Eq. (3.77) have the same expressions as those in
Eq. (3.57). This is as expected because what we detect in the
interference is the relative phase.

IV. TOPOLOGICAL MUTUAL INFORMATION

As mentioned in the introduction, the Renyi and the von
Neumann entropy are good measures for bipartite entangle-
ment. For a tripartite system, or more generally a mixed state,
it is convenient to introduce other entanglement/correlation
measures such as the mutual information and the entangle-
ment negativity. Since the mutual information is expressed in

(a) 

b1

b3

B

(b) 

b1 b2

A1

B

b3
A2

b2
A1

A2 b4 A2

b1

b4

BB

A1 A2

b2

b3

b1

b3
B B

b2
A1

A2

b4

(c) (d) 

FIG. 8. Four setups in calculating the mutual information and the
entanglement negativity. Two adjacent non-contractible regions A1

and A2 on a torus with non-contractible ((a) and (b)) and contractible
(c) B. (d) Two disjoint non-contractible regions A1 and A2 on a
torus with non-contractible region B. The red solid line represents a
Wilson loop threading through the interior of the torus.

terms of the entanglement entropy, one can directly use the
results in the previous section. In the following, we will give
several examples on the mutual information between two spa-
tial regions on a torus for Chern-Simons theories.

A. Two adjacent non-contractible regions on a torus with
non-contractible B

Let us consider two adjacent non-contractible regions A1

and A2 on a torus with their compliment B which is also non-
contractible. Here we mainly consider two nontrivial cases,
shown in Figs. 8 (a) and (b). The two regions A1 and A2

share a one-componentA1A2 interface in Fig. 8 (a) and a two-
component A1A2 interface in Fig. 8 (b). In the following, we
will calculate the mutual information between A1 and A2 for
these two cases respectively.

1. One component interface

As shown in Fig. 8 (a), the two adjacent non-contractible
regions A1 and A2 share a one-component A1A2 interface.
This case can be easily studied based on our previous results
on the bipartite entanglement of a torus. To be concrete, let us
consider the Renyi mutual information defined in Eq. (1.4).
For the two adjacent regions A1 and A2 as shown in Fig. 8
(a), the subsystem A = A1 ∪ A2 has the same topology as
A1 (A2), which is simply a cylinder. Therefore, for a general
state in Eq. (3.17), i.e.,

|Ψ〉 =
∑
a

ψa|Wa〉, (4.1)
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one can directly use the result in Eq. (3.23), and the Renyi
mutual information can be obtained as

I
(n)
A1A2

=
1 + n

n
· 2πc

48
· l2
ε
− 2 lnD

+
1

1− n
ln
∑
a

|ψa|2nd2−2n
a ,

(4.2)

where l2 is the length of the interface b2. And the von Neu-
mann mutual information has the following expression

IA1A2
= lim
n→1

I
(n)
A1A2

=
2πc

24
· l2
ε
− 2 lnD + 2

∑
a

|ψa|2 ln da

−
∑
a

|ψa|2 ln |ψa|2.

(4.3)

For a later comparison with the entanglement negativity, it
should be noted that I(n)

A1A2
and IA1A2

depend on the choice of
ground state for both Abelian and non-Abelian Chern-Simons
theories.

2. Two component interface

As shown in Fig. 8 (b), let us consider the two adjacent non-
contractible regions A1 and A2 which share a two-component
A1A2 interface. In this case, the subsystem A2 itself is com-
posed of two disjoint regions. To obtain the mutual informa-
tion between A1 and A2, we need to calculate the entangle-
ment entropy of the subsystem A2 first.

For the general ground state in Eq. (4.1), the state at the
interface (including the components b1, b2, b3 and b4) has the
following expression

|ψ〉 =
∑
a

ψa
⊗

i=1,··· ,4
|hbia 〉〉. (4.4)

Following similar procedures in the previous sections, one can
obtain the reduced density matrix for the subsystemA2 as fol-
lows

ρA2
=
∑
a

|ψa|2
1∏

i=1,··· ,4 n
bi
a⊗

i=1,··· ,4

∑
Ni,ji

e
− 8πε

li |hbia , Ni; ji〉〈hbia , Ni; ji|,
(4.5)

based on which one can get

Tr
(
ρnA2

)
=
∑
a

|ψa|2n
∏

i=1,··· ,4

∑
ai
Saaiχhai

(
e−

πli
2nε

)
[∑

ai
Saaiχhai

(
e−

πli
2ε

)]n ,
(4.6)

where we have used the modular transformation property of
the character χhi . In the thermodynamic limit li/ε→∞, Eq.

(4.6) can be further simplified as

Tr
(
ρnA2

)
= e

πc(l1+l2+l3+l4)
48ε ( 1

n−n)
∑
a

|ψa|2n(Sa0)4−4n.

(4.7)
Then one can obtain the Renyi and the von Neumann entropy
of A2 as

S
(n)
A2

=
1 + n

n
· πc

48
· l1 + l2 + l3 + l4

ε
− 4 lnD

+
1

1− n
ln
∑
a

|ψa|2nd4−4n
a ,

SvN
A2

=
2πc

48
· l1 + l2 + l3 + l4

ε
− 4 lnD

+ 4
∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2. (4.8)

Based on the results in Eqs. (3.23) and (4.8), one can obtain
the mutual information between A1 and A2 as follows

I
(n)
A1A2

=
1 + n

n
· 2πc

48
· l1 + l2

ε
− 4 lnD

+
1

1− n
ln
∑
a

|ψa|2nd4−4n
a ,

IA1A2
=

2πc

24
· l1 + l2

ε
− 4 lnD + 4

∑
a

|ψa|2 ln da

−
∑
a

|ψa|2 ln |ψa|2. (4.9)

Similar with the one-componentA1A2 interface case, the mu-
tual information in Eq. (4.9) depends on the choice of ground
state for both Abelian and non-Abelian Chern-Simons theo-
ries.

B. Two adjacent non-contractible regions on a torus with
contractible B

In this part, as shown in Fig. 8 (c), we will calculate the mu-
tual information of two adjacent non-contractible regions A1

and A2 with a contractible region B. In section III, the entan-
glement entropy of A = A1 ∪A2 has already been calculated
[see Eq. (3.24)]. To calculate the mutual information between
A1 and A2, one only needs to further calculate SA1(A2) as
follows.

Given the ground state in Eq. (4.1), the state at the interface
(including the components b1, b2 and b3) can be written as

|ψ〉 = |hb3I 〉〉 ⊗
∑
a

ψa|hb1a 〉〉 ⊗ |hb2a 〉〉. (4.10)

Then it is straightforward to check that the reduced density
matrix for A1 has the expression

ρA1 = trA2∪B |ψ〉〈ψ|

= ρb3A1,I
⊗
∑
a

|ψa|2ρb1A1,a
⊗ ρb2A1,a

, (4.11)
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where ρbiAi,a has the form

ρbiA1,a =
∑
Ni,ji

1

nbia
e
− 8πε

li
(ha+N− c

24 )|hbia , Ni; ji〉〈hbia , Ni; ji|.

