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The impact of the electron-electron Coulomb interaction on the optical conductivity of graphene
has led to a controversy that calls into question the universality of collisionless transport in this and
other Dirac materials. Using a lattice calculation that avoids divergences present in previous nodal
Dirac approaches, our work settles this controversy and obtains results in quantitative agreement
with experiment over a wide frequency range. We also demonstrate that dimensional regularization
methods agree, as long as the scaling properties of the conductivity and the regularization of the the-
ory in modified dimension are correctly implemented. Tight-binding lattice and nodal Dirac theory
calculations are shown to coincide at low energies even when the non-zero size of the atomic orbital
wave function is included, conclusively demonstrating the universality of the optical conductivity of
graphene.

I. INTRODUCTION

In graphene, numerous electronic properties with en-
ergy sufficiently below the scale vΛ ' 1 − 1.5 eV are
governed by the linear Dirac spectrum with velocity v.1

Examples are the minimal conductivity in disordered
samples,2 the odd-integer quantum Hall effect at high
magnetic fields,3 and the observation of Klein tunnel-
ing through potential barriers.4 These observations are
explained in terms of non-interacting Dirac fermions,
while the electron-electron Coulomb interaction clearly
affects other experimental results such as the fractional
quantum Hall effect,5,6 hydrodynamic transport behav-
ior7–12 and the logarithmically enhanced velocity, as
seen in magneto-oscillation,13 angular resolved photoe-
mission spectroscopy14 and capacitance measurements of
the density of states.15

Given this success, it is remarkable that there exists
a rather long-standing controversy in the theoretical de-
scription of Coulomb interaction corrections to the opti-
cal absorption of graphene.16–24 Experiments report an
optical transmission close to 97.7%,25,26 a value that cor-
responds to non-interacting Dirac electrons. Consider-
ing Coulomb interactions within a renormalization group
analysis, one finds for the optical conductivity (ω � vΛ):

σ (ω) = σ0 (1 + Cα (ω) + · · · ) . (1)

Here, σ0 = πe2/(2h) is the universal value of the opti-
cal conductivity of non-interacting Dirac particles27 and
α (ω) = α/[1 + 1

4α ln(vΛ/ω)] is a running, renormal-
ized, dimensionless coupling constant that measures the
strength of the Coulomb interaction at the frequency
scale ω, with bare value α ≡ α(vΛ) = e2/(~vε).28,29 Here,
e is the electron charge and ε = (ε1 + ε2) /2 is determined
by the dielectric constants ε1,2 of the material above and
below the graphene sheet.

The value of the coefficient C is the issue of the con-
troversy, with different theoretical approaches yielding

different values for C. The origin of these discrepancies
can be traced to the low energy nodal Dirac approxi-
mation for graphene with linear spectrum ε (q) = ±v|q|
for |q| ≤ Λ with momentum cutoff Λ. A perturbative
analysis of corrections due to Coulomb interactions to
σ(ω) yields individual Feynman diagrams that are log-
arithmically divergent in the cutoff Λ. While these di-
vergences cancel if one adds up all diagrams, the finite
result, which determines C, turns out to be different for
different approaches to handle the divergences. Since
σ (ω) determines the transmission coefficient T (ω) =

(1 + 2πσ (ω) /c)
−2

,30 this issue is experimentally relevant
and only a rather small value of C is consistent with
current experimental observations.18 These controversies
were believed to be resolved when two of us demonstrated
that a calculation that respects conservation of the elec-
tric charge leads to18

C =
19− 6π

12
, (2)

a value that was first determined by Mishchenko.17 The
essential claim of Ref. 18 was that, while different re-
sults can be obtained within the nodal approximation
(as found in earlier work16), this ambiguity is eliminated
when the Ward identity is enforced.

FIG. 1. (Color online) One plaquette of graphene’s honey-
comb lattice with blue spheres representing carbon atoms.
The carbon-carbon distance is a and two electron pz orbitals
of typical width λ are illustrated.
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However, subsequent investigations19,20 led to an al-
ternate result for C, calling into question this picture. In
particular, Juricic et al.19 used the nodal approximation
along with dimensional regularization of the integrals (al-
tering the spatial dimension to d = 2 − ε with ε → 0 at
the end of the calculation), obtaining a much larger value
C′ = (22 − 6π)/12 within a calculation that also obeyed
the Ward identity at least for finite ε. This larger value
was also obtained in Ref. 20, who claimed to perform a
tight-binding calculation. The authors of Ref. 20 con-
cluded that the source of the error was the linearized
spectrum and concluded that a proper treatment of the
spectrum in the entire Brillouin zone (BZ) is needed to
determine the optical conductivity. It was added that
this unexpected behavior is related to a chiral anomaly
or due to non-local optical effects.31

Given these discrepancies, an obvious question is
whether C is indeed a universal number. If states in
the entire BZ matter, one could easily construct new di-
mensionless quantities γ and the coefficient C in Eq. (1)
might depend on γ. Then, distinct analytic results would
merely correspond to different limits of C (γ). An exam-
ple for such a dimensionless quantity is γ = λ/a, where
a ≈ 1.42 Å is the carbon-carbon distance and λ the char-
acteristic size of the pz-orbital Wannier function of the
sp2 hybridized carbon atoms in the graphene lattice (see
Fig. 1). Then, only a detailed quantum chemical analysis
would be able to determine the correct optical conduc-
tivity, even for frequencies small compared to the band-
width. It would also imply that a formal renormalization
procedure, as discussed in Ref. 32, would not suffice to
generate a correct result, leading to a breakdown of the
widely-used nodal approximation for graphene.

Here, we show that C is, in fact, a universal number
that is independent of high-energy microscopic or cutoff
dependent details. We demonstrate that it is given by
the expression in Eq. (2) and that it can be correctly
obtained within a low-energy effective nodal Dirac de-
scription of graphene. Our conclusions are based on two
independent calculations: (i) an evaluation of the leading
perturbative Coulomb correction to the optical conduc-
tivity using the full tight-binding graphene band struc-
ture. This unequivocally determines C. It furthermore
shows that C is universal and independent of, for exam-
ple, the width of the atomic Wannier orbitals; (ii) a field-
theoretical analysis of the interaction corrections to the
conductivity within the Dirac description, which we use
to demonstrate that the result for C is affected by the
order of limits d → 2 and cutoff Λ → ∞. Taking the
limits in the correct order yields the result of the lattice
tight-binding calculation in (i).

Our main results are captured in Fig. 2, which shows
the interaction correction coefficient obtained within the
lattice tight-binding approach as a function of frequency
ω. Clearly, the lattice result agrees with the numerical
value C given in Eq. (2). Below, we also explain how to
correctly obtain this value within the Dirac approxima-
tion of graphene using different regularization schemes.
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FIG. 2. (Color online) The main figure shows the interaction
correction coefficient as determined by our lattice calculation
(red dots) as a function of frequency ω/D, where D is the
bandwidth of the lattice theory. The lattice result is in clear
agreement with the predicted value Eq. (2) from nodal the-
ory.17,18 The inset shows that the result in the low-frequency
limit (ω/D = 0.015) is independent of the ratio λ/a (i.e.,
universal).

Furthermore, the inset of Fig. 2 proves that the interac-
tion correction coefficient is universal and independent of
the ratio λ/a, where λ is the size of the atomic orbitals
on the graphene atoms and a is the lattice constant.

Below, we determine the correct value for C in Eq. (1),
but also explain why other approaches failed to reach
the correct conclusions. This should settle all aspects
of the existing controversy about the value of C. Our
work demonstrates that the Dirac cone approximation
can be safely applied for low energy properties, that the
longitudinal optical conductivity is not affected by a chi-
ral anomaly or states far from the Dirac cone and that
no subtlety due to non-local effects in the conductivity
occurs. Finally, we show how to properly include interac-
tion corrections within the lattice theory, which is essen-
tial for physical quantities where a nodal approximation
cannot be employed.

The remainder of the paper is organized as follows: in
Sec. II, we start from a lattice tight-binding description
of graphene and determine the optical conductivity, in-
cluding leading Coulomb corrections, in the collisionless
regime. Allowing for a finite extent of the Wannier func-
tions λ, we demonstrate that C is indeed universal, i.e.
independent of the ratio λ/a, and takes a value that is,
within the numerical accuracy, given in Eq. (2). Further,
we explain why previous lattice based attempts20,31 failed
to reach the correct conclusion.

A by-product of our calculation is the optical con-
ductivity of non-interacting electrons in graphene for a
nearest-neighbor tight-binding electronic band structure:
σ0(ω,TB). This allows us to correct previously reported
theoretical results of Refs. 25 and 30 and to demon-
strate that σ0(ω,TB) deviates from the Dirac result more
strongly than reported there. We compare the corrected
theoretical prediction for the optical transmission T (ω)
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with the experimental data of Ref. 25.

In Sec. III, we show how to correctly obtain C within a
field-theoretical description of graphene using the nodal
Dirac approximation. We demonstrate that if one em-
ploys a Wilson momentum shell renormalization group
approach and chooses to use dimensional regularization
(in d = 2 − ε spatial dimensions) of divergent integrals,
the interaction coefficient C acquires a dependence on the
order of limits ε→ 0 and ultraviolet cutoff Λ→∞ at the
end of the calculation. The correct order of limits yields
the same result for C as the lattice calculation.

