aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum critical points of j=3/2 Dirac electrons in
antiperovskite topological crystalline insulators
Hiroki Isobe and Liang Fu
Phys. Rev. B 93, 241113 — Published 21 June 2016
DOI: 10.1103/PhysRevB.93.241113


http://dx.doi.org/10.1103/PhysRevB.93.241113

New Quantum Critical Points of j = 3/2 Dirac Electrons in
Anti-Perovskite Topological Crystalline Insulators

Hiroki Isobe and Liang Fu
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

We study the effect of the long-range Coulomb interaction in j = 3/2 Dirac electrons in cubic
crystals with the Op symmetry, which serves as an effective model for anti-perovskite topological
crystalline insulators. The renormalization group analysis reveals three fixed points that are Lorentz-

invariant, rotationally-invariant, and Op-invariant.

Among them, the Lorentz- and Op-invariant

fixed points are stable in the low-energy limit while the rotationally-invariant fixed point is unstable.
The existence of a stable Op-invariant fixed point of Dirac fermions with finite velocity anisotropy
presents an interesting counter-example to emergent Lorentz invariance in solids.

The discovery of Dirac electrons (broadly defined) in
solids has opened a variety of new topics in physics for a
decade. Examples of Dirac materials include graphene!,
topological insulators®?, and Dirac/Weyl semimetals®5.
The important feature of massless Dirac fermions is the
linear energy dispersion crossing at a point, which makes
the theory scale invariant. Still there is a difference
from the Dirac theory in high-energy physics; in solids,
the speed of electrons v is smaller than the speed of
light ¢ and hence the Lorentz invariance is broken when
electron-photon interaction is present. Also the velocity
of Dirac electrons can differ along different directions in
a crystal.

Electron interactions can modify the Dirac dispersion.
When the Fermi level lies at the Dirac point, the Coulomb
interaction is unscreened and hence long-ranged. It en-
hances the speed of electrons v logarithmically, both in
two and three dimensions®'2. One may think that v
has a logarithmic divergence in the low-energy limit, but
the relativistic effect, namely the coupling to the electro-
magnetic field, makes it converge to the speed of light
c'3715. This is an example of emergent Lorentz invari-
ance as a low-energy phenomenon'®. It is also true for
two-dimensional anisotropic Weyl semimetals with linear

but tilted energy dispersion'”.

Qualitatively different results appear for generalized
Dirac electrons whose energy dispersion deviates from
linearity. For example, when two Weyl cones move
and merge in the Brillouin zone, the energy disper-
sion will be quadratic along the merging direction.
In such cases, stable fixed points are anisotropic in
three dimensions'® and non-Fermi liquid or marginal
Fermi liquid in two dimensions'®2°. A non-Fermi lig-
uid state is also theoretically discovered in the Luttinger
Hamiltonian with a quadratic band touching in three
dimensions?!. Other nontrivial fixed points are found
in three-dimensional double-Weyl semimetals??23 and
nodal-ring semimetals?*.

Recently, a new type of Dirac electrons has been
theorized®® in anti-perovskite materials AsBX with
A=(Sr, La, Ca), B= (Sn, Pb) and X=(0O, N, C). These
materials are predicted to be in or very close to a topo-
logical crystalline insulator (TCI) phase?S. This TCI
phase was previously discovered in IV-VI semiconductors

Sn;_,Pb,(Te,Se)?" 3% and has stimulated wide interest.
In both classes of materials, the nontrivial topology is
protected by mirror symmetry and results from band in-
version described by the sign change of the Dirac mass.
However, unlike IV-VI semiconductors, anti-peroskites
have a fundamental band gap located at I', where both
the conduction and valence bands are four-fold degener-
ate consisting of j = 3/2 quartets. The band structure
near I is well described by a first-order eight-component
k - p Hamiltonian?®, which is a high-spin generalization
of the Dirac equation for spin-1/2 particles.

