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We study the effect of localized magnetic moments on the conductance of a helical edge. In-
teraction with a local moment is an effective backscattering mechanism for the edge electrons. We
evaluate the resulting differential conductance as a function of temperature T and applied bias V for
any value of V/T . Backscattering off magnetic moments, combined with the weak repulsion between
the edge electrons results in a power-law temperature and voltage dependence of the conductance;
the corresponding small positive exponent is indicative of insulating behavior. Local moments may
naturally appear due to charge disorder in a narrow-gap semiconductor. Our results provide an al-
ternative interpretation of the recent experiment by Li et al.1 where a power-law suppression of the
conductance was attributed to strong electron repulsion within the edge, with the value of Luttinger
liquid parameter K fine-tuned close to 1/4.

Introduction - In search for topological insulators, the
III-V semiconductor structures with band inversion ap-
peared as a viable option2. The band inversion does
occur in the type-2 heterostructure, InAs/GaSb. If the
layers forming the well are narrow enough, the hybridiza-
tion of states across the interface results in a formation
of a gap; in the “topological” phase, the gap is accom-
panied by edge states free from elastic backscattering.
These putative states became a target of an extensive set
of measurements1,3–6. First, a surprisingly robust con-
ductance quantization was found5. A later experiment1

explained the temperature-independent quantized con-
ductance G as an inadvertent deviation from the linear-
response regime. The observed1 power-law temperature
and bias voltage dependence of the differential conduc-
tance was suggestive of insulating behavior. Assuming
topologically protected edge states, it can be interpreted
as a manifestation of strong-interaction physics: at low
energies, even a single impurity can “cut” the edge, sup-
pressing charge transport7 if the Luttinger parameter is
very small, K < 1/48,9 (K = 1 corresponds to non-
interacting electrons). Measurements1 yield K ≈ 0.22
(with a 5% error), which is very close to the critical value
of 1/4; an increase of K by mere 12% would change the
sign of dG/dT . Fine-tuning K to such a stable value
seems improbable, given the dependence of the edge state
velocity on the gate voltages, varied in the experiment.
The reliance on fine-tuning in the current explanation of
experiments provides an impetus to search for alterna-
tives less sensitive to a specific value of K.

We find that scattering off localized magnetic moments
may lead to temperature and bias dependences of the dif-
ferential conductance similar to those observed1 at mod-
erately weak interaction, K ≈ 0.8, without fine-tuning
of K. The origin of localized moments in InAs/GaSb
quantum wells is not known, but the narrow 40-60K gap
in these systems may allow for the presence of charge
puddles10 which can act as magnetic impurities11. In the
present work we focus on the non-linear current-voltage
characteristics and on the effects of electron-electron in-
teractions within the helical edge which were not consid-

ered in Ref.11.

The setup and qualitative description of the main re-
sults - We start by considering a single spin-1/2 magnetic
moment S coupled to a helical edge. The isolated edge
is described8 by a Luttinger liquid Hamiltonian H0; the
local moment is coupled to the edge electrons by, gener-
ally, anisotropic exchange interaction. Separating out its
isotropic part, the full time-reversal symmetric Hamilto-
nian of the coupled edge-impurity system can be written
as

H = Hiso +
∑
ij

δJijSisj(x0) (1)

with Hiso being the Hamiltonian with isotropic exchange:

Hiso = H0 + J0S · s(x0) (2)

Here, S is the spin-1/2 impurity spin operator, and
s(x0) = 1

2

∑
αβ ψ

†
α(x0)σαβψβ(x0) is the edge electron

spin density at the position x0 of the contact interac-
tion with the local moment. (From hereon we will omit
the position arguments.) We shall assume δJij � J0 so
that the exchange is almost isotropic11. Thus we can
treat the second term in Eq. (1) as a perturbation.