(4.12)
Then one can obtain

Tr(ρnA1
) = e

πc(l1+l2+l3)
48ε ( 1

n−n)(S00)1−n
∑
a

|ψa|2n(Sa0)2−2n,

(4.13)

where we have used modular transformation of the character
χhi and taken the thermodynamic limit li/ε → ∞. Based on
Tr(ρnA1

) in Eq. (4.13), we can obtain the Renyi entropy and
the von Neumann entropy of subsystem A1 as follows

S
(n)
A1

=
1 + n

n
· πc

48
· l1 + l2 + l3

ε
− 3 lnD

+
1

1− n
ln
∑
a

|ψa|2nd2−2n
a ,

SvN
A1

=
2πc

48
· l1 + l2 + l3

ε
− 3 lnD

+ 2
∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2. (4.14)

The same results can be obtained for S(n)
A2

and SvN
A2

by simply
replacing l3 with l4. Then based on Eqs. (3.24) and (4.14),
one can obtain the mutual information between A1 and A2 as
follows

I
(n)
A1A2

=
1 + n

n
· 2πc

48
· l1 + l2

ε
− 4 lnD

+
2

1− n
ln
∑
a

|ψa|2nd2−2n
a ,

IA1A2 =
4πc

48
· l1 + l2

ε
− 4 lnD

+ 4
∑
a

|ψa|2 ln da − 2
∑
a

|ψa|2 ln |ψa|2. (4.15)

It is found that the mutual information in Eq. (4.15) does not
change if we take B → ∅, which corresponds to the biparti-
tion of a torus (see Fig. 2).

C. Two disjoint non-contractible regions on a torus

In this part, we consider two disjoint non-contractible re-
gions A1 and A2 on a torus, as shown in Fig. 8 (d). For this
case, the mutual information betweenA1 andA2 can be easily
calculated based on our previous results. First, it is straight-
forward to check that S(n)

A = S
(n)
B , with A = A1 ∪ A2. This

can be understood based on the fact that the torus is bipartited
into A = A1 ∪ A2 and B. Then, based on Eqs. (3.23) and
(4.8), one can immediately get the Renyi and von Neumann

mutual information between A1 and A2 as follows

I
(n)
A1A2

=
2

1− n
ln
∑
a

|ψa|2n
(
da
D

)2−2n

− 1

1− n
ln
∑
a

|ψa|2n
(
da
D

)4−4n

=
1

1− n
ln

(∑
a |ψa|2nd2−2n

a

)2∑
a |ψa|2nd

4−4n
a

,

IA1A2
= −

∑
a

|ψa|2 ln |ψa|2. (4.16)

Some remarks on the results of mutual information in Eq.
(4.16) are in order:
• For both I(n)

A1A2
and IA1A2

, the area law term disappears.
That is to say, short-scale degrees of freedom cancel in the mu-
tual information of two disjoint regions. This is very helpful
for numerical calculations, because one needs not to calculate
the entanglement entropy for different lengths of interface. It
is noted that for the mutual information of two adjacent re-
gions in Eqs. (4.2) and (4.3), the short-scale degrees of free-
dom does not cancel.
• The universal parts of I(n)

A1A2
and IA1A2

result from the
fluctuations of the Wilson loop. If we set ψa′ = δaa′ , i.e., the
Wilson loop stays in a definite topological sector a, then both
I

(n)
A1A2

and IA1A2 vanish.
• The result of mutual information IA1A2 in Eq. (4.16) was

also obtained in Ref. 32 by using the surgery method. In that
work, the mutual information IA1A2

was considered as a uni-
fied quantity to describe both conventional orders and topo-
logical orders. For conventional orders which are character-
ized by the spontaneous symmetry breaking, it is found that
the mutual information has the same expression as Eq. (4.16).
Here, we emphasize that this is not the case for the Renyi mu-
tual information I(n)

A1A2
with n > 1. As shown in Eq. (4.16),

the Renyi mutual information depends on both the choice of
ground state and the quantum dimensions da which are absent
in conventional orders. In short, the Renyi mutual informa-
tion contains more information than the von Neumann mutual
information. On the other hand, if we focus on the Abelian
Chern-Simons theories, Eq. (4.16) can be further simplified
as

I
(n)
A1A2

=
1

1− n
ln
∑
a

|ψa|2n, (4.17)

which can still be used as a unified quantity to describe both
conventional orders and Abelian topological orders.

V. TOPOLOGICAL ENTANGLEMENT NEGATIVITY

In this section, we will study the entanglement negativ-
ity defined for two spatial regions in Chern-Simons theories.
Note that both the mutual information and the entanglement
negativity are useful for understanding the entanglement prop-
erty of a mixed state. As will be seen later, however, compared
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to the mutual information, the entanglement negativity may
provide different information on the underlying theory. At the
technical level, the calculations of the entanglement negativity
require a new layer of complexity – taking partial transpose of
the reduced density matrix –, as compared to the entanglement
entropy or mutual information.

A. Left-right entanglement negativity

In this part, for illustration purpose, we will calculate the
entanglement negativity between the left-moving modes and
the right-moving modes of the general state in Eq. (2.7), i.e.,

|ψ〉 =
∑
a

ψa|ha〉〉. (5.1)

We start from the density matrix as follows

ρ = |ψ〉〈ψ| =
∑
a,a′

ψaψ
∗
a′ |ha〉〉〈〈ha′ |

=
∑
a,a′

ψaψ
∗
a′

1
√
na
√
na′

×
∑
N,j

∑
N ′,j′

e−
4πε
l (ha+N− c

24 )e−
4πε
l (ha′+N ′− c

24 )

× |ha, N ; j〉 ⊗ |ha, N ; j〉〈ha′ , N ′; j′| ⊗ 〈ha′ , N ′; j′|.
(5.2)

Next, without loss of generality, let us take partial transposi-
tion over the right-moving modes. Then one can obtain

ρTR =
∑
a,a′

ψaψ
∗
a′

1
√
na
√
na′

×
∑
N,j

∑
N ′,j′

e−
4πε
l (ha+N− c

24 )e−
4πε
l (ha′+N ′− c

24 )

× |ha, N ; j〉 ⊗ |ha′ , N ′; j′〉〈ha′ , N ′; j′| ⊗ 〈ha, N ; j|,
(5.3)

where TR(L) represents the partial transposition over the
right(left)-moving modes. To calculate the entanglement neg-
ativity ELR, we can use the definitions either in Eq. (1.7) or
in Eq. (1.8). In the main text of this work, we will use the
definition in Eq. (1.8). For the readers who are interested in
the calculation of ELR based on Eq. (1.7), one can find the
explicit calculation in the Appendix.