In this paper, we report novel quantum critical points
of such j = 3/2 Dirac electrons in cubic crystals with
the O symmetry. The system has linearly dispers-
ing energy bands in all directions, with anisotropic ve-
locity parameters reflecting the Op symmetry. Based
on renormalization group (RG) analysis, we find in
the presence of Coulomb interaction, j = 3/2 Dirac
electrons exhibit three fixed points that are Lorentz-
invariant, rotationally-invariant, and Op-invariant, re-
spectively. The rotationally-invariant fixed point is un-
stable and flows to the Lorentz- and Oj-invariant fixed
points that are stable. The existence of the stable Oy
fixed point, with a finite velocity anisotropy, is rather
unusual and contrasts with previously known Dirac sys-
tems with linearly dispersing energy bands which all ex-
hibit emergent Lorentz invariance.

Model. The effective Hamiltonian for j = 3/2 Dirac
octets is

H(k) = mr, + vitok - J + vor ke - J, (1)

where J is a set of spin-3/2 matrices and J is a set of
4 x4 matrices that transforms as a vector under the cubic
point group Oy,. J is also written as a linear combination
of J and J3. We note that k - J respects the rotational
symmetry while k - J does not. Since J are the gen-
erators of rotation, which is continuous symmetry, their
commutation relations are in closed form

[J°, J7] = ie Tk ", (2)

where 1, j, k correspond to three-dimensional coordinate
x,y, z. In contrast, J satisfy

i, Ji] = il <jk - ;]k) , ()



which is not closed.

The sign of the mass parameter m controls the topo-
logical phase transition. We consider the quantum crit-
ical point m = 0, where the band gap closes. Then the
Hamiltonian becomes

H(k) =vik-J+vk-J, (4)

after diagonalizing 7,. Here we assume zero chemical
potential. It is convenient to write the Hamiltonian using
the following matrices

_2

SJ-2), p=ceI+d), )

Yd

which satisfy tr_(véfyg) = tr(yiy!) = 469 and tr(v}) =

tr(v:) = tr(v4y2) = 0. Then the Hamiltonian is rewritten
5

as

H(k) =vgk - vq + vsk - s, (6)

where the two velocity parameters are defined by vg =
v1/2 — g and v = vy + v /2.

The 4 x 4 matrices 7} satisfy the anticommutation re-
lation

(v} = 269, (7)

which indicates the Hamiltonian reduces to two copies
of Weyl Hamiltonians when vy = 0. It means that the
present model holds the Lorentz symmetry at v, = 0. 75
and ~¢ follow the commutation relations

iik ijk

g = —2ie 7yl [ ad] = ieryg,
Yo Y]+ [ vl) = 2i€7, (8)

where the first equality shows that fyfi are the generators
of SU(2) algebra.
We introduce the long-range Coulomb interaction

Vig)= — 9)

as a perturbation to the system. When the Fermi energy
is zero, the density of states vanishes at the Fermi level,
and hence the Coulomb interaction is not screened and
long-ranged.

Renormalization group analysis. We consider the ef-
fect of the long-range Coulomb interaction by perturba-
tive RG analysis. In the following analysis, we employ
the Euclidean action and calculate the radiative correc-
tions to one-loop order (Fig. 1). Here the noninteracting
Green’s function is given by Go(k,iw) = [iw — H(k)]~!.

First, we calculate the one-loop self-energy X(p,iw)
[Fig. 1(a)], which is given by

/
Go(k, i)V (|k — pl)

k,w’
ez [ . 2k-p
—? k,w’ GO(k’ Zw,) k4

E(pv iw) = -

+0(p?).  (10)
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FIG. 1: Radiative corrections at one-loop order: (a) self-
energy and (b) polarization. Solid lines and wavy lines rep-
resent the electron propagator and the Coulomb interaction,
respectively.

The integral f;’w, stands for [ d;jr/ ! (gi’)“g, where [ " dk
means a momentum integration over the shell (Ae~!, A].
This momentum shell procedure regularizes a logarith-
mic divergence, and it gives the renormalization of the
velocity parameters. The self-energy can be decomposed
as

E(psiw) =X - (iw) + Xa - (p-va) + X - (P s), (11)
and each term is calculated by using the relation
try2 = 4% - (iw),
tr(ya%) = 4%ap',  tr(v%) =4%.p". (12)
The first equation leads to ¥y = 0, which is consistent
with the Ward—Takahashi identity for the present model.

