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We consider the proximity effect between Dirac states at the surface of a topological insulator
and a ferromagnet with easy plane anisotropy, which is described by the XY -model and undergoes
a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The surface states of the topological
insulator interacting with classical magnetic fluctuations of the ferromagnet can be mapped onto
the problem of Dirac fermions in a random magnetic field. However, this analogy is only partial
in the presence of electron-hole asymmetry or warping of the Dirac dispersion, which results in
screening of magnetic fluctuations. Scattering at magnetic fluctuations influences the behavior of
the surface resistivity as a function of temperature. Near the BKT phase transition temperature we
find that the resistivity of surface states scales linearly with temperature and has a clear maximum
which becomes more pronounced as the Fermi energy decreases. Additionally at low temperatures
we find linear resistivity, usually associated with non-Fermi liquid behavior, however here it appears
entirely within the Fermi liquid picture.

PACS numbers: 71.10-w, 73.20-r, 73.40-c

I. INTRODUCTION

The discovery of topological insulators (TI) has led
to new ways to observe exotic physics in condensed
matter systems, including phenomena such as magnetic
monopoles and axion electrodynamics1,2. Many of these
insights rely on the nature of the TI surface states,
which are described by the Dirac equation for relativis-
tic particles (see3,4 and references therein). The com-
bination of TI and magnetic materials creates a hybrid
platform to observe new physics by exploiting the spin-
momentum locking of surface states. These dual-layer
structures provide a way to experimentally realize disor-
dered Dirac hamiltonians and localization phenomena in
TI systems5,6.
Uniform out-of-plane magnetization, which can be in-

duced by proximity effect or by ordered impurities de-
posited at the surface of a TI, opens a gap in the surface
state spectrum7. This gapped state exhibits the anoma-
lous quantum Hall effect, which can be directly probed
in transport or by magnetooptical Faraday and Kerr ef-
fects8–14. Out-of-plane magnetic textures such as domain
walls and skyrmions host gapless chiral modes or local-
ized states, altering their dynamics15–18. As a result, the
strong interplay of magnetism and surface states can be
employed in spintronics applications.
In contrast, non-uniform in-plane magnetization can

act as an effective gauge field. Dirac fermions exposed
to transverse gauge field disorder, or a random magnetic
field (RMF), have been studied theoretically in the con-
text of the integer quantum Hall transition19, supercon-
ductivity20–22, spin liquids23, and disordered graphene24

(see5 for a review). RMF disorder can strongly renor-
malize the spectrum and influence transport properties
in both Schrödinger and Dirac electron systems and leads
to localization in the former25–28. A single Dirac cone will

not localize in a short-range RMF, however whether lo-
calization occurs the case of long-range RMF presently
lacks a definitive answer29–35. The search for new exper-
imental systems where the strength and spatial correla-
tion of the magnetic field can be tuned is essential in the
effort to understand the RMF problem.

In this work, we consider such a system via the prox-
imity effect between the surface of a TI and a thin-film
magnet with easy plane anisotropy, which we describe by
the XY -model. The XY -model enables magnetic vor-
tex excitations and undergoes a Berezinskii-Kosterlitz-
Thouless (BKT) phase transition, corresponding to vor-
tex unbinding. We have shown that classical magnetic
fluctuations of the XY -model can be represented as an
emergent static RMF acting on Dirac fermions, where the
range of disorder is temperature dependent. Quasi-long-
range gauge disorder below the BKT transition temper-
ature is in general unscreened and can strongly influence
Dirac states, making the problem intractable by usual
perturbation methods. However, we note that this gauge
field analogy is not full in the presence of electron-hole
asymmetry or warping terms, which depend on the dop-
ing level36. These terms lead to screening and the system
can be tuned from the perturbative to nonperturbative
regime by doping. We analyze transport in the doped,
perturbative regime and we show that the resistivity has
a prominent maximum near the BKT transition temper-
ature, where magnetic fluctuations are the most intense.