Following earlier work by Teber et al. in Ref. 33,
we show in Sec. III A that this ambiguity does not
appear when, instead of the Wilson momentum shell
renormalization group technique, one employs a differ-
ent renormalization procedure and fully regularizes the
theory within modified minimal subtraction MS scheme.
Within the MS procedure of dimensional regularization,
the non-interacting (bare-bubble) conductivity diagram
contributes to the value of the interaction correction co-
efficient. This is the key difference to the work of Juricic
et al. in Ref. 19 who also used dimensional regularization
but only of the perturbative diagrams (instead of the full
theory) and thus obtained the result C′. Therefore, the
apparent ambiguity in the value of the interaction coeffi-
cient is due to the fact that certain diagrams contributing
to the conductivity give different results within different
regularization schemes. In Sec. III B, we explore this and
consider such diagrams in d = 2 − ε but including a ul-
traviolet cutoff Λ. We show that these diagrams only
combine to give the correct value for C when the order of
limits (ε→ 0 and Λ→∞) is correctly taken.

We conclude in Sec. IV and refer to the Appendices for
details of a number of calculations that are discussed in
the main text.

II. THE TIGHT-BINDING APPROACH TO THE
OPTICAL CONDUCTIVITY

In this section, we calculate the self-energy Σ(k) and
the optical conductivity σ(ω) to leading order in pertur-
bation theory within a full lattice approach that con-
siders the nearest-neighbor tight-binding energy spec-
trum of graphene. We begin in Sec. II A by defining the
non-interacting lattice Hamiltonian H0, the bare lattice
Green’s function Gk,iω and the current operator Jk on
the lattice. In Sec. II B, we derive the Coulomb interac-
tion Hamiltonian on the graphene lattice. In Sec. II C, we
use it to calculate the electronic self energy Σ(k) on the
lattice, which describes the renormalization of the Fermi
velocity due to interactions. In Sec. II D, we numerically
compute the optical conductivity σ(ω) using the Kubo
formula in a full lattice description: in Sec. II D 1 we first
obtain the non-interacting result σ0(ω), before we calcu-
late, in Sec. II D 2, the lowest-order corrections due to
Coulomb interactions.

A. Single-particle Hamiltonian and current
operator on the lattice

Graphene is a honeycomb lattice of carbon atoms
spanned by the triangular Bravais lattice vectors Ri =
i1a1 + i2a2 with i1,2 ∈ Z, primitive vectors a1,2 =√

3
2 a
(
±1,
√

3
)
, and basis vectors v1,2. One choice is

v1 = 0, v2 = (0,−a) as can be seen in Fig. 3. The elec-

tron creation operators c†Ri`σ create an electron with spin

σ on the corresponding lattice site (Ri, `) with ` = 1, 2

denoting the basis site v`. We often write c†Ri1σ ≡ a†Riσ
for ` = 1 and c†Ri2σ ≡ b†Riσ for ` = 2, and introduce
a spinor composed of electron creation operators on the
two basis sites as

c†Riσ = (c†Ri1σ, c
†
Ri2σ

) = (a†Riσ, b
†
Riσ

) . (3)

With these definitions it follows that the tight-binding
Hamiltonian reads

H0 =
∑
k``′σ

c†k`σHk``′ck`′σ , (4)

with cRi`σ = 1√
N

∑
k e

ikRick`σ. In case of only nearest-

neighbor hopping t, one finds Hk = −thk · σ with the
vector hk = (Rehk,−Imhk) given by hk = 1 + eika1 +
eika2 and Pauli matrices σ = (σx, σy). Explicitly, this
reads

Hk = −t
(

0 hk
h∗k 0

)
, (5)

with hk = 1 + 2 cos
(√

3
2 kxa

)
ei

3
2kya. The energy spectrum

consists of two bands with energy εk± = ±t|hk|, and
a linear Dirac spectrum emerges near the Dirac points
K± = 2π

3a

(
± 1√

3
, 1
)
. The bare Green’s function is given

by Gk,iω = (iω −Hk)−1, and reads explicitly

Gk,iω =
1

ω2 + t2|hk|2

(
−iω thk
th∗k −iω

)
. (6)

The current operator follows via the usual Peierls sub-
stitution t → teieAuα of the hopping element to the
nearest-neighbor site at uα from taking the derivative
J = −(∂AH0)|A=0. Alternatively, it can be found
from J = i[H0,P ] with polarization operator P =∑
Ri,`,σ

(Ri + v`)c
†
Ri`σ

cRi`σ.34 In both ways, one finds

JRi = − iet
~
∑
δα

[(δα + v2− v1)b†Ri+δαaRi − h.c.] (7)

with nearest-neighbor Bravais lattice vectors δα ∈
{(0, 0),a1,a2}. In momentum space, it takes the form

Jk =
∑
k,`,`′,σ

c†k`σ

(
0 jk
j∗k 0

)
``′
ck`′σ (8)
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FIG. 3. (Color online) Honeycomb crystal lattice of graphene,
showing two interpenetrating (red and blue) sublattices of
carbon atoms. The Bravais lattice with lattice vectors Ri =
i1a1 + i2a2 is defined to be the red sublattice, with a two-
atom basis defined by v1 = 0 (the red points) and v2 = −aŷ
(the blue points), where a is the carbon-carbon distance. The
three nearest-neighbor vectors are uα = δα + v2 − v1 with
nearest-neighbor Bravais vectors δ1 = (0, 0), δ2 = a1 and
δ3 = a2.

with explicit components

jx,k =
√

3tae sin
(√3

2
kxa
)
ei

3
2kya (9)

jy,k = −itae
[
cos
(√3

2
kxa
)
ei

3
2kya − 1

]
. (10)

In the following, we often set e = a = 1, since it can be
easily reinstated in the final result.

B. The Coulomb interaction Hamiltonian

Electrons interact via the Coulomb interaction, which
is described by the Hamiltonian

Hint =
e2

2

∑
σσ′

∫
d3r d3r′

ψ†rσψ
†
r′σ′ψr′σ′ψrσ
ε|r − r′|

, (11)

where r, r′ are three-dimensional real-space position vec-
tors, i.e. r = (ρ, z) with ρ = (x, y). The graphene sheet
is assumed to be located in the x-y-plane with z = 0.
The field operators

ψrσ =
∑
Ri,`

ϕ(r −Ri − v`)cRi`σ (12)

are defined via the Wannier pz-atomic orbitals ϕ(r) local-
ized on the sp2-hybridized carbon atoms at sites (Ri, `).
In the evaluation of the Coulomb matrix elements, i.e.
when Eq. (12) is inserted into Eq. (11), we assume that
ϕ∗(r−Ri− v`)ϕ(r−Rj − v`′) is small unless i = j and
` = `′. The density of spin σ is thus approximated by

ψ†rσψrσ ≈
∑
Ri,`

c†Ri`σcRi`σ|ϕ(r −Ri − v`)|2 . (13)

Using this approximation, and inserting the Fourier

transform of the real-space Coulomb interaction e2

ε|r−r′| =∫
d2q

(2π)2

∫
dqz
2π eiq·(ρ−ρ

′)eiqz(z−z′) 4πe2

ε(q2+q2z) , we obtain

Hint =

∫
r,r′
q,qz

eiq(ρ−ρ′)eiqz(z−z′) 4πe2

ε(q2 + q2
z)

∑
Ri,Rj
`,`′

|ϕ(r−Ri− v`)|2|ϕ(r′−Rj − v`′)|2c†Ri`σc
†
Rj`′σ′

cRj`′σ′cRi`σ , (14)

where
∫
r

=
∫
d3r,

∫
q

=
∫

d2q
(2π)2 and

∫
qz

=
∫
dqz
2π . To evaluate the integration over r and r′, we shift r → r +Ri + v`

and similarly for r′, an operation that introduces phase factors of the form eiq·(Ri+v`). The summations over Ri and
Rj then implement lattice Fourier transforms on the operators cRi`σ, leading to

Hint =
1

2

∫
d2q

(2π)2
V (q)

∑
`,`′

eiq(vl−vl′ )
∑
kk′σσ′

c†k+q`σc
†
k′−q`′σ′ck′`′σ′ck`σ . (15)

In the following, we will often incorporate the summation
over `, `′ as a matrix multiplication and introduce the
matrix

Mq =
(

exp(iqv1) 0
0 exp(iqv2)

)
. (16)

In physical terms, it accounts for the spatial separation of
the two carbon basis atoms and renders integration over
momentum q finite. The Coulomb interaction matrix

element in Eq. (15)

V (q) = 4πe2

∫ ∞
−∞

dqz
2π

|ρ(q, qz)|2

ε(q2 + q2
z)

(17)

is determined by the electron density of the
three-dimensional atomic orbital ρ (q, qz) =∫
d3r |ϕ(r)|2 ei(qρ+qzz). Using the 2pz-orbitals with effec-

tive Bohr radius a∗B , we obtain V (q) = 2πe2F(q)/(ε|q|),
where the form factor was fitted to F(q) = exp(−|q|a∗B)
and a∗B ' 0.9Å.35 In the following, we use the phe-
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nomenological form

V (q) = 2πe2 exp
(
−|q|2λ2/2

)
ε|q|

(18)

that follows from an orbital wavefunction that has Gaus-
sian shape in the graphene plane and is point like in the
z-direction: ϕ(r) = ϕ(x, y, z) = δ(z) 1

λ
√
π

exp
[
− (x2 +

y2)/2λ2
]
. Here, λ corresponds to the characteristic size

of the orbital (see Fig. 1). In the limit of point like atomic
orbitals λ→ 0, we find V (q) = 2πe2/(ε|q|).

An important remark is that all momentum vectors
in Eq. (15) are two-dimensional. Crucial for our subse-
quent analysis is the fact that the sums

∑
k,k′ in Eq. (15)

run over the first BZ, while the integral over q goes over
the infinite momentum space, i.e., it is a combined sum
over transferred momenta of the BZ and a sum over all
reciprocal lattice vectors. This distinction was ignored
in earlier work;20 see, however, Ref. 21 for a discussion
of this issue. This follows from the fact that the elec-
tron density of the orbitals |ϕ(r)|2 is not confined to the
discrete lattice points.