Based on the expression of ρTR in Eq. (5.3), one can get

Tr
(
ρTR

)ne
=

[∑
a

|ψa|ne
1

(na)
ne/2

χha

(
e−

4πneε
l

)]2

→

[
e
πcl
24ε (

1
ne
−ne4 )

∑
a

|ψa|ne(Sa0)1−ne2

]2

.

(5.4)

where we take the thermodynamic limit in the second line.
Therefore, by using the definition in Eq. (1.8), one can imme-
diately obtain the entanglement negativity between the left-
moving modes and the right-moving modes as follows

ELR = lim
ne→1

ln Tr
(
ρTR

)ne
=

3πc

48
· l
ε
− lnD + 2 ln

(∑
a

|ψa|
√
da

)
.

(5.5)

By comparing with S(n)
L in Eq. (2.20), it is found that ELR

equals to the 1/2 Renyi entropy, i.e.,

ELR = S
(1/2)
L = S

(1/2)
R . (5.6)

This is actually a property of the entanglement negativity for a
general pure state22. Here we demonstrate it for the left-right
entanglement negativity through an explicit calculation. It is
noted that for ψi = δia, the universal parts of the entangle-
ment negativity are

E top
LR = − lnD + ln da, (5.7)

which are the same as the universal parts of the Renyi/von
Neumann entropy.

Before we end this part, the readers may be curious to ask
what is the result of Tr

(
ρTR

)n
if we choose n to be odd in Eq.

(5.4). After some simple algebra, one has

Tr
(
ρTR

)no
=
∑
a

|ψa|2no
1

(na)
no χha

(
e−

8πεno
l

)
. (5.8)

By comparing with Eq. (2.16), it is found that Tr
(
ρTR

)no
=

Trρn0

L , and therefore limn0→1 Tr
(
ρTR

)no
= TrρL = 1, which

is trivial.

B. Bipartition of a torus

For the bipartition of a torus in Fig. 2 (a) and (b), EAB can
be immediately obtained by considering the property of the
entanglement negativity for a pure state, i.e., EAB = S

(1/2)
A =

S
(1/2)
B . Then the entanglement negativity EAB corresponding

to Fig. 2 (a) and (b) has the following form

E(a)
AB = (S

(a)
A )(1/2)

=
3πc

48
· l1 + l2

ε
− 2 lnD + 2 ln

(∑
a

|ψa|da

)
,

E(b)
AB = (S

(b)
A )(1/2) =

3πc

48
· l1 + l2

ε
− 2 lnD. (5.9)

From the above analysis, one can find that for a pure state,
the entanglement negativity cannot provide more information
than the Renyi entropy. As mentioned in the introduction,
the entanglement negativity becomes more useful for a mixed
state. In the following parts, we will mainly focus on the en-
tanglement negativity for different cases of mixed states.
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C. Two adjacent non-contractible regions on a torus with
non-contractible B

For two adjacent non-contractible regions on a torus with
non-contractible B, similar with the discussion on the mutual
information, we mainly focus on the two cases in Fig. 8 (a)
and (b). In Fig. 8 (a), the two adjacent regions A1 and A2

share a one-component A1A2 interface, and in Fig. 8 (b), the
two adjacent regions share a two-component A1A2 interface.
In the following, we will study the entanglement negativity
between A1 and A2 for these two cases separately.

1. One component interface

Let us start with the entanglement negativity EA1A2 be-
tween two adjacent non-contractible regions A1 and A2 on a
torus, as shown in Fig. 8 (a). Given the general ground state in
Eq. (4.1), the state at the interface (including the components
b1, b2 and b3) can be written as

|ψ〉 =
∑
a

ψa
⊗
i=1,2,3

|hbia 〉〉. (5.10)

Then it is straightforward to check that the reduced density
matrix for A = A1 ∪A2 has the expression

ρA1∪A2 = TrB |ψ〉〈ψ|

=
∑
a

|ψa|2
⊗
i=1,2,3

ρbiA,a,
(5.11)

where

ρb1A,a =
1

nb1a

∑
N1,j1

e−
8πε
l1

(ha+N1− c
24 )|hb1a , N1; j1〉〈hb1a , N1; j1|,

ρb3A,a =
1

nb3a

∑
N3,j3

e−
8πε
l3

(ha+N3− c
24 )|hb3a , N3; j3〉〈hb3a , N3; j3|,

ρb2A,a =
1

nb2a

∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha+N ′2− c
24 )

× |hb2a , N2, j2〉|hb2a , N2; j2〉〈hb2a , N ′2; j′2|〈h
b2
a , N ′2; j′2|.

(5.12)

By taking partial transposition over the subsystem A2, one
obtains

ρT2

A1∪A2
=
∑
a

|ψa|2ρb1A,a ⊗
(
ρb2A,a

)T2

⊗
(
ρb3A,a

)T
=
∑
a

|ψa|2ρb1A,a ⊗
(
ρb2A,a

)T2

⊗ ρb3A,a,
(5.13)

where(
ρb2A,a

)T2
=

1

nb2a

∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha+N ′2− c
24 )

× |hb2a , N2, j2〉|hb2a , N ′2; j′2〉〈hb2a , N ′2; j′2|〈h
b2
a , N2; j2|,

with T2 representing the partial transposition over the subsys-
tem A2. After some algebra, one obtains, by taking the ther-
modynamic limit,

Tr
(
ρT2

A1∪A2

)ne
=
∑
a

|ψa|2ne
χha
(
e−

8πneε
l1

)
(nb1a )ne

χha
(
e−

8πneε
l3

)
(nb3a )ne

×
χha
(
e−

4πneε
l2

)
χha
(
e−

4πneε
l2

)
(nab2)

ne .

→
∑
a

|ψa|2ne (Sa0)
2−2ne e

πc(l1+l3)
48ε ( 1

ne
−ne)

× (Sa0)
2−ne e

πcl2
48ε ( 4

ne
−ne). (5.14)

Based on the definition (1.8), one can immediately obtain the
entanglement negativity as

EA1A2
= lim
ne→1

ln Tr
(
ρT2

A1∪A2

)ne
=

3πc

48
· l2
ε
− lnD + ln

(∑
a

|ψa|2da
)
.