By introducing the spherical coordinate for momentum
k, we obtain

2
S = ——val / sin9d0d¢c0s20M7 (13)
(2m)3e VvV 2a + 2v/b
2
Y= 673vsl/sinﬁdﬁdqﬁcos2 0&~ (14)
(2m)3e VoV 2a + 2Vb

The functions a(k), b(k), cqa(k), and cs(k) are defined by
a(k) = (vg +v7),

it
b(k) = (v — v2)? + 302 (40F — v?) 75,
k2 + k2 k2
ca(k) = (vg +2v5) =5 + (vq = {) 75
1 k2 + k2 k2
Cs(k)zi(zlvgiv?) k2 . 7(1)37@3)?&

with &% = k2k2 + k2k2 + k2k2. %4 and 3, give the beta
functions for vg and v, as
> _ds

Bvd - W lzov Bvs - dl —o

(15)

These beta functions yield the RG equations for vy and
Vs

dvg dvs
W - /B'Ud7 W - ﬁvs- (16)

Note that when vy, = 0, the RG equations reduce to those
for Dirac electrons in three dimensions, where we have
Bo, = €2/(672%¢)sgn(vy) and B, = 01
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FIG. 2: RG flows and fixed points. (a) RG flow of the velocities vq4 and vs. There is an unstable fixed point (blue) at v = vs = 0,
and both vg and vs become larger as one goes to low energies. (b) RG flow of the ratio r = vs/vg. Though both vg and v,
diverge in the low-energy limit, the ratio r could be finite. There are stable fixed points at » = 0 (red) and r = £7rs (rs &~ 2.296)
(green), and unstable fixed points at » = £2 (blue). Any value of r in the red region |r| < 2 flows to the Lorentz-invariant fixed
point at 7 = 0, and r in the green regions |r| > 2 flows to the fixed points at r = £r,. (c) Function F(r) that determines the
fixed points of the ratio r, see Eq. (17). The function F(r) is an odd function of r. We can find zeros at r = 0,2, and r,, and

the sign of F'(r) determines the stability around the zeros.

The set of RG equations (16) provides an RG flow on
the vqg — vs plane [Fig. 2(a)]. Both vg and vs become
larger in low energies, and thus the point vg = vy =
0 is unstable. Indeed, the ratio of the two parameters
r = vs/vg is important to determine the property of low-
energy fixed points. The RG equation for the ratio r is
obtained from Eq. (16),

dr «

= s, (17)
where o = €2 /(4me|vy|) is a dimensionless coupling con-
stant, and F(r) is an odd function depending only on
r. The RG flow for the ratio r is shown in Fig. 2(b).
We can see two kinds of stable fixed points: One is at
r = vs/vg = 0, the other at r = £r, with r; ~ 2.296.
The termination of a flow is determined solely by an ini-
tial ratio rg, and does not depend on the absolute values
of vy and vs. The two types of stable fixed points are sep-
arated by unstable fixed points at » = £2. The position
of the fixed points corresponds to zeros of the function
F(r) [Fig. 2(c)]. The properties of the fixed points are
discussed after we see the renormalization of the coupling
constant.

Next, we consider the one-loop polarization function
II(q,iw) [Fig. 1(b)], which yields the renormalization of
the electric charge, given by

/

M(q, iw) = 2¢? / tr[Go(k + q, iw + iw')Go(k, iw')]

k,w’
=I2¢* + O(q"), (18)

where the factor 2 comes from a trace of 7 matrices. The
polarization does not depend on the frequency w. When
expanding it with respect to ¢, we can find a logarithmic
divergence in the second-order term Il,. The divergence

gives the renormalization of the electron charge, similarly
to the self-energy considered above. When we write IIy =
—e2¢?1Py(r)/(37%v4), the RG equation for the effective

charge g = e/V/4re is

dg? _ 4q*

dl ~—  3muy

Py(r). (19)

The even function Py(r) depends only on the ratio r
(Fig. 3).