C. Electronic self-energy on the lattice

Before turning to the optical conductivity, let us inves-
tigate the electronic self-energy Σ(k) within the lattice
tight-binding formulation. We note that within the nodal
Dirac approximation of graphene, the self-energy explic-
itly depends on the momentum cutoff Λ.28,29 In a lattice
theory an ultraviolet cutoff is naturally provided by the
inverse lattice constant 1/a. We thus expect that the
self-energy does not exhibit any ultraviolet divergences
despite the fact that it involves an (infinite) momentum
integration. In this section, we verify this directly by
explicitly evaluating the self-energy on the lattice.

The self-energy arising from Eq. (15) follows in stan-
dard perturbation theory as

Σ(k) = −
∫

d2q

(2π)2
V (q)T

∑
ω

M−qGk+q,iωMq , (19)

where the matrix Mq is defined below Eq. (16) and the
bare Green’s function is given in Eq. (6). Evaluating the

frequency integration yields Σ(k) =
(

0 Σ12

Σ∗12 0

)
with

Σ12(k) = −1

2

∫
d2q

(2π)2
V (q)eiφ(k+q)eiq(v2−v1) (20)

and exp[iφ(k)] = hk/|hk|. In order to show that the
integration over momentum q yields a finite result, we
first notice that the momentum argument k of the self-
energy lies in the first Brillouin zone (BZ) (see Eq. (15)).
The self-energy is periodic in reciprocal lattice vectors
G, i.e. Σ(k + G) = Σ(k), and performing a Fourier
transformation to real-space yields the self-energy as a

1
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FIG. 4. (Color online) (a) Feynman diagram of the electronic
self-energy. Dashed line corresponds to Coulomb interaction
and solid line to bare Green’s function. (b) Lattice self-energy
Σ(k) for momentum close to the Dirac node K ≡ K+ for dif-
ferent Wannier orbital sizes λ/a. The inset shows the loga-
rithmic divergence of the slope (= velocity correction) close
to the node.

function of Bravais lattice vectors

Σ12(Ri) =
∑
k

Σ12(k)e−ik·Ri . (21)

The back transformation is explicitly given by Σ12(k) =

A
∑
Ri
eik·RiΣ12(Ri), where A = 3

√
3

2 a2 is the unit-cell

area. We insert Eq. (20) into Eq. (21), switch the order
of integration and shift k→ k′ = k+q, which is valid as
the integrand is periodic under k→ k+G, to arrive at

Σ12(R) = −1

2

∫
d2q

(2π)2
V (q)eiq·(Ri+v2−v1)F (Ri) (22)

with function

F (Ri) =
∑
k′

ei[φ(k′)−k′·Ri] . (23)

Note that the momentum summation in Eq. (23) is re-
stricted to the first Brillouin zone and can thus be con-
veniently performed numerically. The advantage of this
transformation to real-space is that it allows to perform
the (infinite) momentum integration over q exactly. This
integration is the Fourier transform of the Coulomb inter-
action potential V (q) evaluated at position Ri+v2−v1.
It thus depends on the form of the Wannier functions
ϕ(r) (see Eq. (17)). Using point like Wannier orbitals,
i.e. λ → 0 in Eq. (21), the integration over q simply
returns the real-space Coulomb interaction and the self-
energy in momentum space is given by

Σ12(k) = −e
2

2ε
A
∑
Ri

eik·Ri
1

|Ri + v2 − v1|
F (Ri) . (24)
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We have thus traded a numerically intensive infinite mo-
mentum integration over q for an infinite sum over Bra-
vais lattice vectors Ri. It turns out that the function
F (Ri) decays sufficiently fast as a function of |Ri| such
that the sum can be numerically evaluated to great preci-
sion. In all our presented results (see Figs. 2, 4, 7, and 8),
the real-space summations run over the 4.6×104 Bravais
lattice vectors Ri of smallest magnitude.

Considering a finite in-plane width of the Wannier or-
bitals λ > 0, the self-energy takes the form

Σ12(k) = −e
2

2ε

A

λ

∑
Ri

eik·Ri
√
π

2
e−|Ri+v2−v1|

2/(4λ2)

× I0
( |Ri + v2 − v1|2

4λ2

)
F (Ri) , (25)

where I0(x) is the modified Bessel function of the first
kind. Clearly, Eq. (25) reduces to Eq. (24) in the limit
λ� a.

It is clear from Eq. (24) that a potential divergence
in Σ12(k) cannot come from the short distance behav-
ior of the Coulomb interaction (since the denominator of

1
|R+v2−v2| never reaches zero) but only relies on the con-

vergence of the sum at large Ri. This convergence can
be traced back as being due to the factor eiq(v2−v1) in
Eq. (20) that oscillates rapidly at large |q|, causing the
integral to vanish at large |q|. However, we find that the
slope of Σ12(k) close to the Dirac nodes K± exhibits a
logarithmic divergence. This is shown in Fig. 4(b) and is
a well known property found in the Dirac approximation
that we now see holds in the full tight-binding theory as
well. We observe in the inset of Fig. 4(b) that differ-
ent Wannier orbital widths only affect the prefactor of
the logarithm. As we show below, one of the two main
contributions to the conductivity relies on determining
Σ12(k) for all momenta in the BZ by computing the sum
in Eq. (24).

D. Optical conductivity

We determine the real part of the optical conductivity
via the Kubo formula

σ (ω) = − ImχJ (ω)

ω
, (26)

where χJ(ω) is the retarded current-current response
function. A detailed derivation of the Kubo formula
can be found in Appendix A. Expanding perturbatively
in orders of the Coulomb interaction strength α gives

χJ = χ
(0)
J +χ

(1)
J +. . ., where χ

(0)
J refers to non-interacting

electrons (see diagram (a) in Fig. 5). The term χ
(1)
J is the

leading order interaction correction depicted in Fig. 5 (b-
d) with self-energy (b,c) and vertex (d) parts, giving rise

to contributions χ
(1,bc)
J and χ

(1,d)
J calculated below. The

optical conductivity σ and the interaction correction co-
efficient C are then determined by adding all contribu-

tions as σ = σ(0) + σ(1) + . . . with σ(i) = −Imχ
(i)
J /ω.

FIG. 5. Panel (a) shows the Feynman diagram for the non-

interacting current-current correlation function χ
(0)
J . Panels

(b) − (d) show the lowest order Coulomb interaction correc-
tions: (b) − (c) are self-energy diagrams and (d) the vertex
correction.

In the following, in Sec. II D 1 we first evaluate the

lattice expressions for non-interacting electrons χ
(0)
J . In

Sec. II D 2 we then turn to the calculation of the interac-
tion corrections χ

(1)
J .

1. Result for non-interacting electrons

The optical conductivity for non-interacting electrons
is determined by the free current-current response func-

tion χ
(0)
J , which is diagramatically shown in Fig. 5(a) and

reads

χ
(0)
J (iω) = −T

2

∑
k,ε,ν

Tr
[
JkνGk,iεJkνGk,iε+iω

]
= −1

2

∑
k,ν

(
h∗kjν,k − hkj∗ν,k

)2
t |hk|(4|hk|2 + ω2/t2)

. (27)

We evaluate χ
(0)
J by first analytically continuing iω →

ω+iδ and then computing the remaining one-dimensional
integral. A straightforward numerical evaluation yields

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIG. 6. (Color online) Conductivity σ0(ω) for non-interacting
electrons, obtained within the lattice nearest-neighbor tight-
binding calculation and normalized to its value at zero fre-
quency.
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the result shown in Fig. 6, which shows that the (zero-
frequency) Dirac result σ(0) = σ0 = e2/(4~) (for spinful
electrons) is valid for ω � t and breaks down close to the
van-Hove singularity at ω = 2t. We also evaluate σ(ω)
analytically by expanding perturbatively in small ω/t to
arrive at (for details see Appendix A 1)

σ(ω) =
π

32ω
ρ
(ω

2

)
(18 + ω2)− 1

8

ω2

36
(28)

≈ σ0

(
1 +

1

9
ω +O(ω3)

)
. (29)

Here, we have set t = 1 and used that the density of
states is given by

ρ(E) =
1

(2π)2

32E
√

1− E
3 K

[
−16E

(E−3)(1+E)3

]
3(3− E)(1 + E)3/2

. (30)

Here, K[m] is the complete elliptic integral of the first
kind. Importantly, beyond the Dirac approximation

our results differ from previously reported ones.25,30 As
shown in Fig. 8 below this has consequences for the
experimentally observable optical transmission through
graphene, which differs more strongly from the non-
interacting Dirac limit than previously reported.

2. Interaction corrections to the optical conductivity

In this section, we determine the leading order inter-

action correction to the optical conductivity χ
(1)
J . The

corresponding Feynman diagrams are shown in Fig. 5(b-

d) with self-energy part χ
(1,bc)
J in Fig. 5(b,c) and vertex

part χ
(1,d)
J in Fig. 5(d). The analytic expressions of these

contributions read

χ
(1,bc)
J (iω) = −T 2

∑
kεε′ν

∫
d2q

(2π)2
V (q)Tr

(
JkνGk,iω+iεJkνGk,iεMqGk+q,iε′M−qGk,iε

)
(31)

χ
(1,d)
J (iω) =

T 2

2

∑
kεε′ν

∫
d2q

(2π)2
V (q)Tr

(
JkνGk,iω+iεMqGk+q,iω+iε′JkνGk+q,iε′M−qGk,iε

)
. (32)

Here, Gk,iω denotes the bare Green’s function, see
Eq. (6), and the matrix Mq, see Eq. (16), accounts for the
spatial separation of the two carbon basis atoms. Like
in case of the self-energy discussed in Sec. II C, it plays

an important role in the following evaluation of χ
(1)
J as

it renders the integration over momentum q finite.