In Section II we present the model and discuss the
mapping of classical magnetic fluctuations to static RMF
disorder. In Section III we discuss the range of applica-
bility of the perturbative treatment of the disorder. In
section IV we calculate the temperature behavior of re-
sistivity in the perturbative regime. In Section V we
conclude and relate our work to current experiments.
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II. MODEL

The purpose of this work is to show how signatures of
an effective gauge field can be observed in transport of
Dirac fermions. Coupling the Dirac states to a magnetic
system with in-plane magnetic moments that undergoes
a phase transition, like the 2D XY model, allows for a
system with tunable gauge disorder. The Dirac surface
states of a 3D TI coupled to the XY -model can be de-
scribed by the following action

S = SXY + STI + SXY
TI , (1)

where

SXY =
ρs
2T

∫

dr (∇θ)2; SXY
TI = ∆

∫ β

0

dτdr ψ†n(r) · σψ;

STI =

∫ β

0

dτdr ψ†
{

∂τ + v [p× σ]z + αp2 − µ
}

ψ. (2)

The surface states are represented by a two-component
spinor ψ = (ψ↑, ψ↓)

T , σ = (σx, σy) is the vector of
Pauli matrices representing the real electron spin, v is
the Fermi velocity, and ∆ > 0 is the interlayer coupling
between surface states and a magnetic XY -model with
magnetic moments n(r) = (cos(θ), sin(θ)) with θ(r) de-
scribing their direction.
If electron-hole asymmetry is neglected (α = 0), the

magnetization plays the role of an emergent gauge field
a = ∆v−1 [n × ẑ]. It can be split as a = al + at into
a transverse part, responsible for the emergent magnetic
field Bz = [∇× at]z = ∆v−1(∇nl) perpendicular to the
surface, and a longitudinal part, which can generate an
emergent electric field E = −∂tal = −∆v−1∂tn

t. Here
nl and nt are the corresponding components of spin den-
sity. Magnetic fluctuations are assumed to be classical,
leading to zero emergent electric field, and therefore the
longitudinal gauge field can be safely gauged away.
The XY model in 2D describes magnetic moments

with fixed magnitude and arbitrary angle in the x-y
plane. Low energy modes are described by the contin-
uum model SXY in equation (2) with temperature T
and spin-wave stiffness ρS. The Mermin-Wagner theo-
rem forbids long-range ordering in 2D at all nonzero tem-
peratures37,38. However, the spin-spin correlation func-
tion exhibits unusual behavior, decaying algebraically
at low temperatures ∝ r−η where η(T ) = T/2πρs is
the critical exponent, which takes values from η(0) =
0 to ηBKT(TBKT) = 1/4. The correlation function
is ∝ exp(−r/ξ+) for T > TBKT. Near the transi-
tion the correlation length ξ+(T ) is given by ξ+(T ) ≈
a exp(3TBKT/2

√
T − TBKT), where a is cutoff for the

magnet of the order of the vortex core size, which in
turn is similar to the lattice constant of the magnet.
ξ+(T ) is finite only above the BKT transition and di-
verges exponentially as T → T+

BKT
39,40. The transition

between these two regimes, referred to as the BKT tran-
sition, is driven by the unbinding of magnetic vortex-
antivortex pairs and occurs at TBKT = πρs/2. The XY -

model can occur in magnetic thin films with strong in-
plane anisotropy, and has been realized in several com-
pounds including K2CuF4, Rb2CrCl4, BaNi2(VO4)2 and
(CH3NH3)2CuCl4

41–47.
Excitations of the magnetic XY -model θ(r) = θsw(r)+

θv(r) are spin-waves θsw(r), creating a smooth emergent
magnetic field Bz, and vortices θv(r), which generate a
nonunifrom magnetic field in a very nonlocal way. For
a set of vortices situated at ri, the distribution of phase
is θv(z) =

∑

i qi arg(z − zi) with z = x + iy and qi =
± for vortices and antivortices. The resulting magnetic
field is given by Bz = ∆v−1[cos(θ)∂yθsw − sin(θ)∂xθsw +
∑

i qi cos(θi)/|r− ri|] with θi = θsw(r) +
∑

j 6=i qj arg[z −
zj]. It diverges in the vicinity of each vortex core and
its magnitude depends nonlocally on the position of all
other vortices and slowly decays away from the vortex
cores.
The reconstruction of the local electronic structure due

to the nonuniform spin density n(r) near the vortex core
can be probed by tunneling experiments, as considered
in detail in the case of magnetic impurities48,49. Here,
we are interested in transport of Dirac fermions due to
scattering at magnetic fluctuations where the chemical
potential lies far above the Dirac point. In this case,
scattering is restricted to the conduction band, and the
vortex contribution to the effective magnetic field leads
to an effective RMF as the conduction electrons see many
vortices.
The interaction between Dirac fermions mediated by

spin fluctuations is obtained by integrating out the spin
fluctuations and expanding to the second order in ∆/µ.
The first order term vanishes; the second order term Sd,
corresponding to a disordered static magnetic field, reads