For r = 0, the system consists of four copies of
isotropic Weyl fermions with P»(r) = 1, and together
with Eq. (16), we can show that the dimensionless cou-
pling constant « logarithmically decreases: a(l) = agp[l+
(20 /7). For r # 0, Pa(r) > 0 and the coupling
constant also becomes weaker for lower energies, which
justifies the perturbative RG treatment; the dimension-
less coupling constant « has the unique stable fixed point
at @ = 0. We observe the singularity at » = 1, which orig-
inates from line nodes of the Fermi surface, elongating
along the cubic axes. This makes the density of states
D(FE) « E, in contrast to D(E) «x E? for the case of
the point node for r # 1, which changes the screening
of charges. However, this is an artifact of the linearized
theory, and the singularity arises only at r = 1, so that
it does not change the analysis of the fixed points.

Discussion. From the original Hamiltonian Eq. (4)
or (6), one would expect two fixed points: One is
rotationally-invariant (v1k - J), and the other is Lorentz-
invariant (vgk - v4)3'. Those two are indeed continuous
symmetric points of the present model. When a continu-
ous symmetry is present, generators of the corresponding
symmetry obey Lie algebra, i.e., the commutation rela-
tions must be closed. Using this fact, we can identify
symmetric points which have continuous symmetry. For
a linear combination of ’yfi and ~¢, the commutation re-
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FIG. 3: Function P»(r) that characterizes the renormalization
of the effective charge. It depends only on the ratio r. The
singular behavior at r = 1 comes from the line nodes.

lation is
a7y +byE, av)+by] = i 0¥ ](—2a® +b7)v5 +2abyk]. (20)

This has a closed form if and only if (1) b = 0 or (2)
b/a = £2. Case (1) corresponds to r = 0 (vs = 0), where
the systems is Lorentz invariant, and case (2) corresponds
to r = +2, which has rotational symmetry. Otherwise,
the model has no continuous symmetry, with at most the
cubic symmetry Oy,.

Since the RG flow is symmetric under the inversion
of r, we concentrate our analysis on r > 0. It is easily
confirmed that the two symmetric points are fixed points,
and actually we found the zeros of the function F(r) at
r =0 and r = 2. The question is whether they are stable
or unstable. Considering the symmetry of the model is
controlled solely by the ratio r, we find that there is little
likelihood of both points being stable. Assuming that
both are stable and that there is no other fixed point,
F(r) should touch but not cross zero at r = 2. In this

case, however, the point r = 2 is subtle because it is
stable for » > 2 but unstable for r < 2.

A more natural choice is that F'(r) crosses zero at r = 2
to give other fixed points. In other words, this system
with seemingly two fixed points requires another fixed
point for a reasonable RG flow. From the one-loop RG
analysis, we have observed in Fig. 2(b,c) that the stable
fixed point locates at r = rs(> 2) and that hence r = 2
is unstable.

In low energies, the system is either Lorentz- or Op-
invariant. The difference can be measured by angle-
resolved photoemission spectroscopy, which directly ob-
serves the electron’s energy band structure. Another
possible way of its detection is a measurement of mag-
netic susceptibility. Because the system is isotropic
(anisotropic) when it is Lorentz-invariant (Op-invariant),
the measurement of the directional dependence of mag-
netic susceptibility may shed light on the electronic struc-
ture at low energies.

The important finding is that the j = 3/2 Dirac
fermions have the non-Lorentz-invariant stable fixed
point in addition to the Lorentz-invariant fixed point.
The Op-invariant stable fixed point appears because the
two continuous symmetric points are not stable fixed
points at the same time. Restoration of the Lorentz
invariance as a low-energy phenomenon is not univer-
sal when several continuous symmetries are present, and
the property of a novel critical point will depend on
the underlying symmetry of crystals. Further interesting
physics topics may be hidden under this novel quantum
criticality.
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