To obtain χ
(1,bc)
J , we insert the result for the self-energy

Σ(k) into Eq. (31). The self-energy is obtained by sum-
ming over 4.6×104 Bravais lattice vectors using Eq. (25).
As shown in detail in Appendix A 2 and A 3, we then first
analytically continue iω → ω + iδ, before evaluating the
remaining momentum summation over the first Brillouin
zone. By first performing the analytic continuation, the
momentum summation turns into a one-dimensional in-
tegration along a contour around the two Dirac nodes
(in case of small external frequency ω), which can be
efficiently computed numerically.

The vertex contribution χ
(1,d)
J in Eq. (32) is evaluated

in a similar way and we refer to Appendix A 3 and A 4 for
details. The presence of the matrix Mq inside the trace
again ensures convergence of the q-integration.

As shown in Fig. 7, the individual contributions σ(1,j)

of self-energy and vertex diagrams to the optical conduc-
tivity correction

σ(1) = σ0α C = σ(1,bc) + σ(1,d) = σ0α(Cbc + Cd) (33)

diverge logarithmically in the low frequency limit ω/D,
where D = 6t is the bandwidth. Their sum, however,
remains finite and, as shown in Fig. 2, yields (within nu-
merical accuracy) the coefficient C with the numerical
value (19 − 6π)/12 given in Eq. (2). The inset of Fig. 2
shows that σ(1) is independent of the ratio λ/a, demon-
strating the universal nature of the optical conductivity
of graphene.

To compare with experiment, we use our result of the
optical conductivity σ(ω) to calculate the optical trans-
parency of graphene T (ω). In Fig. 8, we compare exper-
imental results for T (λ), where λ = 2πc/ω, reported by
Nair et al. in Ref. 25 with different theoretical approaches
of computing σ(ω), both using the Dirac approximation
and using the full tight-binding (nearest-neighbor) lattice
theory. We observe that in the optical range, the main
correction to the non-interacting Dirac approximation re-
sult σ0(Dirac) stems from the non-linearity of the band
structure, i.e., from deviations from the linear dispersion
in the tight-binding band structure of graphene. The ad-
ditional interaction corrections are minute, because the
coefficient C is incidentally quite small. Note that a larger
coefficient such as C′ implies a much more pronounced
shift of the transparency from the non-interacting result
(which is not observed experimentally).
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1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0.02 0.03 0.04 0.05 0.06 0.07 0.08

FIG. 7. (Color online) Plot of the self-energy σbc and vertex-
correction σd contributions to the frequency-dependent con-
ductivity, normalized to σ0α (see Eq. (33)). The separate
contributions diverge in the low-frequency limit ω � D.

0.960

0.965

0.970

0.975

0.980

400 500 600 700 800

FIG. 8. (Color online) Optical transmission through graphene
as function of wavelength λ. Comparison of experimental
results (red dots) from Ref. 25 and theory: non-interacting
Dirac fermions σ0(Dirac) and tight-binding theory σ0(ω,TB);
interacting tight-binding prediction σ(C,TB) = σ0(ω,TB)[1+
Cα(ω)], and σ(C′) = σ0(ω,TB)[1 + C′α(ω)]. Note that
σ0(ω,TB) deviates from σ0(Dirac) for higher frequencies more
strongly than previously reported in Refs. 25 and 30.

How does our numerical result of C given in Eq.(2)
compare with Ref. 20, who claim to have performed
an evaluation of the conductivity of the tight-binding
model, but find the larger value C′? Following the de-
tails of Ref. 20 included in the supplementary material
of that paper one finds that, in the end, the authors do
not evaluate the conductivity numerically, but perform
a nodal approximation and regularize divergent integrals
in a fashion that violates charge conservation. The final
expression of the conductivity coefficient of Ref. 20 is not
the correct lattice version of the conductivity anyway, as
Eq. (15) of that work lacks the distinction between BZ
restricted and unrestricted momentum integrations, dis-
cussed above.

III. FIELD THEORETICAL APPROACH IN
THE DIRAC LIMIT

Within the Dirac theory of graphene, both self-energy
and vertex contributions to the interaction correction of
the conductivity, σ(1,bc) and σ(1,d), involve divergent in-
tegrals as, e.g., the momentum cutoff is sent to Λ → ∞
or the physical dimensionality is restored ε → 0. The
main goal in this section is to reconcile the results of di-
mensional regularization as presented in the detailed cal-
culations of Juricic, Vafek and Herbut (JVH) in Ref. 19
with the tight-binding results of Sec. II. The authors of
Ref. 19 regularize the divergent integrals appearing in the
calculation of σ(1,j) (j = bc, d) by working in d = 2 − ε
dimensions, add both contributions and take the limit
ε→ 0 in the end.

An alternative scheme to perform dimensional regu-
larization was presented by Teber and Kotikov (TK) in
Ref. 33. It is based on the modified minimal subtraction
MS scheme,36 and the corresponding continuum renor-
malization group (RG). In Sec. III A, we describe the
MS calculation in detail and confirm the TK results. As
found by TK, although adding the interaction correction
diagrams b, c and d yields the numerical result C′ for the
correction coefficient, one must consider that within the
MS scheme of dimensional regularization, the bare bub-
ble contribution is also renormalized. This gives an addi-
tional contribution that finally yields the numerical result
C for the interaction correction coefficient (see Eq. (2)),
in agreement with the lattice theory of Sec. II.

In Sec. III B, we add to the insight of TK by examin-
ing the conductivity scaling relation in d = 2− ε dimen-
sions,37 which relates the true conductivity (left side) to
the renormalized one (right side):

σ(ω, α) = lim
Λ→∞

lim
ε→0

bεσ
(
ω/ZT , α(b),Λ) . (34)

Here, b > 1 is a scaling factor, ZT is the renormal-
ization factor of the frequency equal to ZT (b) = [4ε +
α(bε − 1)]/4εb and the running coupling constant reads
α(b) = 4εαbε/[4ε+α(bε− 1)].29 We compute the conduc-
tivity of graphene in d = 2− ε dimensions, but including
an ultraviolet (UV) momentum cutoff Λ. Importantly,
we show that the limits of ε → 0 and Λ → ∞ do not
commute, a phenomenon that we refer to as UV quirk.

If one furthermore employs the relation between the
conductivity and density-density correlator χρ used in
the original work of Mishchenko,17 it is possible to pre-
cisely isolate the origin of the UV quirk as coming from
the self-energy (bc) diagrams. We show that, if one main-
tains a UV cutoff in d dimensions (as implied by the Wil-
son momentum shell RG), the result C is obtained when
the limit d → 2 is taken. In contrast, if one works in
d = 2 − ε dimensions but with Λ → ∞, the self-energy
(bc) diagrams yield a different result, leading to the coeffi-
cient C′. Importantly however, in this case of Λ→∞, the
theory must be regularized using the MS scheme, which
yields the numerical values C in Eq. (2) for the interac-
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tion correction coefficient (see Sec. III A), in agreement
with the lattice calculation.

A. Continuum renormalization group and modified
minimal subtraction MS scheme

In this section, we largely follow the work of Teber
and Kotikov (TK) in Ref. 33, in particular highlight-
ing the differences between the dimensional regulariza-
tion using the modified minimal subtraction MS scheme
compared to the Wilson momentum shell RG. When us-
ing dimensional regularization, we do not introduce an
UV-cutoff Λ to our system. The system is regularized by
the dimensionless parameter ε. As reported by JVH and
TK (and confirmed by us), dimensional regularization of
the interaction-dependent diagrams leads to a result im-
plying that the correction coefficient is C′ = 22−6π

12 .19,33

However, as found by TK, the whole theory is divergent
and needs to be regularized by the continuum renormal-
ization group. This is done by introducing counterterms
that remove these divergences. After this renormaliza-
tion procedure, it is found that the bare-bubble contri-
bution is also modified, finally yielding the correction
coefficient C = 19−6π

12 .

Our starting point is the action of graphene

S =

∫
dτ

∫
ddx ψ†0

(
∂τ + ie0A

0
0 + v0(−i∇σ)

)
ψ0

+

∫
dτ

∫
ddγx

(
∂xA

0
0

)2
, (35)

where d = 2− ε is the spatial dimensionality of the elec-
tronic degrees of freedom and dγ = 3 that of the gauge
fields A0. The subscript “0” denotes bare quantities: the
fermionic field ψ0 and the gauge field A0, which mediates
the Coulomb interaction with potential

V (q) =
2πe2

|q|
r−ε0 π−ε/2Γ

(
1
2

)
Γ
(

1−ε
2

) . (36)

The length scale r0 is introduced in such a way, that
the Coulomb potential has the correct units in d = 2 −
ε. From this action one can derive physical observables
which are divergent in the limit ε → 0. One of these
divergent physical observables is the self-energy

Σ(q) = Φ(q)v0q·σ = α0

22ε−3Γ
(
ε
2

)
Γ
(
1− ε

2

) (r0q)
−εv0q·σ . (37)

Note that the self-energy is proportional to 1/ε, which

follows from expanding the function Φ(p) for small ε

Φ(p) ≈ α0

4

1

ε
+
α0

4

[
log(4)− log(pr0)−γ

]
+O(ε) . (38)

Here, we explicitly see that the theory has divergences.
In order to render it finite, we introduce renormalized
(physical) fields, which we denote with a subscript “R”:

ψ0 =
√
ZψψR, (39)

A0 =
√
ZAAR, (40)

v0 = ZvvR, (41)

e0 =
Z1

Zψ
√
ZA

eR = ZeeR , (42)

which leads to the following renormalized Lagrangian
density

LR = Zψ ψ
†
R∂τψR + ie0

√
ZAZψ ψ

†
RA

0
RψR

+ ZvZψ vRψ
†
R(−i∇ · σ)ψR + ZA

(
∂xA

0
R

)2
.(43)

To obtain a finite theory, we introduce counterterms via
Zψ = 1 + δψ, ZA = 1 + δA, Zv = 1 + δv and Ze = 1 + δe
These counterterms are chosen in such a way as to cancel
the divergences. In the case of the self-energy, we find

Σ(q) = ΦR(q)vRq·σ+δvvRq·σ+δψ (iΩ + vRq · σ) . (44)

From Eq. (38) we know that the divergence of the self-
energy is independent of frequency, and thus δψ = 0 and
therefore Zψ = 1. The velocity counterterm, on the other
hand, must cancel the divergence of the self-energy, de-
manding

δv = −αR
4

1

ε
⇒ Zv =

(
1− αR

4ε

)
. (45)

The electric charge e remains unrenormalized in
graphene, i.e. Ze = 1.