Sd = −∆2

2

∫

dτ1dτ2dr1dr2W
α
1

〈

nl
α(r1)n

l
β(r2)

〉

W β
2 , (3)

where Wα
i = ψ†(ri, τi)σ

αψ(ri, τi), and 〈· · · 〉 denotes av-
eraging over the free XY action including spin waves and
vortices. The longitudinal part of the spin-spin correla-
tion function is the only relevant one, given by

〈

nl
α(r1)n

l
β(r2)

〉

=
1

2

( |r1 − r2|
2a

)−η

exp

(

− r

ξ+

)

Λαβ
r1−r2

,

(4)
where the matrix Λαβ

q = qαqβ/q
2 ensures that only lon-

gitudinal spin fluctuations are taken into account and
a is the aforementioned lattice cutoff. Interaction be-
tween Dirac fermions V αβ

0 (q) = −∆2〈nl
α(q)n

l
β(−q)〉 =

V0(q)Λαβ is connected with the gauge invariant cor-
relator of the emergent magnetic field V0(q) =
−v2〈Bz(−q)Bz(q)〉/q2 and is given by

V0(q) = − πη∆2ξ2−η
+ aη

(q2ξ2+ + 1)1−η/2
. (5)

For T < TBKT, ξ+ → ∞ and the propagator is V0(q) ∝
1/q2−η, which results in singular behavior as q → 0 and
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strong temperature dependence through η. In 2D this
leads to an infrared divergence in the self-energy which
cannot be treated in a controlled manner in the absence
of screening50. Particularly, in the random phase approx-
imation (RPA) the screened interaction is given by

V −1(q) = V −1
0 −Πl(q). (6)

Here Πl(q) is the longitudinal spin-spin response function
in the static limit which is given by50

Πl =
q

8πv
Re





2kF
q

√

1−
(

2kF
q

)2

+ arcsin

(

2kF
q

)

− π

2



 .

(7)
It is zero for q ≤ 2kF, which signals the absence of screen-
ing. Physically, vanishing Πl(0) implies the absence of
uniform spin polarization in the TI in the presence of a
uniform external spin density n. Really, n can be safely
gauged away through a transformation which shifts the
position of a Dirac point qD = ∆v−1[n× ez], and there-
fore does not lead to any response.
Above we have neglected electron-hole asymmetry

(α = 0) in the Hamiltonian, describing electrons at the
surface of the topological insulator. In Bismuth based
topological insulators it is not negligible, but usually
does not change the physics qualitatively (see51,52 for
an exception). Here we point out that the presence of
electron-hole asymmetry or warping is crucial since it
breaks the connection to the emergent gauge field pic-
ture. As a result, the spin-spin response function at low
momenta becomes finite and allows screening. Recall-
ing that Πl(0) is the response to the uniform spin den-
sity, corresponding to momentum shift of Dirac states
qD = ∆v−1[n× ez], the resulting average spin polariza-
tion of electrons sD = 〈ψ†

σψ〉 is given by

sD =
∑

p

[

ez ×
p− qD

2|p− qD|

]

nF(αp
2+v|p−qD|−µ), (8)

where nF(ǫp) is the Fermi step-like distribution at zero
temperature. To linear order in n and α we get sD =
−ᾱnνF∆/2 with νF = µ/2π~2v2 the density of states of
Dirac electrons at the Fermi level and ᾱ = αµ/v2 the
dimensionless electron-hole asymmetry strength, which
leads to Πl(0) = −ᾱνF∆/2. The spin polarization van-
ishes in the absence of electron-hole asymmetry as ex-
pected. The screened interaction in RPA mediated by
magnetic fluctuations at T < TBKT is then given by

V (q) = −πη∆2ξ2−η
α aη

(qξα)2−η + 1
; ξα =

(

2

ᾱνF∆πηaη

)
1

2−η

(9)

The strength of electron-hole asymmetry, which regular-
izes our theory, can be characterized by the dimension-
less parameter ᾱ which decreases with the chemical po-
tential µ and vanishes in the undoped regime. As a re-
sult, by controlling the doping level the system can be
tuned from the perturbative to non-perturbative regime.