The first term in Hiso, Eq. (2) is the bosonized
Luttinger-liquid Hamiltonian describing the interacting
helical edge electrons, H0 = (2π)−1v

∫
dx[Π2 + (∂xϕ)2];

we assume the dimensionless exchange coupling parame-
ter to be small, ρJ0 � 1 (here ρ is the electron density of
states per spin per unit edge length). The bosonic fields
commute as [ϕ(x),Π(y)] = iπδ(x− y). We have rescaled

the fields by appropriate factors of
√
K; the bosonization

identity is ψβ(x) = (2πa)−1/2e
−i(β

√
Kϕ− 1√

K

∫ x
−∞ dx′Π)

with β = +/− for right/left movers (or spin up/down;
we take z-axis to be the spin quantization axis of helical
electrons at Fermi energy); a is the short-distance cutoff.
In bosonic representation, the spin density takes form

sx ± isy = ±i(2πa)−1e±2i
√
Kϕ, sz = 1

2π
√
K

Π. Using it,
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we re-write the exchange interaction Hamiltonian as

J0S·s→J⊥
−i
4πa

(S+e
−2i
√
Kϕ−S−e2i

√
Kϕ)+Jz

1

2π
√
K
SzΠ .

(3)
Even though the bare Hamiltonian (2) is isotropic, J⊥ =
Jz = J0, the exchange becomes anisotropic under renor-
malization group (RG) flow, as the scaling dimensions of
the corresponding spin densities in Eq. (3), ∆⊥ = K and
∆z = 1, differ from each other12, see also Eqs.(4)–(5) be-
low. The isotropy breaking is not an artefact: anisotropy
is already present in the bare Hamiltonian even at K = 1
due to the spin-orbit interaction; the Hamiltonian has no
SU(2) symmetry but only a smaller U(1) symmetry (spin
rotations about z-axis).

The weak-coupling (ρJ � 1 and 1−K � 1) RG equa-
tions for J⊥ and Jz are13–15 (here E is the running cutoff)

dJ⊥
d lnE

= −(1−K)J⊥ − ρJzJ⊥ (4)

dJz
d lnE

= −ρJ2
⊥ (5)

The right-hand-side of the first equation starts at tree
level with a coefficient12,16 1 − ∆⊥ = 1 − K; the sec-
ond equation does not have such a term since ∆z = 1.
The terms second-order in J are due to the Kondo effect
and can be derived from poor man scaling17, or from an
operator product expansion12,16.

Starting from isotropic initial condition, J0 > 0,
Eq. (4) shows that there are two regimes of parameters:
ρJ0 � 1−K and ρJ0 � 1−K. In the latter case 1−K
can be dropped from Eq. (4), and the physics is similar
to that of the case K = 111.

In this paper we focus on the opposite limit, ρJ0 �
1−K. (Note, such initial condition can be satisfied even
if the electron-electron interaction is weak, 1 −K � 1.)
In this case the RG flow governed by Eqs. (4)–(5) can
be divided into two regimes separated by energy scale
T ∗ (we use units kB = ~ = 1) defined by the crossover
condition18 ρJz(T

∗) = 1−K,

T ∗ = D(
1√
2

ρJ0

1−K
)1/(1−K) . (6)

Here D ∼ Eg is the bare cutoff which we take to be
the bulk band gap19. At energies E � T ∗ one can ig-
nore ρJz(E) in (4), whereas at E � T ∗ one can ignore
1 − K. Next, we discuss electron backscattering in the
high energy limit, E � T ∗ where interaction (K 6= 1) is
important.

