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Using state-of-the-art many-body Green’s function calculations based on the “GW plus cumulant”
approach, we analyze the properties of plasmon satellites in the electron spectral function resulting
from electron-plasmon interactions in one-, two- and three-dimensional systems. Specifically, we
show how their dispersion relation, lineshape and linewidth are related to the properties of the
constituent electrons and plasmons. To gain insight into the many-body processes giving rise to
the formation of plasmon satellites, we connect the “GW plus cumulant” approach to a many-body
wavefunction picture of electron-plasmon interactions and introduce the coupling-strength weighted
electron-plasmon joint-density states as a powerful concept for understanding plasmon satellites.
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Introduction.—The interaction of electrons with
bosons is of fundamental importance for many phenom-
ena in condensed matter physics, plasma physics and cold
atom physics. Recently, there has been great interest in
the coupling of electrons and plasmons, which are collec-
tive excitations describing quantized oscillations of the
charge density. For example, the decay of plasmons into
energetic or “hot” electron-hole pairs in metallic surfaces
and nanoparticles, which is triggered by electron-plasmon
coupling, has led to a new generation of plasmonic devices
for photovoltaics and photocatalysis [1–3].

Satellite features in the spectral function of elec-
trons are another consequence of electron-plasmon in-
teractions. Such plasmon satellites have long been
known in core-electron photoemission spectra [4, 5]. In
recent years, valence band plasmon satellites, which
were observed experimentally in three-dimensional met-
als and semiconductors [6–9], but also in two-dimensional
systems, such as doped graphene and semiconductor
quantum-well electron gases [10–12], received much at-
tention.

To analyze and design the properties of plasmon satel-
lites for photonics and plasmonics applications, an accu-
rate, material-specific theoretical description of electron-
plasmon interactions is needed. This is achieved by the
GW plus cumulant (GW+C) approach [13, 14], where the
cumulant expansion of the electron Green’s function G is
truncated at second order in the screened Coulomb inter-
action W . GW+C calculations yielded good agreement
with experimental photoemission and tunneling spectra
in a wide range of physical systems [6–8, 15–17] and
also with highly accurate coupled-cluster Green’s func-
tion calculations [18].

While Green’s function methods, such as the GW+C
approach, often produce highly accurate results, gain-
ing intuition and insights into the underlying many-
body processes can be difficult. In this paper, we de-
velop a complementary many-body wavefunction-based

approach for plasmonic (and more generally, bosonic)
satellites in the electron spectral function which offers
a clear and simple physical picture of electron-plasmon
interactions and leads to new insights into the results of
GW+C calculations. Specifically, this approach reveals
that the concepts of satellite dispersion, satellite line-
shape and satellite linewidth are closely related, explains
why in three-dimensional materials the plasmon satel-
lite band structure looks like a shifted copy of the quasi-
particle band structure and demonstrates that previous
models of plasmon satellites in three dimensions are over-
simplified and cannot be applied to lower-dimensional
systems. We present results for three-dimensional [sili-
con and the three-dimensional electron gas (3DEG)], two-
dimensional (doped graphene) and one-dimensional [the
one-dimensional electron gas (1DEG)] systems.

Green’s function theory.—The electron spectral func-
tion is related to many observables, such as the tunnel-
ing and photoemission spectrum, and the contribution
AIP

k (ω) (with k denoting the wave vector and we omit
a band index) describing the removal of an electron is
given by [19, 20]

AIP
k (ω) =

∑
λ

|〈N − 1, λ|ck|GS〉|2δ(ω + EN−1,λ − EGS),

(1)

where |GS〉 and EGS denote the ground state wave func-
tion and energy of the N -electron system, respectively,
and |N − 1, λ〉 and EN−1,λ denote the eigenstates and
energies of the (N − 1)-electron system.