Next, we will use the modified minimal subtraction
MS scheme, where one introduces a physical energy scale
µ in such a way that the physical observables become
dimensionless and the divergence is removed.36 In other
words, we substitute the divergence 1/ε by a logarithm
depending on the physical scale µ:

1

ε
→ log (µ/ω) . (46)

Using this substitution, the slope of the self-energy be-
comes

ΦR(p) =
αR
4

1

ε
+
αR
4

ln

(
4e−γ

pr0

)
= −αR

4
ln

(
pr0

µ̃/ω

)
, (47)

with µ̃ = 4e−γµ. As shown in detail in Appendix B, the
same procedure yields for the coupling constant α and
the velocity v the non-divergent observables
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α(µ) =
α04εe−2γεµ̃−2ε

1 + α0

4
1
ε 4εe−2γεµ̃−2ε

→ α(µ) =
α0

1 + α0

4 log
(
µ
ω

) (48)

v(µ) = v0 +
e2

0

4ε
4εe−2γεµ̃−2ε → v(µ) = v0 +

e2
0

4
log
(µ
ω

)
. (49)

Finally, the bare non-interacting optical conductivity σ0,
which requires calculating the bare-bubble diagram in
spatial dimension d = 2− ε, is given by

σ0,0(ω) = e2
0NAε

∣∣∣v0

ω

∣∣∣ε , (50)

with

Aε = 4−2+επε/2
(1− ε)

Γ
(
1− ε

2

) . (51)

To remove all divergences in the theory, we have to re-
place all bare quantities such as the charge e0 and the
velocity v0 by their renormalized values, which yields

σ0,R(ω) =
e2(µ)

4ε
e2γεµ̃2εNAε

∣∣∣
(

1− α(µ)
4ε

)
vR

ω

∣∣∣ε , (52)

where e2(µ) = 4εe2
0e
−2γεµ̃−2ε (for details see Ap-

pendix B). According to equation (48), one can choose
α(µ) such that it is a small quantity, reflecting that α
is marginally irrelevant at the upper critical dimension
d = 2. We can thus approximate33(

1− α(µ)

4ε

)ε
≈ 1− α(µ)

4
. (53)

Inserting this into our expression for the non-interacting
conductivity and taking the limit ε→ 0, we obtain

σ0(ω) ≡ σ0,R(ω) = σ0

(
1− α(ω)

4

)
, (54)

where σ0 = e2
0N/16. Importantly, the bare-bubble result

is modified due to the velocity renormalization. Remark-
ably, as found by TK, this term combines with the O(α)
vertex and self-energy diagrams in Fig. 5(b-d), which
yield, within dimensional regularization in d = 2 − ε di-
mensions, an interaction correction coefficient19,33

C′ =
22− 6π

12
, (55)

Although this apparently leads to a result that disagrees
with other regularization schemes, regularizing the full
theory (via counterterms) leads to the additional contri-
bution in Eq. (54), which must be included. Summing
all terms to order α finally yields

σ(ω) = σ0

(
1+C′α(ω)− α(ω)

4

)
= σ0

(
1+Cα(ω)

)
, (56)

The final interaction correction coefficient therefore takes
the value in Eq. (2):

C =
19− 6π

12
, (57)

in agreement with the lattice calculation of Sec. II.

B. Wilson momentum shell RG combined with
dimensional regularization

In this section we show that combining the Wilson mo-
mentum shell RG (WRG) with dimensional regulariza-
tion (DR) yields an ultraviolet (UV) quirk as the phys-
ical dimension d = 2 of graphene is restored at the end
of the calculation. Specifically, we demonstrate that the
order of limits of sending the UV cutoff Λ to infinity and
the parameter ε, introduced by DR in d = 2 − ε dimen-
sions, to zero does not commute. In practice, this means
that the additional renormalization factor appearing in
the bare bubble term of the TK calculation (see Eq. (54))
is not present when we use the WRG in d = 2− ε dimen-
sions. This factor only occurs in the absence of any cutoff
(pure DR), when counterterms are required to regularize
the theory. As shown in the previous section III A, in
this case the counterterm O(α) contribution of the non-
interacting conductivity combines with the coefficient C′
arising from the leading order self-energy and vertex in-
teraction correction diagrams to, again, yield the cor-
rection coefficient C. In contrast, the WRG approach
in d dimensions directly obtains C without the factor in
Eq. (54), as long as Λ is sent to ∞ only at the end of the
calculation, i.e. in particular after ε→ 0.

In the following, in Sec. III B 1, we first review in
strictly d = 2 the approach by Mishchenko from Ref. 17
of using the density-density correlator χρ(q, ω) to obtain
the optical conductivity via

σ(ω) = lim
|q|→0

ω

|q|2
Imχρ(q, ω) . (58)

Then, in Sec. III B 2, we discuss how this calculation
changes if the integrals are regularized by changing the
dimension to d = 2 − ε instead of using a momentum
cutoff. Finally, in Sec. III B 3 we show the appearance of
an UV quirk by keeping a momentum cutoff in d = 2− ε
dimensions. We demonstrate that the two limits Λ→∞
and ε → 0 do not commute and that the correct order
of limits, which is sending ε → 0 before Λ → ∞ as de-
manded by the WRG, yields the results C in agreement
with the lattice calculation.

1. Conductivity via Mishchenko’s approach in d = 2 and
with momentum cutoff Λ

Let us evaluate the conductivity following
Mishchenko’s approach of using the density-density
correlator.17 We work in d = 2 dimensions and keep a
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momentum cutoff Λ in the Coulomb interaction poten-
tial. Within this approach, divergences only appear in
the self-energy diagrams (similar to Fig. 5(b,c)). This
makes it easier to see the impact of the regularization
scheme, i.e. momentum cutoff versus dimensional
regularization, which is discussed in the next Sec. III B 2.

Within Mishchenko’s approach, the conductivity is ob-
tained via Eq. (58), where χρ is the retarded density-
density correlator. To obtain the self-energy contribu-
tions to Eq. (58) (see Fig. 5(b) and (c)) , we need to
compute the self-energy that we have previously shown

to be given by18

Σ(k) = −
∫

d2q

(2π)2

∫
dε

2π
V (k − q)Gq,iε

=
1

4
αvk · σ ln

(4Λ
√
e

p

)
, (59)

where V (q) = 2πe2

|q| θ(Λ − |q|) contains the momentum

cutoff Λ. With this result, the contribution due to the
self-energy type diagrams is (note we multiplied by 2 for
the two diagrams and set v = 1 for brevity):

χ(1,bc)
ρ (q, ω) = −1

2
Ne2α

∫
d2p

(2π)2

∫
dε

2π
ln

4Λ
√
e

p
Tr
(−iεσ0 − p · σ

ε2 + p2

−i(ε+ ω)σ0 − (p+ q) · σ
(ε+ ω)2 + (p+ q)2

−iεσ0 − p · σ
ε2 + p2

p·σ
)
. (60)

Evaluating the trace yields

χ(1,bc)
ρ (q, ω) = −1

2
Ne2α

∫
d2p

(2π)2

∫
dε

2π
ln

4Λ
√
e

p

−2

(ε2 + p2)2

p4 − 3ε2p2 − 2εωp2 − q · p(ε2 − p2)

(ε+ ω)2 + (p+ q)2
. (61)

Expanding to quadratic order in q and integrating over angles gives (keeping only the q2 term)

χ(1,bc)
ρ (q, ω) = −1

2
Ne2α

q2

8π3

∫ ∞
0

pdp

∫ ∞
−∞

dε ln
4Λ
√
e

p

8p2π

(ε2 + p2)2

(ω + ε)(ω + 2ε)[p2 − ε(ω + ε)]

[p2 + (ε+ ω)2]3
. (62)

To proceed, we restore the velocity v and introduce the dimensionless variable p̃ = vp/ω. Evaluating the frequency
integral results in

χ(1,bc)
ρ (q, ω) = −1

2
Ne2α

q2

8π3

1

ω

∫ ∞
0

dp̃p̃ ln
vΛ
√
e

p̃ω

π2(4p̃2 − 1)

p̃(4p̃2 + 1)2
=
Nα

64

q2

ω
. (63)

Note that the integral over p̃ was a sum of two terms due
to the formula

ln
vΛ
√
e

p̃ω
= ln

vΛ
√
e

ω
− ln p̃ . (64)

However, the first integral containing the factor
ln(vΛ

√
e/ω) vanishes. Thus, despite a divergent self-

energy, resulting in the cutoff dependence of the inte-
grand, the corresponding contribution to the conductiv-
ity is not divergent and independent of Λ. Upon analytic
continuation, we find the contribution to the conductiv-
ity

σ(1,bc) = σ0
α

4
, (65)

or σbc ≡ σ(1,bc)/σ0α = 1/4. This agrees with Eq.(13) in
Ref. 17 by Mishchenko.