The backscattering current at energies above T ∗ -
The isotropic exchange Hamiltonian (2) alone does not
backscatter edge electrons in steady state (DC bias) since
each backscattering event is accompanied by an action of
the nilpotent operator S− on the impurity spin polar-
ized along z-axis20. The presence of anisotropy in the
exchange, Eq. (1), gives rise to backscattering. This per-
turbation in Eq. (1) can be treated using Fermi Golden

Rule, assuming equilibrium impurity polarization 〈S〉 =
z 1

2 tanh eV
2T

21. Integration over electron phase space vol-

ume leads to a backscattering current 〈δI〉 ∼ e2V (ρδJ)2.
We can find the full temperature and bias voltage de-
pendence by solving for the renormalized coupling δJ .
Since the pertinent constant δJ couples to the spin-flip

operators e±2i
√
Kϕ, it acquires a power-law energy de-

pendence δJ(E) = (D/E)1−KδJ(D) for E > T ∗. Taking
E ∼ max(T, eV ), the T and V -dependent backscatter-
ing current becomes (valid at max(T, eV )� T ∗)

〈δI〉 =
e2

h
cV T−2(1−K)[max(1, eV/T )]−2(1−K) , (7)

where constant c depends on the bare exchange tensor.
Equation (7) is a simplified version of our main result.
Its detailed version, see Eq. (14), reveals, in addition to
eV/T ∼ 1, yet another crossover in the current-voltage
characteristic occurring at eV

T ∼ ρJ � 1; it is associated
with the details of impurity spin torque and relaxation,
ignored in Eq. (7).

Long edge conductance at energies above T ∗ - Let us
now consider a long sample which may host many im-
purities near the edge. A single impurity contributes
an amount δR ≈ δG/G2

0to the edge resistance (here
G0 = e2/h and δG = d 〈δI〉 /dV ). In a long sample
with N impurities we can simply add resistances if the
impurities are dilute enough22. The impurities dominate
the edge resistance if NδG� G0, where the same typical
value δG for each impurity is used. In this case one finds
G ≈ G2

0/NδG for the conductance of a single edge. Here
δG is evaluated with the help of Eq. (14) or its simplified
version, Eq. (7), both valid at max(T, eV ) > T ∗.

Using Eq. (7) one finds a power-law dependence
G(V, T ) ≈ (G0/cN)[max(T, eV )]2(1−K). In Ref.1 the au-
thors found a fit G ∝ V 0.37 in the regime eV > T for a
sample of length L = 1.2µm (see inset in Fig. 4 of Ref.1).
Matching with our theory of many impurities leads to
2(1−K) ≈ 0.37, or K ≈ 0.82. Thus, in presence of many
impurities, even moderately weak interactions can give
rise to the power law seen in Ref.1. The two possible
explanations (many impurities and weak interaction vs.
single impurity and strong interaction) of the observed
conductance predict different dependencies of G on the
edge length: for many impurities one expects N ∝ L
and hence resistive behavior G ∝ L−1. Although G(L)
dependence is not reported in Ref.1, the earlier work5

found it to be linear at L & 10µm 23. The presence
of magnetic impurities may also be identified from their
subtle effect on the non-linear I-V characteristics, which
we discuss next.

Refinement of Eq. (7) - The simplified form Eq. (7)
of the current-voltage characteristic misses several fine
points relevant for the future analysis of experiments:
(1) it does not provide the accurate form of the crossover
at eV/T ∼ 1, and (2) it does not reveal an addi-
tional crossover at smaller bias, eV/T ∼ ρJ . The latter
crossover is associated with the precession of the local
magnetic moment in the exchange field h ∼ eV ρJ pro-
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FIG. 1. (Color online) Log-log plot of the scaled conduc-
tance, G·T−α, in the presence of many impurities, G ∝ 1/δG.
Here δG = d 〈δI〉 /dV and α = 2 − 2K > 0 are taken
from Eq. (14), valid at intermediate energies max(T, eV ) >
T ∗. The conductance has two crossover scales in its V -
dependence. The higher crossover is at eV ∼ T : above
it, conductance increases (upon increasing V ) asymptotically
as a power law with exponent α > 0 (dashed line). Be-
low it, G stays roughly constant until the lower crossover
scale, eV ∼ ρJeff(T )T , is reached. Below it, the conduc-
tance changes by a factor 1/b(T ) > 1 that depends weakly on
temperature, see discussion below Eq. (16). The inset shows
G(V ) at three different temperatures T (increasing from the
lowest to highest curve).

duced by the spins of itinerant edge electrons under a
finite bias21. The crossover occurs once the precession
frequency ∝ h becomes comparable to the Korringa re-
laxation rate,24 1/τK ∼ (ρJ)2T , as we will see in a de-
tailed derivation of backscattering current.