The spectral function is related to the one-electron
Green’s function Gk(ω) via Ak(ω) = 1/π × |ImGk(ω)|.
Within the generalized GW+C approach, the retarded
Green’s function is expressed as function of time t via
[21]

Gk(t) = −iΘ(t)e−iE
HF
k t+Ck(t), (2)



2

where EHF
k denotes the Hartree-Fock orbital energy

(given by EHF
k = εk + ΣX

k − V xck with εk, V xck and ΣX
k

denoting the mean-field orbital energy, the mean-field
exchange-correlation potential and the bare exchange self
energy, respectively). Also, Ck(t) is the cumulant func-
tion given by

Ck(t) =
1

π

∫
dω|ImΣk(ω + Ek)|e

−iωt + iωt− 1

ω2
, (3)

where Σk(ω) denotes the GW self energy [22, 23] and Ek

is the GW orbital energy.
To gain physical understanding, it is useful sepa-

rate the cumulant function into a satellite contribution
Csat

k (t), which contains the e−iωt term in Eq. (3), and a
quasiparticle contribution, which contains the (iωt − 1)
term. Expanding the Green’s function in powers of Csat

k

leads to a representation of the spectral function as the
sum of a quasiparticle contribution Aqp

k and an infinite

series of plasmon satellite contributions A
(m)
k (with m

denoting the number of plasmons that are created in the
shake-up process). Specifically, the first satellite contri-
bution can be expressed as

A
(1)
k (ω) =

∫
dω′Csat

k (ω − ω′)Aqp
k (ω′). (4)

Approximating Aqp
k (ω) ≈ Zkδ

(Γk)(ω − Ek) with Zk

denoting the renormalization factor and δ(Γ) being a

Lorentzian of width Γ, we find that A
(1)
k (ω) ≈ Zk/π ×

ImΣk(ω)/(ω − Ek)2.
Evaluating Eq. (16) requires the calculation of the

imaginary part of the GW self energy. To clarify the
physical picture, we use the self energy of a homogeneous
electron system in D dimensions with a plasmon-pole
model for the dielectric response. With these assump-
tions, the electron-removal part of the self energy is given
by [23]

ImΣIP
k (ω) =

π

LD

∑
q

λqvqδ(ω − Ek−q + ωq), (5)

where vq denotes the Coulomb interaction in D dimen-
sions and ωq and λq are the plasmon dispersion relation
and the plasmon strength, respectively. Also, L is the
linear extension of the system and k − q corresponds to
a hole state.

Inserting Eq. (5) into the expression for A
(1)
k yields

A
(1)
k (ω) =

Zk

LD

∑
q

g2
q

(Ek − Ek−q − ωq)2
δ(ω − Ek−q + ωq),

(6)

where we introduced the electron-plasmon coupling
strength g2

q = λqvq. Eq. (6) shows that the satellite
contribution to the spectral function closely related to
the coupling-strength weighted electron-plasmon joint-
density of states Jk(ω) = 1/LD×

∑
q g

2
qδ(ω−Ek−q +ωq)

comprising only plasmon-hole pairs with total momen-
tum k.

Wavefunction theory.—We will now demonstrate that
the expression for the satellite contribution to the spec-
tral function from GW+C [Eq. (6)] can also be derived by
considering the effective electron-plasmon Hamiltonian

Hel−pl =
∑
k

Ekc
†
kck +

∑
q

ωqa
†
qaq (7)

+
∑
q,k

gq√
LD

c†k−qck(aq + a†−q), (8)

where ck and aq are destruction operators for quasipar-
ticles and plasmons, respectively. In this Hamiltonian,
the first term describes a set of non-interacting quasipar-
ticles, the second term describes a set of non-interacting
plasmons (or more generally, bosons) and the third term
captures the interaction between quasiparticles and plas-
mons.