As we have noted, within this approach, the vertex (d)
diagram (see Fig. 5(d)) contains no divergences and is
given by

σ(1,d) = σ0α
8− 3π

6
, (66)

or σd = (8− 3π)/6. This finally leads to

σ = σ0

(
1 + α

19− 6π

12

)
, (67)

in agreement with the lattice calculation. Next, we dis-
cuss how dimensional regularization can give a different
result via the appearance of an UV quirk.

2. Dimensional regularization without momentum cutoff

We now consider how the results of the last section
change if one works in d = 2 − ε dimensions to regu-
larize the integral instead of using a momentum cutoff
Λ, i.e. sending Λ → ∞. The limit ε → 0 is performed
at the end of the calculation. In this case, we find a re-
sult that is obtained by simply replacing the logarithm in
the self-energy in Eq. (59)) with the self-energy derived
from dimensional regularization and altering the dimen-
sionality of the momentum integral. We find that the
self-energy in d dimensions is proportional to19

Σ(p) ∝ p−ε
Γ
[

1−ε
2

]
Γ
[

3−ε
2

]
Γ
[
ε
2

]
πΓ[2− ε]
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=
1

ε
− 1

2
γ + ln 4− ln p+O(ε) . (68)

As noted above, when calculating χρ one performs an in-
tegration over momentum p (see Eq. (63)) and only the
ln p part of Eq. (68) contributes. Given this fact, one
may ask how a different result can arise in dimensional

regularization compared to regularization by a momen-
tum cutoff Λ, since the only change is the replacement
ln Λ → 1

ε (up to additional constant terms). In strictly
two dimensions, but with the self-energy evaluated in
d = 2 − ε dimensions (to regularize), one finds for the
dimensionless integral (see Eq. (63))

Id=2,Λ=∞ ≡ χ(1,bc)
ρ

16π3ω

Ne2αq2
=

∫ ∞
0

dp̃p̃
[1

ε
− 1

2
γ + ln

4

p̃

] 4p̃2 − 1

p̃(4p̃2 + 1)2
=

∫ ∞
0

p̃dp̃ ln
1

p̃

4p̃2 − 1

p̃(4p̃2 + 1)2
= −π

4
. (69)

where we have used that the integral over the momentum-
independent piece in square brackets vanishes. The sub-
script of Id=2,Λ=∞ refers to the dimensionality of the p-
momentum integral d in Eq. (69) and to the momen-
tum cutoff Λ used in the evaluation of the self-energy
in (2 − ε) dimensions. In Eq. (69) we used the expres-
sion for the self-energy in Eq. (68), which is evaluated
in (2 − ε) dimensions with a momentum cutoff sent to
infinity. Clearly, Id=2,Λ=∞ = −π/4 would yield the re-
sult in Eq. (67) whether the cutoff comes from Λ or from
dimensional regularization. However, in d dimensions,
the integration measure of the p-momentum integral also
changes, and one instead of Eq. (69) one rather needs to
consider Id=2−ε,Λ=∞, which reads

I2−ε,∞ =

∫ ∞
0

dp̃p̃1−ε
(1

ε
− 1

2
γ + ln

4

p̃

) 4p̃2 − 1

p̃(4p̃2 + 1)2

= −π
2
, (70)

where we took ε→ 0 at the end of the calculation. Impor-
tantly, in Eq. (70), the part of the integral coming from
the momentum-independent parts of the square bracket
does not vanish. Instead, it is proportional to ε and yields
a finite contribution when multiplied by 1/ε. This differ-
ence doubles the size of the self-energy (bc) diagrams,
from π/4 in Eq. (69) to π/2 in Eq. (70).

Since the vertex diagram does not change, because it is
convergent, this would lead to the final conductivity cor-
rection proportional to the coefficient C′ = (22− 6π)/12,
as reported by JVH.19 In the next Sec. III B 3, we show,

however, that this conclusion is erroneous as it does not
correctly take into account that the Wilsonian momen-
tum shell RG implicitly requires a finite momentum cut-
off Λ, even in d = 2−ε dimensions. Note that in Eq. (70),
we approximated the self-energy by its Taylor series ex-
pression up to order O(ε0), but the same result is ob-
tained if one instead uses the full power-law expression
of Eq. (68).

3. Spatial dimension d = 2− ε but sharp cutoff

Let us now consider a calculation in d = 2 − ε di-
mensions that still keeps a momentum cutoff Λ. This
is motivated by the observation that when performing a
Wilson momentum shell RG in d dimensions, one implic-
itly keeps a cutoff Λ around which momentum shells are
integrated out. While we need a cutoff Λ once we restore
the physical dimension d = 2, we naively expect it to play
no role once we work in d = 2 − ε dimensions, since all
momentum integrations are finite for ε > 0. Neverthe-
less, as we now show, here an UV quirk appears once we
consider the limits ε→ 0 and Λ→∞, which turn out to
not commute. In d = 2 − ε dimensions and maintaining
a UV cutoff Λ, the self-energy is of the form

Σ(p) ∝
∫ Λ

p

qd−1dq

q2
=

1

ε

(
p−ε − Λ−ε

)
. (71)

Plugging this into the integral for χ
(1,bc)
ρ in Eq. (63), we

obtain

∫ ∞
0

dpp1−ε 1

ε

(
p−ε − Λ−ε

) 4(vp)2 − ω2

p(4(vp)2 + ω2)2
=
(ω
v

)1−2ε π
4

(
ω
vΛ

)ε − π
2

ω2
. (72)

which reveals the UV quirk: the order of limits of sending
the UV cutoff Λ → ∞ and the dimensional parameter
ε→ 0 do not commute. As a result, the numerical value

of the interaction correction coefficient

C
(
ε,
ω

Λ

)
=

22− 6π − 3
(
ω
vΛ

)ε
12

(73)
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is affected by the order of limits. If we first take the limit
of ε → 0 before Λ → ∞, we obtain C. However, if we
instead take Λ→∞ first before ε→ 0, we obtain C′, i.e.,

lim
ε→0

(
lim

Λ→∞
C
(
ε,
ω

Λ

))
= C′ (74)

lim
Λ→∞

(
lim
ε→0

C
(
ε,
ω

Λ

))
= C . (75)

Within Wilson momentum shell RG, the solution to this
ultraviolet quirk is to always maintain a nonzero cutoff
Λ, first setting ε → 0. As shown in Eq. (75), this pro-
cedure unambiguously yields the coefficient C. If we in-
stead wish to set Λ→∞ first then, although the theory
is regularized, additional singularities appear in the limit
ε → 0. A correct handling of this limit requires regular-
izing the full theory (not just the self-energy and vertex
diagrams) using, for example, the minimal subtraction
scheme reviewed in the preceding subsection. This pro-
cedure then again yields the numerical value C for the
interaction correction coefficient, in agreement with our
lattice calculation in Sec. II.

IV. CONCLUSION

In conclusion, we have evaluated the optical conductiv-
ity σ(ω) of graphene including the lowest order Coulomb
interaction corrections within a full lattice tight-binding
approach. In the non-interacting limit, we correct previ-
ous results of the conductivity σ0(ω) beyond the Dirac
limit σ0. Considering interactions, within our lattice cal-
culation we explicitly show that σ(ω) is universal and in-
dependent of other dimensionless quantities such as the
ratio of the width of the atomic orbitals λ to the lattice
constant a (in the frequency regime ω < vΛ).

Equipped with this insight, we address in the second
part of our work, a controversy of how to obtain the cor-
rect result for σ(ω) within a Dirac low-energy description
of graphene, where only the linear part of the spectrum
is taken into account. Such a theory needs to be regular-
ized and, as previously reported, different regularization
schemes apparently yield different results. Here, we re-
solve this issue by demonstrating the appearance of an
ultraviolet quirk when dimensional regularization is com-
bined with the momentum shell renormalization group.
In this situation, the order of limits of sending the dimen-
sionality to the physical dimension and the momentum
cutoff to infinity do not commute. We point out the cor-

rect order of limits and show that this results in a final
result in agreement with our lattice calculation.

Our work thus validates previous Dirac approxima-
tion calculations, and resolves a long-standing contro-
versy about the correct way to regularize the Dirac theory
showing clearly why previous incorrect approaches failed.
Since descriptions of electronic systems by effective low-
energy models like the Dirac Hamiltonian of graphene are
the cornerstone of condensed matter physics, it is grat-
ifying that our work confirms the quantitative accuracy
of this method.

A practical implication of this insight is that dimen-
sional regularizations with d = 2 − ε for the fermionic
degrees of freedom are full of subtleties. If one wants to
investigate the role of Coulomb interactions in graphene
and wishes to avoid a regularization via an explicit cut
off, it is technically easier to perform this regularization
with regards to the embedding space of the photon field
dγ = 2− η. This approach was performed in Ref. 18 and
immediately yields the correct result and no oder of limit
issues occur.
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Appendix A: Perturbative calculation of the conductivity

The frequency-dependent conductivity follows from the Kubo formula, which we now briefly review.34 Using the
Peierls substitution to couple an electromagnetic gauge field to electrons on the honeycomb lattice, we have:

H0(Ai) = −t
∑
Ri

3∑
n=1

(
a†(Ri)b(Ri + δn)e−iδn·Ai + h.c.