(5.15)

It is noted that the first term, which is the area-law term, is pro-
portional to the length of the interface betweenA1 andA2, but
has nothing to do with the interface between A1(A2) and B,
as expected. The second and third terms are related only to the
quantum dimensions and the choice of ground state, and there-
fore are universal. We call the second and third terms in Eq.
(5.15) ‘topological entanglement negativity’. In particular, the
third term is very useful since it can distinguish Abelian and
non-Abelian theories. For an Abelian Chern-Simons theory,
we have da = 1 for each topological sector a, and therefore
ln
(∑

a |ψa|2da
)

= ln
(∑

a |ψa|2
)

= 0. For a non-Abelian
Chern-Simons theory, however, we have da 6= 1 for at least
one topological sector, and therefore ln

(∑
a |ψa|2da

)
6= 0 for

a general ground state. In practice, one can tune the ground
state of a topological system, and observe if the topological
entanglement negativity changes accordingly or not. This pro-
vides us a convenient way to distinguish an Abelian theory
from a non-Abelian theory.

In Ref. 23, the entanglement negativity for a toric code
model was studied. For the case of two adjacent non-
contractible regions as discussed in this part, they found that
the entanglement negativity is independent of the choice of
ground state. This may be easily understood based on our re-
sult in Eq. (5.15) considering that the toric code model is in
an Abelian phase.

As a comparison, it is noted that the mutual information
IA1A2 for two adjacent non-contractible regions on a torus
depends on the choice of ground state for both Abelian and
non-Abelian phases [see Eqs. (4.2)-(4.3)]. In other words, the
mutual information of two adjacent non-contractible regions
on a torus cannot distinguish an Abelian theory from a non-
Abelian theory. From this point of view, the entanglement
negativity is more useful in distinguishing different topologi-
cal phases.



22

2. Two component interface

Let us now consider the set up in Fig. 8 (b), where now
the two adjacent non-contractible regions A1 and A2 share a
two-component A1A2 interface. For the general ground state
(4.1), the state at the interface (including the components b1,
b2, b3 and b4 ) has the expression

|ψ〉 =
∑
a

ψa
⊗

i=1,2,3,4

|hbia 〉〉. (5.16)

The reduced density matrix for A1 ∪A2 can be expressed as

ρA1∪A2 = TrB |ψ〉〈ψ|

=
∑
a

|ψa|2
⊗

i=1,2,3,4

ρbiA,a, (5.17)

where

ρb1A,a =
1

nb1a

∑
N1,j1

∑
N ′1,j

′
1

e−
4πε
l2

(ha+N1− c
24 )e−

4πε
l2

(ha+N ′1− c
24 )

|hb1a , N1, j1〉|hb1a , N1; j1〉〈hb1a , N ′1; j′1|〈hb1a , N ′1; j′1|,
(5.18)

ρb2A,a =
1

nb2a

∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha+N ′2− c
24 )

|hb2a , N2, j2〉|hb2a , N2; j2〉〈hb2a , N ′2; j′2|〈h
b2
a , N ′2; j′2|,

(5.19)

ρb3A,a =
1

nb3a

∑
N3,j3

e−
8πε
l3

(ha+N3− c
24 )|hb3a , N3; j3〉〈hb3a , N3; j3|,

(5.20)
and

ρb4A,a =
1

nb4a

∑
N4,j4

e−
8πε
l4

(ha+N4− c
24 )|hb4a , N4; j4〉〈hb4a , N4; j4|.

(5.21)
Taking a partial transposition over region A2, one can get

ρT2

A1∪A2
=
∑
a

|ψa|2
(
ρb1A,a

)T2 ⊗
(
ρb2A,a

)T2 ⊗ ρb3A,a ⊗ ρ
b4
A,a.

(5.22)

where(
ρb1A,a

)T2

=
1

nb1a

∑
N1,j1

∑
N ′1,j

′
1

e−
4πε
l1

(ha+N1− c
24 )e−

4πε
l1

(ha+N ′1− c
24 )

|hb1a , N1, j1〉|hb1a , N ′1; j′1〉〈h
b1
a , N ′1; j′1|〈hb1a , N1; j1|,

(5.23)

and(
ρb2A,a

)T2

=
1

nb2a

∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha+N ′2− c
24 )

|hb2a , N2, j2〉|hb2a , N ′2; j′2〉〈hb2a , N ′2; j′2|〈h
b2
a , N2; j2|.

(5.24)

Then one can obtain, by taking the thermodynamic limit,

Tr
(
ρT2

A1∪A2

)ne
=
∑
a

|ψa|2ne
∏
i=3,4

χha
(
e
− 8πneε

li

)(
nbia
)ne

×
∏
i=1,2

χha
(
e
− 4πneε

li

)
χha
(
e
− 4πneε

li

)
(nabi)

ne

→
∑
a

|ψa|2ne (Sa0)
2−2ne e

πc(l3+l4)
48ε ( 1

ne
−ne)

× (Sa0)
4−2ne e

πc(l1+l2)
48ε ( 4

ne
−ne). (5.25)

Therefore, one can obtain the entanglement negativity be-
tween A1 and A2 as follows

EA1A2
= lim
ne→1

ln Tr
(
ρT1

A1∪A2

)ne
=

3πc

48
· l1 + l2

ε
− 2 lnD + ln

(∑
a

|ψa|2d2
a

)
.

(5.26)

Similar with the result of one component A1A2 interface in
Eq. (5.15), one can find that EA1A2 is dependent(independent)
of the choice of ground state for non-Abelian (Abelian) theo-
ries.

Therefore, the entanglement negativity of two adjacent non-
contractible regions for both configurations in Fig. 8 (a) and
(b) can serve as a quantity to distinguish an Abelian theory
from a non-Abelian theory.

D. Two adjacent non-contractible regions on a torus with
contractible B

In this part, we study the entanglement negativity of two ad-
jacent non-contractible regions A1 and A2 with a contractible
region B, as shown in Fig. 8 (c). For the general ground state
in Eq. (4.1), the state at the interface (including the compo-
nents b1, b2, b3 and b4 ) can be expressed as

|ψ〉 = |hb3I 〉〉 ⊗ |h
b4
I 〉〉 ⊗

∑
a

ψa|hb1a 〉〉 ⊗ |hb2a 〉〉. (5.27)

Then the reduced density matrix for A = A1 ∪ A2 can be
obtained as follows

ρA1∪A2 = ρb3A,I ⊗ ρ
b4
A,I

⊗
∑
aa′

ψaψ
∗
a′ |hb1a 〉〉〈〈h

b1
a′ | ⊗ |h

b2
a 〉〉〈〈h

b2
a′ |

(5.28)

where

ρb3A,I =
∑
N,j

1

nb3I
e−

8πε
l3

(hI+N− c
24 )|hb3I , N ; j〉〈hb3I , N ; j|,

ρb4A,I =
∑
N,j

1

nb4I
e−

8πε
l4

(hI+N− c
24 )|hb4I , N ; j〉〈hb4I , N ; j|.