This electron-boson Hamiltonian plays a fundamen-
tal role in the theory of electron-phonon interactions,
but computing accurate spectral functions is difficult
[19, 24, 25]. At intermediate coupling strengths, differ-
ent types of perturbation theory give significantly dif-
ferent results: When compared to highly accurate path-
integral calculations, the self-consistent Brillouin-Wigner
perturbation theory yields substantially worse results
than standard Rayleigh-Schrödinger perturbation theory
[19].

For electron-plasmon interactions, Lundqvist demon-
strated [24] that the application of Brillouin-Wigner per-
turbation theory to Hel−pl results in the Dyson equation
of the GW approach. Solving this equation, he found
two solutions. While the first solution corresponds to
a standard quasiparticle excitation, he assigned the sec-
ond solution to a novel particle, the plasmaron, a strongly
coupled, coherent hole-plasmon state. Despite several re-
ports claiming the observation of the plasmaron [10, 11],
it has become clear recently that no such excitation ex-
ists in known materials and that its spurious prediction
signals the inability of the GW method (and, equiva-
lently, the Brillouin-Wigner perturbation theory) to de-
scribe plasmon satellites [6, 7, 15, 16].

Motivated by its accurate description of electron-
phonon interactions, we now apply Rayleigh-Schrödinger
perturbation theory to Hel−pl. Without electron-
plasmon interactions, i.e. for gq = 0, the eigenstates
of the (N − 1)-electron system are simply ck|GS〉 (with
energy EGS − Ek) and a†qck−q|GS〉 (with energy EGS −
Ek−q +ωq) [26]. Only the state ck|GS〉 gives a contribu-
tion to Eq. (1) and the resulting spectral function has a
single delta-function peak and no satellite features.

Next, we include electron-plasmon interactions us-
ing first-order Rayleigh-Schrödinger perturbation theory.
The non-interacting states that lie in the energy region of
the first satellite are the hole-plasmon pairs a†qck−q|GS〉.
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FIG. 1. a) GW plus cumulant spectral functions of the three-dimensional electron gas at k = 0 for rs = 1.0 (red curve) and
rs = 3.0 (blue curve). b) Spectral functions (in 1/eV) of the three-dimensional electron gas at rs = 4.0 (corresponding to
metallic sodium) from GW plus cumulant theory. c) Spectral functions (in 1/eV) of silicon from ab initio GW plus cumulant
theory calculations.

Including the hole-plasmon coupling yields

a†qck−q|GS〉 →[
a†qck−q +

1√
LD

gq
Ek − Ek−q + ωq

ck + ...

]
|GS〉, (9)

i.e. the hole-plasmon pair state acquires a quasiparticle
component, which makes this state “visible” in the spec-
tral function as a satellite structure. Inserting Eq. (9)
into Eq. (1), we recover Eq. (6) for the plasmon satellite
contribution to the electron spectral function. This anal-
ysis shows clearly that no single, coherent hole-plasmon
state is formed, but instead the satellite is comprised of
a large number of incoherent, weakly interacting hole-
plasmon pairs.

Plasmon satellites in three dimensions.—We first
study the properties of plasmon satellites in the 3DEG.
In this system, the plasmon dispersion is parabolic at
small wave vectors, i.e. ωq = ω0 + βq2 [20] and we as-
sume that also the quasiparticle dispersion is parabolic,
i.e. Ek = αk2.

With these assumptions, we can analytically compute
the coupling-constant weighted electron-plasmon joint
density of states, which is closely related to the satellite

contribution A
(1)
k (ω) to the spectral function [27]. For

k = 0, we find

Jk=0(ω) =
ω0

2π

Θ (sgn(α− β)[ω + ω0])√
|(α− β)(ω + ω0)|

. (10)

This result shows that the satellite feature is peaked at
ω = −ω0, i.e. the satellite is shifted from the quasi-
particle energy by the lowest plasmon energy ω0. More-
over, the satellite exhibits a highly asymmetric lineshape,
which depends sensitively on the relative magnitudes of
the plasmon and quasiparticle effective masses [given by
m∗pl = 1/(2β) and m∗qp = 1/(2α), respectively]: if β is

larger α, the satellite peak has a tail towards higher bind-
ing energies (i.e. away from the Fermi energy). If α is
greater than β, the tail is towards lower binding energies.
If the effective masses are equal, the satellite structure is
symmetric.