FIG. 1: (color online) Resistivity of TI surface states coupled
to an XY model. The resistivity scales linearly with tempera-
ture as T → 0 and across the BKT transition, with a nonuni-
versal peak at T ∼ TBKT that increases with increasing µ. As
µ increases the effect of the transition is less pronounced.

To clarify the range of applicability of the perturbative
approach, we consider the renormalization of the single-
particle spectrum.

III. SELF-ENERGY OF DIRAC ELECTRONS

In the Born approximation, the self energy of Dirac
electrons is given by

ΣR(ω, p) =

∫

q

Qα
p,p−qV

αβ(q)Qβ
p−q,pG

R
0 (ω,p−q), (10)

whereQp,p′ = 〈p|σ|p′〉 = (− sin[(ϕp+ϕp′)/2], cos[(ϕp+
ϕp′)/2])T is the matrix element for scattering of electrons
from the conduction band and their Green’s function is
GR

0 = (ω − vp + µ + iδ)−1. Summation over α, β =
x, y in equation (10) gives the angle factor Q̄p,p−q =

Qα
p,p−qΛ

αβ
q Qβ

p−q,p as follows

Q̄p,p−q = sin2
(

2ϕq − ϕp − ϕp−q

2

)

, (11)

where ϕp denotes the polar vector of a fermion with mo-
mentum p. If the scattering is elastic |p| = |p − q|,
trigonometry dictates 2ϕq−ϕp−ϕp−q = π and Q̄p,p−q =
1. ReΣ(0, pF) at the Fermi level leads to Fermi energy
renormalization, and it is zero for this case. Inserting
the screened propagator, equation (9), into (10) gives a

single particle decay rate ~γ = − Im Σ̂(0, pF), where

Im Σ̂ = −∆2ηξ1−η
α aη

2π~v
Γ

(

3− η

2− η

)

Γ

(

η − 1

η − 2

)

. (12)

The product of gamma functions is of order 1 for 0 <
η < 1/4.
The single particle life time diverges in the absence

of screening, where ξα → ∞ for ᾱ → 0, as expected. It
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cannot be cured by using the self-consistent Born approx-
imation and signals the break down of the perturbative
approach, which we use below for a calculation of con-
ductivity of Dirac fermions. The apparent breakdown of
perturbation theory in this model could also signal the
existence of a non-Fermi liquid state on the TI surface, a
possibility which could be explored by including the dy-
namics of the BKT magnet, which is beyond the scope
of this work.
In the presence of screening, the Fermi-liquid approach

breaks down for ~γ & µ. Using equations (9) and (12)
we find a lower bound on the Fermi energy

µ4−3η
c ≃ ∆3ηv2

π2α

(

2∆~v3

παa

)−η

. (13)

For µ < µc this approach is no longer valid and the sys-
tem could be tuned from the perturbative to nonper-
turbative regime by doping. We estimate for Bi2Te3,
v = 0.5 × 106 m/s, ∆ = 10 meV and α = 1/2m∗ with
m∗ ∼ 0.1me. The short distance cutoff a is estimated
by the half the lattice constant of two dimensional BKT
magnet K2CuF4, where a ∼ 2.5 Å42. At T = TBKT,
ηBKT = 1/4 which gives µc & 6 meV. However, it is also
important to keep in mind that for µ . ∆ higher order
terms in the expansion (3) become important and are not
considered here. We leave the non-perturbative regime
to further investigations which could be informed by this
type of experiment.

IV. TRANSPORT OF DIRAC FERMIONS

In the doped regime at µ ≫ ~γ, the quasipartcle pic-
ture is well defined and the resistivity of Dirac fermions
can be approximated by the Drude formula

ρ =
h

e2
2~

µτtr
, (14)

where τtr is the transport scattering time. Different
scattering mechanisms, including impurities, phonons,
and spin-fluctuations, additively contribute to τ−1

tr and
can be easily separated. Here we concentrate on elas-
tic scattering due to magnetic fluctuations, where for
|q| = 2kF sinϕ/2 the corresponding contribution is given
by

1

τtr
=

2π

~

∫

q

Q̄p,p−q |Vq| (1− cosϕq) δ(ξp−q − ξp) =

=
πη∆2

4~µ

(

µ

µa

)η ∫
dϕ

π

(2kFξ+)
2−η sin2(ϕ

2
)

[

(2kFξ+ sin(ϕ
2
))2 + 1

]

2−η

2

, (15)

with µa = ~v/2a. In contrast to the single particle decay
rate γ, the inverse transport time τ−1

tr does not diverge in
the absence of screening and weakly depends on screen-
ing length ξα. Therefore, in the equation (15) we used
the unscreened propagator V0(q) given by equation (5).