)
, (A1)

with A the unit cell area. Here, the electron charge has been set to unity. Taylor expanding to linear order gives

H0(Ai) = H0 −A
∑
Ri

J(Ri) ·Ai, (A2)

J(Ri) = −i t
A

3∑
n=1

[
a†(Ri)b(Ri + δn)− b†(Ri + δn)a(Ri)]. (A3)

Within time-dependent perturbation theory, the current-density at site Ri is:

〈Jµ(Ri, t)〉 = A

∫ ∞
−∞

dt′
∑
Rj

χJ,µ,ν(Ri,Rj ; t− t′)Aν(Rj), (A4)

χJ,µ,ν(Ri,Rj ; t− t′) = iΘ(t− t′)
〈[
Jµ(Ri, t), Jν(Rj , t

′)
]〉
, (A5)

where in the second line we defined the retarded current-current correlator. Assuming the vector potential is uniform

and has the time-dependence A(t) = e−iωt

iω E, with E the electric field, we find

〈Jµ〉 = σµνEν , (A6)

σµν(ω) =
1

ω
χJ,µ,ν(ω), (A7)

where χJ,µ,ν(ω) is the spatial and temporal Fourier transform of Eq. (A5). The Eq. (A7) for the optical conductivity
is equivalent to Eq. (26). As usual, this quantity can be obtained from the corresponding Matsubara function

χJ,µ,ν(iΩ) =
1

NA

∫ β

0

dτeiΩτ 〈Jµ(τ)Jν(0)〉. (A8)

In this formula N is the number of Bravais lattice points, A is the unit cell area, and β = 1
kBT

(although we always

work in the zero-temperature limit). Here, Jµ(τ) is given by Eq. (8). Henceforth, we shall drop the subscript µ, ν in
the definition of χJ,µ,ν(iΩ), which we need for the case of µ = ν.

1. Bare-bubble diagram

To compute the conductivity, we need to evaluate χJ,µ,ν(iΩ) to leading order in perturbation theory. We start with
the zeroth order result, which is the “bare-bubble” diagram, Fig. 2 (a) of the main text. Setting µ = ν = y yields:

χ
(0)
J (iΩ) = −T

∑
k,ω

Tr
[
Ĵy,k,0Gk,iωĴy,kGk,iω+iΩ

]
(A9)

= −
∑
k

[
h∗kjy,k − hkj∗y,k

]2
t |hk|(4|hk|2 + Ω2/t2)

. (A10)

Here, Ĵµ(k) is defined in Eq. (8) and in the second line we evaluated the frequency integration and the trace. Next
we rewrite the current-component jy(k), defined in Eq. (10), as:

jy,k =
−ita

2
[hk − 3] (A11)

j∗y,k =
ita

2
[h∗k − 3] , (A12)
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and obtain for our retarded current correlator:

χ
(0)
J (iΩ) =

ta2

4

∑
k

18|hk|2 + 4|hk|4 − 12|hk|2 (hk + h∗k) + 9
(
h2
k + h∗2k

)
|hk|(4|hk|2 + Ω2/t2)

. (A13)

Upon analytically continuing iΩ→ ω + iδ,

1

4|hk|2 + Ω2
→ P.V.

1

4|hk|2 − ω2
+ i

π

2ω
δ(ω − 2|hk|), (A14)

with P.V. denoting the principal value (and we assumed ω > 0) and taking the imaginary part, we obtain the retarded
correlator:

χ
(0)
J (ω) =

∑
k

(
ta2π

32

)[
18 + 4|hk|2 + 18

[<hk]2 − [=hk]2

|hk|2
− 24[<hk]

]
δ
(
|hk| −

ω

2t

)
(A15)

=
∑
k

(
ta2π

32

)
g (hk) δ

(
|hk| −

ω

2t

)
. (A16)

In this expression, we have kept the dimensionful quantities a and t, although henceforth we shall set them to unity
and measure the frequency relative to t. Due to the delta function constraint, we can integrate the above expression
analytically. Therefore we split up the function g (h(k)) into two functions and define:

g1(|hk|) = 18 + 4|hk|2 (A17)

g2 (hk) = 18
[<hk]2 − [=hk]2

|hk|2
− 24[<hk] . (A18)

Firstly, we evaluate the expression:

χ
(0)
J,1(ω) =

π

16

∑
k

g1(|hk|)δ(2|hk| − ω) . (A19)

We introduce the density of state per unit cell as

ρ(E) =
∑
k

δ(E − |hk|)

=

∫
d2k

(2π)2

4∑
i=1

1

|∂kx,i |hkx,i,ky ||
δ(kx − kx,i) (A20)

with the kx,i being the solution to E = |hk|:

kx,1 = − 2√
3

arccos

[
1

4
(−2 cos

(
3ky
2

)
−
√

2
√

2E2 − 1 + cos (3ky))

]
kx,2 = +

2√
3

arccos

[
1

4
(−2 cos

(
3ky
2

)
−
√

2
√

2E2 − 1 + cos (3ky))

]
kx,3 = − 2√

3
arccos

[
1

4
(−2 cos

(
3ky
2

)
+
√

2
√

2E2 − 1 + cos (3ky))

]
kx,4 = +

2√
3

arccos

[
1

4
(−2 cos

(
3ky
2

)
+
√

2
√

2E2 − 1 + cos (3ky))

]
(A21)

describing curves that encircle the Dirac points at kR = 4π
3a ( 1

2
√

3
x̂ + 1

2 ŷ) and kL = 4π
3a (− 1

2
√

3
x̂ + 1

2 ŷ) when the y

component is restricted to k− < ky < k+ with

k±(E) =
2π

3
±

arccos
(
1− 2E2

)
3

. (A22)

We can calculate the density of states analytically and obtain:

ρ(E) =
1

(2π)2

32 E
√

1− E
3 K

[
− 16E

(E−3)(1+E)3

]
3(3− E)(1 + E)3/2

, (A23)
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where K[m] is the complete elliptic integral of the first kind. One part of the correlation function is thus given by:

χ
(0)
J,1(ω) =

π

32

∑
k

g1(|hk|)δ(|hk| − ω/2)

=
π

32
ρ
(ω

2

)
g
(ω

2

)
=

π

32
ρ
(ω

2

)
(18 + ω2) . (A24)

In order to evaluate the expression:

χ
(0)
J,2(ω) =

π

16

∑
k

g2(hk)δ(2|hk| − ω) , (A25)

we expand the above formula near the node, h(kR + k), and write the deviation from the node in polar coordinates
k = (k, θ),

|hkR+k| '
3

128
k(64− 7k2 + 16k cos 3θ − k2 cos 6θ), (A26)

valid to O(k3). The approximate solution to ω = 2|hkR+k| is:

k1(θ, ω) =
1

3
ω − 1

36
ω2 cos 3θ +

1

1728
[7 + 8 cos2 3θ + cos 6θ]ω3 , (A27)

that is valid to O(ω3). The factor g2(h(k)) is, to the same order,

g2(kR + k) ' 9

32
[k3(− cos 11θ) + 3

(
5k2 − 16

)
k cos θ +

(
64− 20k2

)
cos 2θ (A28)

+ 2k
(
2
(
k2 − 16

)
cos 3θ − 8(cos 5θ + 3k) + k(8 cos 4θ + 8 cos 6θ + 3k cos 5θ + 2 cos 8θ(1− 2k cos θ))

)
] .

From the delta function, we’ll also need

d

dk
|hkR+k| =

3

64

(
64 + 32k cos 3θ − 21k2 − 3k2 cos 6θ

)
. (A29)

Then, assuming the same contribution comes from each node (which we have verified), we’ll have:

χ
(0)
J,2(ω) =

π

8

2π∫
0

dθ

∞∫
0

dk k g2(k)δ(2|hk| − ω) (A30)

=
π

8

2π∫
0

dθ k1(θ, ω)
1

| ddk1 2|hkR+k1 ||
g2(kR + k1) , (A31)

where we evaluated the radial k integral. To evaluate the integral, we simply insert k1(θ, ω) into the factors Eq. (A29)
and Eq. (A30), insert them into the integrand and Taylor expand order by order in ω before evaluating the angle
integrations. We obtain:

χ
(0)
J,2(ω) = −ω

8

ω2

36
. (A32)

Upon inserting the combined result into Eq. (A7), we find the frequency-dependent conductivity plotted in Fig. 6 and
given by the formula:

σ(ω) =
π

32ω
ρ
(ω

2

)
(18 + ω2)− 1

8

ω2

36
(A33)

≈ σ0

(
1 +

1

9
ω +O(ω3)

)
, (A34)

with σ0 the zero-frequency limit (reinserting correct factors of e2 and ~, previously set to unity).

σ0 =
1

8

e2

~
. (A35)

In comparing to the known result for the conductivity of N species of Dirac fermions, σ0 = N
16
e2

~ , recall that here we
have N = 2, since we are considering the spinless case (but have summed over two nodes).
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2. Interaction corrections to the conductivity

The leading order interaction corrections to the conductivity, that are linear order in the effective fine structure
constant α, can be expressed in terms of self-energy (diagrams b and c) and vertex type (diagram d) Feynman diagrams,
as depicted in Fig. 2 (a) and (b) of the main text. The self-energy contribution is:

χ
(1,bc)
J (iΩ) = −2T

∑
k,ω

Tr
[
Gk,iω−iΩJµkGk,iωΣ(k)Gk,iωJµk

]
, (A36)

with the overall 2 coming from there being two such diagrams. The vertex contribution is given by:

χ
(1,d)
J (iΩ) =

∑
k

∫
d2q

(2π)2
V (q)Tr

[
Iµ(k,Ω)M−qIµ(k + q,−Ω)Mq

]
, (A37)

with

Iµ(k,Ω) = T
∑
ω

Gk,iωJµpGk,iω−iΩ. (A38)

We emphasize that momentum summations are always over the Brillouin zone and q integrations are always over the
entire 2D momentum space, an issue that was neglected in Ref. 20 (see Eq.(15) of this work). As in our calculation
of the self-energy, a crucial simplification of Eqs. (A36) and (A37) will involve writing these in a way that allows us
to analytically evaluate the q integration.