Equation (10) predicts the occurrence of a drastic
change in the satellite lineshape as function of the
Wigner-Seitz radius rs. While the quasiparticle effective
mass only has a weak dependence on rs and may be ap-
proximated by its non-interacting value, i.e. α = 0.5 (in
atomic units) [23], the plasmon effective mass depends
sensitively on rs. Within the random-phase approxima-
tion (RPA), we find β ≈ 0.64/

√
rs [20]. At small rs,

β is large and the tail of the satellite extends to higher
binding energies. For rs & 1.6, β is smaller than α and
the tail of the satellite extends to lower binding ener-
gies. Figure 1(a) shows the GW+C spectral functions
for the 3DEG with rs = 1.0 and rs = 3.0 obtained with a
plasmon-pole model. It can clearly be seen that the tails
of the satellites extend into different directions.

In combination with angle-resolved photoemission
spectroscopy (ARPES), the above analysis imposes use-
ful limits on the value of the plasmon effective mass.
While ARPES experiments do not measure the plasmon
dispersion, they can determine both the quasiparticle ef-
fective mass and the satellite lineshape. Depending on
the direction of the satellite tail [see Fig. 1(a)], the plas-
mon effective mass must be either smaller or larger than
the quasiparticle effective mass. This approach is par-
ticularly useful in multiband systems, where each band
leads to an additional constraint on the plasmon effective
mass.

The satellite lineshape from full GW+C calculations
is more symmetric than predicted by Eq. (10) since addi-
tional broadening mechanisms arising from finite quasi-
particle linewidths [see Eq. (16)] and finite plasmon
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linewidths (for example, caused by Landau damping [28])
are taken into account. The total linewidth of the satel-
lite may thus be approximated as the sum of the widths
of the coupling-strength weighted hole-plasmon joint den-
sity of states, the quasiparticle spectral function and the
plasmon lineshape. In spectroscopic experiments on real
samples, additional phonon and disorder broadening as
well as broadening due to extrinsic losses occur [29, 30].

Also at nonzero wave vectors, the peak of Jk(ω) is
located at an energy ω0 below the quasiparticle energy
Ek (see appendix). In other words: the satellite band
is a rigidly shifted copy of the quasiparticle band. Sur-
prisingly, this means that the effective mass of the satel-
lite is the same as the quasiparticle effective mass irre-
spective of the plasmon effective mass. We confirm our
conclusions by carrying out GW+C calculations of the
3DEG at rs = 4.0 (corresponding to metallic sodium)
using the frequency-dependent RPA dielectric function,
see Fig. 1(b).

Generalizing our findings for the plasmon satellite
properties of the 3DEG to real materials is straightfor-
ward. Fig. 1(c) shows the spectral functions of crystalline
silicon obtained from ab initio GW+C calculations [31].
Because of the parabolic dispersion of the valence quasi-
particle bands near the band extrema and the parabolic
dispersion of the plasmon, the plasmon satellite band
structure appears as a rigidly shifted copy of the quasi-
particle band structure, but significantly broadened.

Previous models of plasmon satellites in three-
dimensional systems [6, 32, 33] assumed that plasmon
dispersion is a minor effect and approximated the satel-
lite simply as a shifted, broadened copy of the quasiparti-
cle peak. Such approaches fail to describe the asymmet-
ric lineshape of the satellite and also cannot be applied
straightforwardly to lower-dimensional systems, which
we discuss below.