Nevertheless, we need to keep in mind that the deriva-
tion of Drude formula implies ~γ ≪ µ since all diagrams
with crossed impurity lines, which are important in the
opposite regime, are neglected 53. Using equation (14)
and the results above, the resistivity has the form

ρ(T, µ)

ρBKT

=
η

I0ηBKT

(

µ

µa

)η−ηBKT

I(η). (16)

Where I(η) is the integral in the second line of equa-
tion (15), ηBKT = 1/4, and I0 = I(ηBKT) ≈ 1.72. The
resistivity at the transition is given by

ρBKT =
h

e2

√
π∆2

4 µ2

(

µ

µa

)
1

4 Γ(5/8)

Γ(9/8)
. (17)

ρ(T, µ)/ρBKT is shown in Figure 1 for different values
of µ. There is a clear peak near TBKT due to increased
magnetic fluctuations. As T → 0 we find the following
expression

ρ(T → 0)

ρBKT

=

√
π Γ(9/8)

Γ(5/8)

(

µ

µa

)− 1

4 T

TBKT

, (18)

where the resistivity is linear at low temperature, unlike
usual impurity scattering. As T → T±

BKT across the
transition, we find that

ρ(T → T+
BKT)

ρBKT

= 1 +
1

4

{

4 + ln

(

µ

µa

)}

∆T

TBKT

, (19)

ρ(T → T−
BKT)

ρBKT

= 1 +
1

8

{

8 + 2 ln

(

µ

µa

)

(20)

+ ψ

(

5

8

)

− ψ

(

9

8

)}

∆T

TBKT

,

where ∆T = T − TBKT and ψ is the digamma func-
tion. The resistivity is linear in temperature in all three
regimes but has a different slope in each case. As T → 0,
the dynamics of the magnetic moments becomes impor-
tant, necessitating a fully quantum theory which is not
considered here. The slope is dictated by µ and changes
significantly with doping as shown in Figure 1. The tem-
perature of maximal resistivity is also dictated by µ; it
occurs for T ∼ TBKT but is nonuniversal. It can be solved
for using the exact expression in equation (16). We note
that for µ < 13 meV the slope is always negative for
T > TBKT and the maximum resistivity occurs before
the transition.

In a real experiment there will be many sources of scat-
tering including phonons and non-magnetic impurities.
The linear temperature dependence and sharp peak near
the BKT transition enables the separation of this scat-
tering mechanism from others in the system. Scattering
due to impurities is temperature independent, while at
low temperatures phonon scattering leads to a different
scaling law.
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V. CONCLUSION AND DISCUSSION

Physical realization of Dirac fermion-gauge field mod-
els in TI systems relies heavily on the strength of mag-
netic perturbations to the TI system. In this section we
provide some estimations of the coupling strength ∆ and
how it connects to current experiments. For the 3D TI
Bi2Te3 we use µ = 0.1 eV. The transport lifetime in
Bi2Te3 can be inferred from transport measurements to
be τ0 ∼ 10−12 s54.
In order to observe the anomalous transport behavior

described above, the coupling between the magnetic layer
and the TI must be strong enough such that τtr . τ0.
The transport time τtr at T = TBKT is found from equa-
tion (15), where

τ−1
tr =

π∆2

16~µ

(

µ

µa

)
1

4

I0. (21)

Setting τ tr = τ0 gives a lower bound on the coupling
strength ∆. For our parameters, we find ∆ & 10 meV,
which is well within the range of the recently observed
∆ ∼ 85 meV in lanthanide-doped Bi2Te3

55.

To summarize, we have considered the transport of
Dirac fermions coupled to an XY -model as temperature
is tuned through the BKT transition. We claim that
both short-range and quasi long-range disorder can be
realized, and the transition between these regimes can
be tuned by both doping level and temperature, thus
determining the strength and nature of the disorder. We
have analyzed the resistivity at high doping and we find
that it scales linearly with temperature, with a prominent
peak at the BKT transition temperature where magnetic
fluctuations are the strongest. Notably, the resistivity
also scales linearly with temperature as T → 0. The
effect is strengthened by decreasing the Fermi energy.
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