(5.29)

The explicit expression of ρA1∪A2
is as follows
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ρA1∪A2
= ρb3A,I ⊗ ρ

b4
A,I

⊗
∑
a,a′

ψaψ
∗
a′

1√
nb1a

√
nb1a′

1√
nb2a

√
nb2a′

×
( ∑
N1,j1

∑
N ′1,j

′
1

e−
4πε
l1

(ha+N1− c
24 )e−

4πε
l1

(ha′+N ′1− c
24 )|hb1a , N1; j1〉|hb1a , N1; j1〉〈hb1a′ , N

′
1; j′1|〈h

b1
a′ , N

′
1; j′1|

)
⊗
( ∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha′+N ′2− c
24 )|hb2a , N2; j2〉|hb2a , N2; j2〉〈hb2a′ , N ′2; j′2|〈h

b2
a′ , N

′
2; j′2|

)
. (5.30)

Next, we take partial transposition over A2 on the reduced density matrix ρA1∪A2 . Then one can get

ρT2

A1∪A2
= ρb3A,I ⊗ ρ

b4
A,I

⊗
∑
a,a′

ψaψ
∗
a′

1√
nb1a

√
nb1a′

1√
nb2a

√
nb2a′

×
( ∑
N1,j1

∑
N ′1,j

′
1

e−
4πε
l1

(ha+N1− c
24 )e−

4πε
l1

(ha′+N ′1− c
24 )|hb1a , N1; j1〉|hb1a′ , N ′1; j′1〉〈h

b1
a′ , N

′
1; j′1|〈h

b1
a , N1; j1|

)
⊗
( ∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha′+N ′2− c
24 )|hb2a , N2; j2〉|hb2a′ , N

′
2; j′2〉〈h

b2
a′ , N

′
2; j′2|〈hb2a , N2; j2|

)
.

(5.31)

After some tedious but straightforward algebra, one can get

Tr
(
ρT2

A1∪A2

)ne
=

1(
nb3a
)ne χhI (e− 8πnε

l3

)
× 1(

nb4a
)ne χhI (e− 8πnε

l4

)
×

[∑
a

|ψa|ne
χha
(
e−

4πneε
l1

)(
nb1a
)ne/2 ·

χha
(
e−

4πneε
l2

)(
nb2a
)ne/2

]2

→ e
πc(l3+l4)

48ε ( 1
ne
−ne)S2−2ne

00 ×

[
e
πc(l1+l2)

24ε ( 1
ne
−ne4 )

∑
a

|ψa|ne(Sa0)2−ne

]2

. (5.32)

Then the entanglement negativity between A1 and A2 can be
expressed as

EA1A2 = lim
ne→1

ln Tr
(
ρT1

A1∪A2

)ne
=

3πc

48
· l1 + l2

ε
− 2 lnD + 2 ln

(∑
a

|ψa|da
)
,

(5.33)

which is the same as the result in Eq. (5.9) for a bipartited
torus. For this case, the entanglement negativity depends on
the choice of ground state for both Abelian and non-Abelian
Chern-Simons theories.

E. Two disjoint non-contractible regions on a torus

In this part, we consider the entanglement negativity EA1A2

between two disjoint non-contractible regions A1 and A2 on
a torus, as shown in Fig. 8 (d). For the general ground state in
Eq. (4.1), the state at the interface (including the components

b1, b2, b3 and b4 ) can be written as

|ψ〉 =
∑
a

ψa
⊗

i=1,··· ,4
|hbia 〉〉, (5.34)

where i = 1, 2 correspond to the interface between A1 and B,
and i = 3, 4 correspond to the interface between A2 and B. It
is straightforward to check that

ρA1∪A2
=
∑
a

|ψa|2ρA1,a ⊗ ρA2,a, (5.35)

where

ρA1,a =
e−8πε/l1

nb1a

∑
N1,j1

|hb1a , N1; j1〉〈hb1a , N1; j1|

⊗ e−8πε/l2

nb2a

∑
N1,j1

|hb2a , N1; j1〉〈hb2a , N1; j1|,
(5.36)
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and

ρA2,a =
e−8πε/l3

nb3a

∑
N3,j3

|hb3a , N3; j3〉〈hb3a , N3; j3|

⊗ e−8πε/l4

nb4a

∑
N4,j4

|hb4a , N4; j4〉〈hb4a , N4; j4|.
(5.37)

In this case, the partial transposition of ρA1∪A2
over A2 can

be expressed as

ρT2

A1∪A2
=
∑
a

|ψa|2ρA1,a ⊗ (ρA2,a)
T

=
∑
a

|ψa|2ρA1,a ⊗ ρA2,a

= ρA1∪A2
,

(5.38)

based on which one obtains Tr
(
ρT2

A1∪A2

)ne
= Tr (ρA1∪A2

)
ne

for two disjoint regions. Then the entanglement negativity
simply reads

EA1A2
= lim
ne→1

ln Tr
(
ρT2

A1∪A2

)ne
= 0. (5.39)

In Ref. 23, the same conclusion was obtained based on the
toric code model. Here we demonstrate it for a general Chern-
Simons field theory.

VI. CONCLUSIONS

In this work, we develop an edge theory approach to study
the topological entanglement entropy, mutual information,
and entanglement negativity in Chern-Simons theories. Com-
pared to the prior works, we propose a new regularized state to
describe the spatial quantum entanglement in Chern-Simons
theories. An advantage of our approach, as compared to,
e.g., the surgery method31, is that there is no need to con-
sider the three dimensional spacetime manifold which may
be quite complicated. For all the cases studied by the replica
and surgery method, our edge theory approach reproduces the
same results.

In addition, our edge theory approach is very flexible to
include various factors in the calculation of entanglement, in-
cluding the choice of ground state, the fusion and braiding of
Wilson lines and so on. In particular, through an interference
effect, we can detect the R-symbols and the monodromy of
two quasipartilces/anyons in the entanglement entropy. We
also generalize our edge theory approach to the calculation of
entanglement entropy for a manifold of genus g.

Furthermore, our edge theory approach is also applied to
the calculation of topological mutual information and entan-
glement negativity in a mixed state. To our knowledge, this is
the first calculation of the entanglement negativity for a gen-
eral Chern-Simons theory. It is found that the entanglement
negativity between two adjacent non-contractible regions on a
torus provides a simple way to distinguish an Abelian Chern-
Simons theory from a non-Abelian Chern-Simons theory. To

be concrete, for two adjacent non-contractible regions on a
tripartited torus, the entanglement negativity is independent
of the choice of ground state for an Abelian Chern-Simons
theory. On the other hand, for a non-Abelian Chern-Simons
theory, the entanglement negativity depends on the choice
of ground state. In the previous works,42,43 to distinguish a
non-Abelian phase from an Abelian phase for a microscopic
model, one needs to tune the ground state to find out the
MESs, based on which one can further obtain the quantum
dimension corresponding to each anyon. With the method in
our work, we only need to check whether the topological en-
tanglement negativity is dependent on the choice of ground
state or not, which is much easier in practice.