The current operator of backscattered electrons is
given by25 δI = −e∂tδN where 2δN = (NL −NR) is the
difference between the number of left and right movers
on the edge; it obeys [δN, si(x0)] = iεzinsn(x0) and com-
mutes with H0. The decomposition (1) of the Hamilto-
nian is useful because at zero frequency the Hamiltonian
Hiso, Eq. (2), does not lead to backscattering of helical
edge electrons20. It can be seen by noticing that: (i)
∂t 〈Sz〉 = 0 in a steady state, because Sz is bounded;
this allows one to write the average backscattering cur-
rent as11 〈δI〉 = −e∂t 〈Stotz 〉 with Stotz = δN + Sz, and
(ii) the operator Stotz commutes with Hiso and there-
fore is a conserved quantity in absence of δJij . Hence
∂t 〈Stotz 〉 |δJ→0 = 0 and 〈δI〉 |δJ→0 = 0. We focus here
on the case of a single magnetic moment; in the presence

of many moments, we can define Stotz = δN +
∑
n S

(n)
z

where the sum is over the localized spins S(n). In this
work, we ignore the effects of correlations between the
localized spins and coherent backscattering, allowing us
to simply add up single-moment contributions to the edge
resistance. This is justified for dilute spins, as discussed
in more detail in Ref.22.

From hereon, we consider scattering off a single spin,
and express the average steady-state backscattered cur-
rent as 〈δI〉 = −e∂t 〈Stotz 〉. Commuting with the Hamil-

tonian (1) leads to [we denote δJ++ = δJxx − δJyy +
i(δJxy + δJyx), S± = Sx ± iSy for brevity]

〈δI〉 = e
∑

i,j=x,y

εijz (δJjz 〈Si : sz :〉+ δJzj 〈Sz : si :〉)

+ eImδJ++ 〈S− :s− :〉+
1

2
ρe2V (δJyz 〈Sx〉 − δJxz 〈Sy〉) .

(8)
In agreement with the presence of an integral of motion,
the average current vanishes when δJ → 0. The averag-
ing above is done with respect to the density matrix %
with Hamiltonian (1) in presence of a finite bias voltage,

% ∼ e−β(H−eV Stot
z )11. We denote :sj := sj−〈sj〉0 with 〈〉0

being the thermal average in absence of exchange inter-
action, %0 ∼ e−β(H0−eV δN). The last term in (8) comes
from the reducible part 〈sj〉0 = 1

2δjzρeV .
Equation (8) is evaluated at time t long enough so

that the steady-state value of 〈S〉 has been reached. The
averages 〈Sk : sl :〉 can be evaluated approximately in
the exchange interaction assuming a separation of time
scales for the itinerant electron and spin dynamics22. The
approximation results in

〈Sk :sl :〉(t) ≈ −
∑
j

(δkjJ0 + δJkj)
1

2
ImCjl

−
∑
ijn

(δijJ0 + δJij)εikn 〈Sn〉ReCjl .
(9)

Here 〈Sn〉 is the steady-state impurity spin polarization
created by the current passing on the edge. The inte-
grated correlation function Cnl =

∫∞
0
dt′ 〈sn(0) :sl(t

′) :〉0
depends on temperature and bias voltage (through the
average 〈. . . 〉0). The only non-zero components of the
matrix of Cnl are the diagonals and Cxy = −Cyx 6= 0,
the latter being due to finite bias voltage. The temper-
ature and bias dependence of Cnl appearing in Eq. (9)
can be moved into the T and V dependence of running
couplings Jij(T, V )22. Inserting Eq. (9) into Eq. (8) al-
lows us to express the backscattering current in terms
of the running couplings and steady-state values of the
local-moment spin polarization 〈S〉, see Ref.22. The last
is found from the Bloch equations26. At δJ = 0, its only
finite component is 〈Sz〉 = 1