Before analyzing these results in the subsequent sections, we first recall the result for the bc and d contributions
within the nodal approximation. In this approximation, regularizing the integrals by imposing a large momentum
cutoff Λ on the Coulomb potential (a procedure which obeys the Ward identity18), we obtain:

Imχ
(1,bc)
J (ω) = −1

2
αωσ0 ln

8Λv

ω
, (A39)

with v = 3ta/2~, and

Imχ
(1,d)
J (ω) =

1

2
αωσ0

[
ln

8Λv

ω
+

19− 6π

6

]
, (A40)

yielding the sum

Imχ
(1,bc)
J (ω) + Imχ

(1,d)
J (ω) = σ0α

19− 6π

12
. (A41)

These formulas for the bc and d contributions are of course approximately valid within the tight-binding theory, with
the replacement of the UV cutoff Λ → 1/a, so that we expect each contribution to go as ∼ ω lnω. This creates
numerical difficulties, as each term is large, requiring a cancellation to return the value that is consistent with the
nodal result ∝ 19−6π

12 ' 0.0125. However, as shown in the main text, our numerical calculations are indeed consistent
with this value.

3. Diagrams b and c

Starting with Eq. (A36), we first evaluate the frequency integration and the trace. Then we find (summing over
the xx and yy components and dividing by 2):

χ
(1,bc)
J (iΩ) = −

∑
p

1

4|hp|3
[ D1(p)

4|hp|2 + Ω2
+D2(p)

4|hp|2 − Ω2

(4|hp|2 + Ω2)2

]
, (A42)

where the functions D1(p) and D2(p) are given by:

D1(p) = 2
(
h∗Σ12 − hΣ21

)[
(h∗)2(j2

x + j2
y)− h2((j∗x)2 + (j∗y)2)

]
, (A43)

D2(p) =
(
h∗Σ12 + hΣ21

)[
(h∗)2(j2

x + j2
y) + h2((j∗x)2 + (j∗y)2)− 2(jxj

∗
x + jyj

∗
y)|h|2

]
(A44)
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Although this expression is complicated, all that is left is to analytically continue iΩ→ ω+ iδ and take the imaginary
part. The analytic continuation can be performed using Eq. (A14) for the term proportional to D1(p) and

4|h|2 − Ω2

(4|h|2 + Ω2)2
=

d

dΩ

Ω

4|h|2 + Ω2
→ d

dω

ω

4|h|

[ 1

2|h|+ ω + iδ
+

1

2|h| − ω − iδ

]
, (A45)

for the term proportional to D2(p). After taking the imaginary part (and assuming ω > 0), we have

Imχ
(1,bc)
J (ω) = −π

∑
p

1

16|hp|4
D1(p)δ(ω − 2|hp|)− π

d

dω

∑
p

ω

16|hp|4
D2(p)δ(ω − 2|hp|). (A46)

To evaluate this, then, we determine Σ12(k) for k within the BZ by evaluating the summation over R for a large set
of Bravais lattice vectors. With the delta function constraint, all that remains is a numerical integration over p along
the curves ω = 2|h(p)| (which go around the Dirac nodes).

4. Diagram d

Next, we turn to Eq. (A37). Our first task is to evaluate Eq. (A38). We find:

Iµ(p,Ω) =
1

|hp|(4|hp|2 + Ω2)
Vµ(p,Ω), (A47)

Vµ(p,Ω) ≡
(

1
2 iΩ

[
hpj
∗
µp − h∗pjµp

]
h2
pj
∗
µp − |hp|2jµp

h∗2p jµp − |hp|2j∗µp 1
2 iΩ

[
h∗pjµp − hpj∗µp

]) . (A48)

Now, we have

χ
(1,d)
J (iΩ) =

∫
d2q

(2π)2
V (q)

∑
p

1

|hp|(4|hp|2 + Ω2)

1

|hp+q|(4|hp+q|2 + Ω2)

×Tr
[
Vµ(p,Ω)M−qVµ(p+ q,−Ω)Mq

]
, (A49)

which we now proceed to simplify. Recall that, in the bc diagram, we expressed the self-energy as a summation over
Bravais lattice vectors, so that the q integration did not need to be performed numerically (i.e., it was performed
analytically to yield the real-space Coulomb interaction). In the present case of Eq. (A49), we can perform a similar
trick by first writing the integral as

χ
(1,d)
J (iΩ) = =

∑
p

1

|hp|(4|hp|2 + Ω2)
Tr
[
Vµ(p,Ω)Qµ(p,−Ω)

]
, (A50)

Qµ(p,−Ω) ≡
∫

d2q

(2π)2
V (q)

M−qVµ(p+ q,−Ω)Mq

|hp+q|(4|hp+q|2 + Ω2)
, (A51)

Much like the self-energy, we can express Qµ(p,−Ω) as a sum over Bravais lattice vectors of a summand for which
the q integration may be performed analytically. The result is:

Qµ(p,−Ω) = A
∑
R

eip·R
∑
p′

e−ip
′·R

(
Vµ,11(p′,−Ω) e

2

|R| Vµ,12(p′,−Ω) e2

|R−aŷ|
Vµ,21(p′,−Ω) e2

|R+aŷ| Vµ,22(p′,−Ω) e
2

|R|

)
1

|hp′ |(4|hp′ |2 + Ω2)
, (A52)

which now involves a summation over Bravais lattice vectors and an integration over the BZ. Inserting this into,
Eq. (A49), evaluating the trace, and simplifying, we find:

χ
(1,d)
J (iΩ) = e2A

∑
R

∑
p,p′

ei(p−p
′)·R 1

|hp|(4|hp|2 + Ω2)

1

|hp′ |(4|hp′ |2 + Ω2)
(A53)

×
[Vµ,11(p,Ω)Vµ,11(p′,−Ω) + Vµ,22(p,Ω)Vµ,22(p′,−Ω)

|R|
+
Vµ,21(p,Ω)Vµ,12(p′,−Ω)

|R− aŷ|
+
Vµ,12(p,Ω)Vµ,21(p′,−Ω)

|R+ aŷ|

]
.

The next step is to analytically continue, using Eq. (A14). For the imaginary part, we’ll clearly have two terms, one
with δ(ω− 2|h(p)|) and one with δ(ω− 2|h(p′)|). However, since the integrand is symmetric under exchanging p and



19

p′ and also R→ −R, these two terms are identical. We finally obtain (summing over the xx and yy components and
dividing by 2, and using Eq. (A48)) :

χ
(1,d)
J (ω) = −e2A

∑
µ=x,y

∑
R

∑
p,p′

ei(p−p
′)·R[hpj∗µp − h∗pjµp][hp′j∗µp′ − h∗p′jµp′]

×
[ ω2

2|R|
+

h∗php′

|R− aŷ|
+

hph
∗
p′

|R+ aŷ|

] π
2ω
δ(ω − 2|hp|)

1

|hp||hp′ |
P.V.

1

4|hp′ |2 − ω2
, (A54)

the result for the retarded correlator. To evaluate this diagram, we must numerically evaluate the momentum
integrations over the Brillouin zone and the summation over BL vectors R. This result for point like Wannier
functions can again be generalized to the case of the Coulomb potential given in Eq. (18). Upon substituting the

expression 1
|R−aŷ| by

√
π
2

1
λe
−|R−aŷ|/4λ2

I0

(
|R−aŷ|2

4λ2

)
and analogously for 1

|R| and 1
|R+aŷ| , the nonzero width of the

on-site Wannier function is taken into account.

Appendix B: Continuum RG/ Minimal subtraction scheme

Our starting point is the action of graphene:

S =

∫
dτ

∫
ddex ψ†0

(
∂τ + ie0A

0
0 + v0(−i∇σ)

)
ψ0

+

∫
dτ

∫
ddγx

(
∂xA

0
0

)2
, (B1)

where the subscript X0 denotes the bare quantities. Here, de is the spatial dimensionality of the electron degrees of
freedom (henceforth we call de → d = 2 − ε) and dγ = 3 is the dimensionality of the gauge fields A0 mediating the
Coulomb potential. Taking a closer look at the action of graphene, we can derive the dimensionality of the fermionic
fields and of the electrical charge. Since the action has to be a dimensionless quantity, we find for the ferminonic fields
have the following dimensionality:

[ψ0] =
de
2
, (B2)

while the bosonic fields of the photons have the dimension:

[Aµ0 ] = 1− ε . (B3)

We can now deduce from these conditions that the dimension of the electrical charge e0 is given by:

[e0] = ε . (B4)

We have seen in Eq. (B4) that the bare charge has dimensionality [e0] = ε. However, in order to have the electrical
charge as a dimensionless quantity, we again introduce the parameter µ:

e2
0

µ2ε
= e2(µ)Ze ⇔ e2

0 =
e2(µ)

4ε
e2γεµ̃−2ε ⇔ e2(µ) = e2

04εe−2γεµ̃−2ε . (B5)

Upon recalling Eq. (41) and Eq. (45), we see that the velocity is renormalized by:

v0 =

[
1− 1

4ε
α(µ)

]
v(µ) , (B6)

which can be rewritten as:

v(µ) =
4εv0

4ε− α(µ)
. (B7)

Now we can define our coupling constant as:

α(µ) =
e2(µ)

v(µ)
. (B8)
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Combining the above equation with Eq. (B5) and Eq. (B7), we obtain for the coupling constant the following expres-
sion:

α(µ) =
α04εe−2γεµ̃−2ε

1 + α0

4
1
ε 4εe−2γεµ̃−2ε

. (B9)

Next we replace again the divergence by the logarithm, using 1
ε → log (µ/ω), and than take the limit ε → 0. This

yields:

α(ω) =
α0

1 + α0

4 log
(
µ
ω

) . (B10)

Treating the velocity in an analogous way leads to:

v0 = v(µ)− 1

4ε
e2(µ) ⇒ v(µ) = v0 +

e2
0

4ε
4εe−2γεµ̃−2ε . (B11)

After replacing the divergence and taking the limit ε→ 0, we obtain:

v(ω) = v0 +
e2

0

4
log
(µ
ω

)
. (B12)
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