There are also some future problems we are interested in.
For example, in this paper we mainly focus on the quan-
tum entanglement in Chern-Simons theories. It is interest-
ing to generalize our approach to non-chiral TQFTs. In addi-
tion, it is also interesting to apply the concept of charged and
shifted topological entanglement entropy that was proposed
recently44 to a general TQFT based on the edge theory ap-
proach developed in this work.
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Appendix A: On modular tensor categories

In this part, for the completeness of this work, we give a
short review of the modular tensor category (MTC) descrip-
tion of a (2+1)-dimensional topological quantum field theory.
We will mainly review the properties of MTCs that are fre-
quently used in this work. For more details and other interest-
ing properties of MTCs, the readers may refer to Ref. 45–48.

The MTCs are also known as anyon models in physics. For
an anyon model, one has a finite set C of superselection sec-
tors which are called topological or anyonic charges. These
anyons are usually labeled by a, b, c, · · · , and they satisfy the
so-called fusion algebra

a⊗ b =
⊕
c∈C

N c
abc, (A1)

where the fusion coefficients N c
ab are non-negative integers,

which denote different ways that the anyon charges a and b
fuse into c. Here we use the direct sum ⊕ to emphasize that
different anyons lie in different Hilbert spaces. For each anyon
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model, there exists a trivial vacuum charge I ∈ C, or the iden-
tity. Each charge a has its own conjugate charge ā ∈ C so that
N I
aā = 1. For each fusion product in Eq. (A1), we may assign

a fusion vector space V abc which is spanned by the orthonor-
mal set of basis vectors |a, b; c, µ〉, with µ = 1, · · · , N c

ab. If
the fusion coefficients N c

ab are equal to 0 or 1, we call the
fusion rules multiplicity-free.

The fusion rules in Eq. (A1) are commutative and associa-
tive. For commutative, it means a⊗ b = b⊗ a, and therefore
N c
ab = N c

ba. For associative, it means the results of (a⊗b)⊗c
and a⊗ (b⊗ c) should be equivalent to each other. Then it is
required that ∑

d,e

Nd
abN

e
dc =

∑
d,e

Ne
adN

d
bc. (A2)

Another quantity we frequently used in the main text is the
quantum dimension da, which reflects the nontrivial internal
Hilbert space of the anyon a. It may be found by considering
the dimension of the fusion space of n anyons a with large n

dim

(∑
cn

V cna···a

)
=

∑
c2,··· ,cn

N c2
aaN

c3
c2a · · ·N

cn
cn−1a ∼ d

n
a .

(A3)

For arbitrary anyon models, one has da ≥ 1. If the quantum
dimensions of all the anyons in a TQFT are equal to 1, then
the theory is Abelian. On the other hand, if there exist anyons
with quantum dimensions> 1, then the theory is non-Abelian.
The total quantum dimension of a TQFT is defined as

D =

√∑
a

d2
a. (A4)

With the quantum dimension introduced, the probability of
fusing two anyons a and b into anyon c can be expressed as

Pab→c = N c
ab

dc
dadb

. (A5)

The constraint
∑
c Pab→c = 1 indicates that

dadb =
∑
c

N c
abdc. (A6)

Another useful concept in a TQFT is braiding. The effect of
switching two anyons a and b adiabatically is described by
the braiding operator Rab. It acts on the Hilbert space V abc as
follows

Rab|a, b; c, µ〉 =
∑
ν

[
Rabc

]
µν
|b, a; c, ν〉, (A7)

or diagrammatically,

µ

b a

c

=
∑
ν

[
Rabc

]
µν

ν

b a

c

(A8)

whereRabc are the so-calledR-symbols, which are unitary ma-
trices satisfying[

(Rabc )−1
]
µν

=
[
(Rabc )†

]
µν

=
[
Rabc

]∗
νµ
. (A9)

For a fusion multiplicity free theory, the R-symbol reduces to
a phase.

Based on R-symbols, one can study the effect of double
braiding of two anyons a and b, which is governed by the
monodromy equation, or ribbon property∑

λ

[
Rabc

]
µλ

[
Rbac

]
λν

=
θc
θaθb

δµν , (A10)

where θa is a root of unity called the topological spin of anyon
a. It is related to the spin, or the scaling dimension ha in CFT
as

θa = ei2πha . (A11)

Alternatively, the topological spin θa can be expressed in
terms of R-symbols as follows

θa =
1

da

∑
c

dcTrc [Raac ] . (A12)

Furthermore, given the R-symbols, one can also construct
the modular S and T matrices as follows

Sab =
∑
c

N c
abTr

[
Rabc R

ba
c

]
dc =

1

D
∑
c

N c
ab

θc
θaθb

dc,

(A13)
and

Tab = θaδab. (A14)

In MTCs, the modular S and T matrices are unitary matri-
ces satisfying S†S = SS† = 1 and T †T = T T † = 1. In
addition, from Eq. (A13), it is straightforward to check that

da =
Sa0

S00
=
S0a

S00
, and D =

1

S00
. (A15)

Other useful quantities such as the F -symbols will not be re-
viewed here, and one can refer to Ref. 45–47 for more details.

1. Gauge freedom

For any anyon models, there is a gauge freedom coming
from the choice of bases in the fusion vector space V abc . We
can always apply a unitary transformation in the vector space
V abc without changing the theory. By using the notation where[
uabc
]
µ,µ′

represents the unitary transformation of bases, i.e.,

|a, b; c, µ〉 =
∑
µ′

[
uabc
]
µµ′
|a, b; c, µ′〉, (A16)

the R-symbols transform as[
Rabc

]′
µ′ν′

=
∑
µ,ν

[
(uabc )−1

]
µ′µ

[
Rabc

]
µν

[
ubac
]
νν′

. (A17)
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For simplicity, let us consider the multiplicity-free case. Then
the unitary transformations uabc are simply complex phases. In
this case, the R-symbols transform as

[
Rabc

]′
=
ubac
uabc

Rabc . (A18)

It is found that the R-symbols are gauge dependent for a 6= b.
For a = b, however, one always has [Raac ]

′
= Raac , which

means Raac is a gauge invariant quantity.
The double braiding defined in Eq. (A10) transforms as

[
Mab
c

]′
: =

[
Rabc

]′ [
Rbac

]′
=
ubac
uabc

Rabc ·
uabc
ubac

Rbac

= Rabc R
ba
c = Mab

c ,

(A19)

which indicates that Mab
c is gauge invariant for arbitrary a

and b. In a similar way, one can check that all the nontrivial
F -symbols are gauge choice dependent47.