2 tanh eV
2T due to the U(1)

symmetry. Aiming at the lowest-order in δJ result for
〈δI〉, we need to find 〈Sx,y〉 to the first order in δJ . Un-
like 〈Sz〉, which is a function of eV/T given by thermo-
dynamics, the components 〈Sx,y〉 depend22 on both the
effective field hz = 1

2eV ρJz generated by the bias volt-
age, and on the local-moment Korringa relaxation rate

τ−1
K = π

2 ρ
2(J2
⊥

eV
2T

tanh eV
2T

+ J2
z )T . (We use here the running

couplings with their implicit dependence on V and T .)
The backscattering current is

〈δI〉 = e
π

4
eV ρ2|δJ++(T, V )|2 + e

π

4
eV

1

2
R(T, V )

×
∑
i=x,y

ρ2

(
δJzi(T, V ) +

J⊥(T, V )

Jz(T, V )
δJiz(T, V )

)2

.

(10)
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Here the first term arises from non-zero 〈Sz〉 and can
be derived simply from Fermi Golden Rule by assuming
〈S〉 = z 1

2 tanh eV
2T . In the second term, function

R(T, V ) ≈
Jz(T,0)
Jeff(T ) + x2

1 + x2
, x =

eV

2T

2/π

ρJeff(T )
, (11)

comes from 〈Sx,y〉 6= 0 and therefore depends on the
ratio hz/τK = x. Here we abbreviated ρJeff(T ) =
ρ[J⊥(T, 0)2 + Jz(T, 0)2]/Jz(T, 0) � 1. In Eq. (11) the
term Jz/Jeff . 1 only matters at very small bias eV �
TρJeff � T ; thus we have neglected the V -dependence
in it.

In Eq. (10) the current is written in terms of the run-
ning couplings Jij(T, V ). Next, we will write it in terms
of the bare couplings, which allows us to see explicitly
the T, V -dependence of 〈δI〉. At T ∗ < max(eV, T ) < D
one has22

X(T, V ) ≈ X(D)

(
D

2πT

)1−K√
F (
eV

2T
) (12)

with a function

F (y) = KB(K+i
y

π
,K−i y

π
)
sinh y

y
≈ B(K,K)

[1 +A(K)y2]1−K
.

(13)

Here A(K) = π−2Γ(K)
2

1−K and B is the Euler
Beta function; X stands for any of the quantities,
ReδJ++, ImδJ++, and δJzi + J⊥

Jz
δJiz (i = x, y), which

appear in Eq. (10).
Using Eqs. (10)–(13) we arrive at the central result

of this paper: the temperature and bias dependence of
the current can be lumped in a product of several simple
terms,

〈δI〉 = δG0

[
D

2πT

]2−2K

V
B(K,K)

[1 +A(K)( eV2T )2]1−K
f(x, T ) ,

f(x, T ) =
b(T ) + x2

1 + x2
, x =

eV

2T

2/π

ρJeff(T )
. (14)

Here the T -independent factor is δG0 = e2

~
π
4 ρ

2δJ2
tot(D) ,

δJ2
tot(D)= |δJ++(D)|2 +

1

2

∑
i=x,y

[δJzi(D) + δJiz(D)]2 ,

(15)
while Jeff(T ) and

b(T )= 1−
(1− Jz(T,0)

Jeff(T ) ) 1
2

∑
i=x,y[δJzi(D) + δJiz(D)]2

|δJ++(D)|2 + 1
2

∑
i=x,y[δJzi(D) + δJiz(D)]2

(16)
display a weak temperature dependence22. (For typical
values of exchange couplings δJij(D) function b(T ) can
be well approximated by a constant of order 1: 0.67 ≤
b(T ) ≤ 0.83 in the interval T ∗ ≤ T ≤ D22.) At a fixed
temperature T , the current dependence on bias V has two
well-separated crossover scales described by the last two

factors in (14). The smaller scale, V ∼ TρJeff(T ), is asso-
ciated with the impurity spin dynamics. The crossover at
the higher scale, V ∼ T , occurs between the linear and
weakly-nonlinear 〈δI〉 vs. V dependencies. Near this
crossover one may set f → 1 in Eq. (14), reproducing
the result of Eq. (7) with, however, accurate crossover
behavior near eV ∼ T .