2. Topological data for SU(2)k theories

In this part we give a brief review of the topological data
of SU(2)k anyon theories47. The SU(2)k anyon theories are
q-deformed versions of the usual SU(2) for q = e−2πi/(k+2).
In other words, the integers in SU(2) are replaced by the q-
numbers [n]q ≡ qn/2−q−n/2

q1/2−q−1/2 . These anyon theories describe
SU(2)k Chern-Simons theories, WZW CFTs, and the Jones
polynomials of knot theory. The anyonic charges of a SU(2)k
anyon theory is given by C =

{
0, 1

2 , · · · ,
k
2

}
.

The fusion rules are given by a general version of the addi-
tion rules for a SU(2) spin:

j1 ⊗ j2 = ⊕min{j1+j2,k−j1−j2}
j=|j1−j2| j, (A20)

with j ∈ C. The fusion rules can be alternatively written as

j1 ⊗ j2 = ⊕jN j
j1j2

j

= |j1 − j2| ⊕ |j1 − j2|+ 1⊕ · · ·
⊕min{j1 + j2, k − j1 − j2}.

(A21)

The R-symbols are given by the general formula

Rj1,j2j = (−1)j−j1−j2q
1
2 (j1(j1+1)+j2(j2+1)−j(j+1)), (A22)

based on which we can get the topological spins

θj = ei2π
j(j+1)
k+2 . (A23)

In addition, based on the R-symbols, one can also obtain the
modular S matrix and T matrix according to Eqs.(A13) and
(A14), respectively. The quantum dimension for anyon j has
the expression

dj =
sin
(

(2j+1)π
k+2

)
sin
(

π
k+2

) , (A24)

and the total quantum dimension is

D =

√∑
i

d2
i =

√
k+2

2

sin
(

π
k+2

) . (A25)

For other topological data such as the F -moves (or F -
symbols), one can refer to, e.g., Ref. 47.

Appendix B: Alternative calculations of entanglement negativity
for different cases

1. Left-right entanglement negativity

In the main text, we calculate the left-right entanglement
negativity ELR based on the definition in Eq. (1.8). In this part,
we give an explicit calculation of ELR based on the definition
in Eq. (1.7), i.e.,

ELR = ln Tr|ρTR |. (B1)

For the state in Eq. (5.1), |ρTR | can be evaluated as follows∣∣ρTR ∣∣ =

√
(ρTR)

†
ρTR , (B2)

where(
ρTR

)†
ρTR

=
∑
aa′

|ψa|2|ψa′ |2
1

nana′

∑
N,j

∑
N ′,j′

e−
8πε
l (ha+N− c

24 )

e−
8πε
l (ha′+N ′− c

24 )|ha′ , N ′; j′〉 ⊗ |ha, N ; j〉
〈ha′ , N ′; j′| ⊗ 〈ha, N ; j|,

(B3)

which is of the diagonal form. Then one can get∣∣ρTR ∣∣ =
∑
aa′

∑
N,j

∑
N ′,j′

|ψa||ψa′ |
1

√
nana′

e−
4πε
l (ha+N− c

24 )

e−
4πε
l (ha′+N ′− c

24 )|ha′ , N ′; j′〉 ⊗ |ha, N ; j〉
〈ha′ , N ′; j′| ⊗ 〈|ha, N ; j|.

(B4)

Then the left-right entanglement negativity may be expressed
as

ELR = ln Tr|ρTR |

= 2 ln

∑
a

|ψa|
χha

(
e−

4πε
l

)
√
na


→ 2 ln

(∑
a

|ψa|S1/2
a0 e

3πl
4ε

c
24

)

=
3πc

48
· l
ε
− lnD + 2 ln

(∑
a

|ψa|
√
da

)
, (B5)

where we recall that na is expressed in Eq. (2.12), and take the
thermodynamic limit. This is exactly the same as the result in
Eq. (5.5).
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2. Entanglement negativity of two non-contractible regions on
a torus

In this part, we calculate the entanglement negativity of two
non-contractible regions on a torus [see Fig. 8] based on the
definition of entanglement negativity in Eq. (1.7). Following
the structure in the main text, we study these cases one by one,
as follows.

(a) Two adjacent non-contractible regions with non-contractible B:
one component interface

As shown in Fig. 8 (a), we study the entanglement nega-
tivity between A1 and A2 on a torus with a one-component
A1A2 interface. We may start from the partially transposed
reduced density matrix ρT2

A1∪A2
in Eq. (5.13), i.e.,

ρT2

A1∪A2
=
∑
a

|ψa|2ρb1A,a ⊗
(
ρb2A,a

)T2

⊗ ρb3A,a, (B6)

where ρb1A,a, (ρb2A,a)T2 and ρb3A,a are defined in Eqs.
(5.12)∼(5.14). Next, let us calculate |ρT2

A1∪A2
| as follows

∣∣∣ρT2

A1∪A2

∣∣∣ =

√(
ρT2

A1∪A2

)†
ρT2

A1∪A2
, (B7)

where(
ρT2

A1∪A2

)†
ρT2

A1∪A2

=
∑
a

|ψa|4
(
ρb1A,a

)2

⊗
[(
ρb2A,a

)T2
]† (

ρb2A,a

)T2

⊗
(
ρb3A,a

)2

.

(B8)

In particular[(
ρb2A,a

)T2
]† (

ρb2A,a

)T2

=
1

(nb2a )2

∑
N2,j2

∑
N ′2,j

′
2

e−
8π
l2

(ha+N2− c
24 )e−

8π
l2

(ha+N ′2− c
24 )

|hb2a , N ′2; j′2〉|h
b2
a , N2; j2〉〈hb2a , N ′2; j′2|〈h

b2
a , N2; j2|.

(B9)

Then one can get∣∣∣ρT2

A1∪A2

∣∣∣
=
∑
a

|ψa|2ρb1A,a ⊗ ρ
b3
A,a

⊗ 1

nb2a

∑
N2,j2

∑
N ′2,j

′
2

e−
4π
l2

(ha+N2− c
24 )e−

4π
l2

(ha+N ′2− c
24 )

|hb2a , N ′2; j′2〉|h
b2
a , N2; j2〉〈hb2a , N ′2; j′2|〈h

b2
a , N2; j2|.

(B10)

Then, by using the definition in Eq. (1.7), one can obtain the
entanglement negativity as follows

EA1A2 = ln Tr
∣∣∣ρT2

A1∪A2

∣∣∣
= ln


∑
a

|ψa|2

[
χha

(
e−

4πε
l2

)]2
χha

(
e−

8πε
l2

)


→ 3π

48
· l2
ε

+ ln

(∑
a

|ψa|2Sa0

)

=
3π

48
· l2
ε
− lnD + ln

(∑
a

|ψa|2da

)
(B11)

which is exactly the same as Eq. (5.15).