The backscattering current at energies below T ∗ - At
energies E . T ∗, one may neglect the small term
∝ (1 − K) in (4)–(5) and consider the resulting weak-
coupling Kondo RG with the initial condition ρJ⊥(T ∗) =√

2(1−K)22. For small 1−K, it yields the Kondo temper-

ature TK ∼ T ∗e−1/
√

2(1−K) � T ∗. The RG flow erases
the uniaxial anisotropy created byK 6= 1, and Jz ≈ J⊥ at
energies below T ∗. As a result, Jeff = 2Jz in Eq. (11) and
R = ( 1

2 + x2)/(1 + x2). Similarly, the anisotropic pertur-
bation in Eq. (1) becomes RG-irrelevant, and Eq. (12)

is replaced11 by X(E) ≈ X(T ∗) lnE/TK

lnT∗/TK
. Hence, the

backscattering current becomes

〈δI〉 = δG0V

[
ln max(T, eV )/TK

lnT ∗/TK

]2
b+ x2

1 + x2
, (17)

valid for TK < max(T, eV ) < T ∗. Here b is given by
Eq. (16) which becomes independent of T upon setting
Jeff = 2Jz. Similarly, δG0 was introduced below Eq. (14)
but now one must use δJ2

tot(T
∗) in it with the “new” bare

cutoff.
The coupling constant ρJz(E) ∼ [ln(E/TK)]−1 grows

in the course of RG, and below the Kondo temper-
ature, max(T, eV ) < TK , Eqs. (4)–(5) are no longer
valid. In this regime one can use the phenomenological
local-interaction Hamiltonian27,28 to obtain δG(V, T ) ∝
T 4g(V/T ); the crossover function g(x) has asymptotes
g(x → 0) = const and g(x � 1) ∼ x4. Details can
be found in Ref.28 upon setting K = 1 therein. Note
that δG decreases when reducing T, eV and thus leads
to G = e2/h in the limit of zero temperature and bias.
This behavior is opposite from Eq. (14) which indicated
an insulating edge at low energies.

Conclusions - We analyzed the joint effect of two weak
interactions on the edge conduction in a 2D topological
insulator. These interactions are: the repulsion between
itinerant electrons of an edge state, and their exchange
with the local magnetic moments. This joint effect may
result in a seemingly insulating behavior of the edge con-
duction down to a low temperature scale T ∗, see Eq. (6):
at max(T, eV ) & T ∗, the single-impurity backscattering
current 〈δI〉 grows as a power law upon lowering temper-
ature or bias, see Eq. (14), or Fig. 1 for the conductance
in presence of many moments. Localized magnetic mo-
ments may appear in a narrow-gap semiconductor as a
consequence of charge disorder11. Scattering off mag-
netic moments provides an alternative explanation of the
recent experiment1, assuming T ∗ is below the tempera-
ture range explored in1. [None of the considered interac-
tions break the time-reversal symmetry29, so at low en-
ergies, max(T, eV ) � T ∗, backscattering is suppressed,
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see Eq. (17).] The developed theory is also applicable
to magnetically-doped3031 heterostructures. Finally, we
find two crossovers in the I-V characteristics: the main
one occurs at eV ∼ T ; a more subtle one occurs at lower
bias, eV ∼ ρJT , see Fig. 1. Its observation in future ex-
periments may provide evidence for the considered mech-

anism of the edge state excess resistance.
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