(b) Two adjacent non-contractible regions with non-contractible B:
two component interface

As shown in Fig. 8 (b), we study the entanglement nega-
tivity between A1 and A2 on a torus with a two-component
A1A2 interface. We may start from the partially transposed
reduced density matrix ρT2

A1∪A2
in Eq. (5.22) directly, i.e.,

ρT2

A1∪A2
=
∑
a

|ψa|2
(
ρb1A,a

)T2

⊗
(
ρb2A,a

)T2

⊗ ρb3A,a ⊗ ρ
b4
A,a,

(B12)

where the definition of (ρb1A,a)T2 , (ρb2A,a)T2 , ρb3A,a and ρb4A,a
can be found in Eqs.(5.18)∼(5.24). Based on ρT2

A1∪A2
in Eq.

(B12), one can get(
ρT2

A1∪A2

)†
ρT2

A1∪A2

=
∑
a

|ψa|4
[(
ρb1A,a

)T2
]† (

ρb1A,a

)T2

⊗
[(
ρb2A,a

)T2
]† (

ρb2A,a

)T2

⊗
(
ρb3A,a

)2

⊗
(
ρb4A,a

)2

.

(B13)

In particular, one has[(
ρb1A,a

)T2
]† (

ρb1A,a

)T2

=
1

(nb1a )2

∑
N1,j1

∑
N ′1,j

′
1

e−
8π
l1

(ha+N1− c
24 )e−

8π
l1

(ha+N ′1− c
24 )

|hb1a , N ′1; j′1〉|h
b1
a , N1; j1〉〈hb1a , N ′1; j′1|〈h

b1
a , N1; j1|.

(B14)

and[(
ρb2A,a

)T2
]† (

ρb2A,a

)T2

=
1

(nb2a )2

∑
N2,j2

∑
N ′2,j

′
2

e−
8π
l2

(ha+N2− c
24 )e−

8π
l2

(ha+N ′2− c
24 )

|hb2a , N ′2; j′2〉|h
b2
a , N2; j2〉〈hb2a , N ′2; j′2|〈h

b2
a , N2; j2|.

(B15)
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It is noted that now
(
ρb3A,a

)2
,
(
ρb4A,a

)2
,
[
(ρb1A,a)T2

]†
(ρb1A,a)T2 ,

and
[
(ρb2A,a)T2

]†
(ρb2A,a)T2 , are all of the diagonal form. Then

one can easily check that

∣∣∣ρT2

A1∪A2

∣∣∣ =

√(
ρT2

A1∪A2

)†
ρT2

A1∪A2

=
∑
a

|ψa|2ρb3A,a ⊗ ρ
b4
A,a

⊗ 1

nb1a

∑
N2,j2

∑
N ′2,j

′
2

e−
4π
l1

(ha+N1− c
24 )e−

4π
l1

(ha+N ′1− c
24 )

|hb1a , N ′1; j′1〉|hb1a , N1; j1〉〈hb1a , N ′1; j′1|〈hb1a , N1; j1|

⊗ 1

nb2a

∑
N2,j2

∑
N ′2,j

′
2

e−
4π
l2

(ha+N2− c
24 )e−

4π
l2

(ha+N ′2− c
24 )

|hb2a , N ′2; j′2〉|h
b2
a , N2; j2〉〈hb2a , N ′2; j′2|〈h

b2
a , N2; j2|.

(B16)

Then, one can obtain the entanglement negativity between A1

and A2 as follows

EA1A2 = ln Tr
∣∣∣ρT2

A1∪A2

∣∣∣
= ln


∑
a

|ψa|2

[
χha

(
e−

4πε
l1

)]2 [
χha

(
e−

4πε
l2

)]2
χha

(
e−

8πε
l1

)
χha

(
e−

8πε
l2

)


→ 3πc

48
· l1 + l2

ε
− 2 lnD + ln

(∑
a

|ψa|2d2
a

)
.

(B17)

which agrees with the result in Eq. (5.26).

(c) Two adjacent non-contractible regions on a torus with
contractible B

As shown in Fig. 8 (c), we study the entanglement nega-
tivity between two adjacent non-contractible regions A1 and
A2 with a contractible region B. We may start from the par-
tially transposed reduced density matrix ρT2

A1∪A2
in Eq. (5.31),

based on which we can get(
ρT2

A1∪A2

)†
ρT2

A1∪A2

=
(
ρb3A,I

)2

⊗
(
ρb4A,I

)2

⊗
∑
aa′

|ψa|2|ψa′ |2
1

nb1a nb1a′

1

nb2a nb2a′∑
N1,j1

∑
N ′1,j

′
1

e−
8πε
l1

(ha+N1− c
24 )e−

8πε
l1

(ha′+N
′
1− c

24 )

|hb1a′ , N
′
1; j′1〉|h

b1
a , N1, j1〉〈hb1a′ , N

′
1; j′1|〈h

b1
a , N1, j1|

⊗
∑
N2,j2

∑
N ′2,j

′
2

e−
8πε
l2

(ha+N2− c
24 )e−

8πε
l2

(ha′+N
′
2− c

24 )

|hb2a′ , N ′2; j′2〉|hb2a , N2, j2〉〈hb2a′ , N ′2; j′2|〈hb2a , N2, j2|,
(B18)

which is of the diagonal form. Then one can get

∣∣∣ρT2

A1∪A2

∣∣∣ =

√(
ρT2

A1∪A2

)†
ρT2

A1∪A2

= ρb3A,I ⊗ ρ
b4
A,I ⊗

∑
aa′

|ψa||ψa′ |
1√

nb1a nb1a′

1√
nb2a nb2a′∑

N1,j1

∑
N ′1,j

′
1

e−
4πε
l1

(ha+N1− c
24 )e−

4πε
l1

(ha′+N
′
1− c

24 )

|hb1a′ , N
′
1; j′1〉|h

b1
a , N1, j1〉〈hb1a′ , N

′
1; j′1|〈h

b1
a , N1, j1|

⊗
∑
N2,j2

∑
N ′2,j

′
2

e−
4πε
l2

(ha+N2− c
24 )e−

4πε
l2

(ha′+N
′
2− c

24 )

|hb2a′ , N ′2; j′2〉|hb2a , N2, j2〉〈hb2a′ , N ′2; j′2|〈hb2a , N2, j2|.
(B19)

Then, the entanglement negativity between A1 and A2 can be
obtained as follows

EA1A2 = ln Tr
∣∣∣ρT2

A1∪A2

∣∣∣ (B20)

= 2 ln

{∑
a

|ψa|
χha

(
e−

4πε
l1

)
√
nb1a

·
χha

(
e−

4πε
l2

)
√
nb2a

}

→ 2 ln

(∑
a

|ψa|Sa0e
3π(l1+l2)

4ε · c24

)
(B21)

which is the same as Eq. (5.33).
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