Plasmon satellites in two and one dimensions.—In
three-dimensional systems, the satellite feature is sep-
arated from the quasiparticle peak by the lowest plas-
mon frequency. In metallic two-dimensional systems, the
plasmon energy is proportional to the square root of the
plasmon wave vector, i.e. ωq = β

√
q [20], and it is not a

priori clear where the satellite peak is located.
We now apply our GW+C-based analysis of plas-

mon satellite properties to two-dimensional systems and
choose electron-doped graphene as a test case. Within
the Dirac model approach, the two bands in the vicinity
of the Fermi energy are described by a linear dispersion
relation, i.e. Ek = ±vF k with vF denoting the graphene
Fermi velocity. Here, k is measured from the K or K ′

points of the graphene Brillouin zone.
Taking into account that electrons in the upper Dirac

band give the dominant contribution to the satellite
spectral function at the Dirac point [34], we find that
Jk=0(ω) ∝ Θ(ω+ ω̃)/

√
ω + ω̃, where ω̃ = β2/(4vF ) is the

separation between the quasiparticle and satellite peaks.
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FIG. 2. a) Spectral functions (in 1/eV) of doped graphene on
a silicon carbide substrate from GW plus cumulant theory.
b) Spectral functions (in 1/eV) of a one-dimensional electron
gas from GW plus cumulant theory.

Again, the plasmon satellite lineshape is highly asym-
metric. The dependence of β on the charge density n,
β ∝
√
n [16], gives rise to small changes in the lineshape

as function of the carrier density. Comparing the ex-
pression for Jk=0 of doped graphene to the result for the
3DEG [see Eq. (10)], we observe that no drastic changes
in the asymmetry of the lineshape occur as function of
the carrier density.

Figure 2(a) shows the spectral functions of doped
graphene on a silicon carbide substrate from GW+C cal-
culations [35]. We observe that the plasmon satellite
band is not a shifted copy of the quasiparticle band, but
that the two bands merge at the Fermi wave vector kF .

Finally, we analyze the plasmon satellite properties in
a one-dimensional metallic system, the 1DEG. In this
system, the plasmon dispersion relation at long wave-
lengths is given by ωq = βq

√
log(1/ql) with l denoting a

cutoff distance [36–38]. Assuming a parabolic quasiparti-
cle dispersion, i.e. Ek = αk2, we find again that the first
plasmon satellite exhibits a highly asymmetric lineshape.
Fig. 2(b) shows GW+C spectral functions for the 1DEG
at rs = 1.4 [39]. In contrast to graphene and the 3DEG,
the plasmon satellite is relatively weak and appears as a
shoulder-like feature near a strong quasiparticle band.

Summary.—By connecting the GW+C Green’s func-
tion approach to a wavefunction-based perspective,
we established the coupling-constant weighted electron-
plasmon joint density of states Jk(ω) as a useful quan-
tity for analyzing plasmon satellites in electron spectral
functions. We evaluated Jk(ω) for systems in one, two
and three dimensions and demonstrated how the prop-
erties of plasmon satellites are related to the proper-
ties of the underlying electrons and plasmons empha-
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sizing the importance of plasmon dispersion. Our for-
malism for electron-plasmon interactions can be gener-
alized straightforwardly to study the generation of hot
electron-hole pairs in plasmonic devices for photovoltaics
and photocatalysis in the future.
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APPENDIX

Electron-Plasmon Joint Density of States in Three Di-
mensions.—We calculate the coupling-strength weighted
joint density of states Jk(ω) comprising only plasmon-
hole pairs with total momentum k for a three-
dimensional homogeneous electron gas (3DEG). As
shown in the main text, this quantity is closely related
to the first satellite contribution to the electron spectral
function. Specifically, Jk(ω) is given by

Jk(ω) =

∫
d3q

(2π)3
g2
qδ(ω − Ek−q + ωq), (11)

where gq denotes the electron-plasmon coupling strength,
ωq = ω0 + βq2 is the plasmon dispersion and Ek = αk2

is the quasiparticle dispersion.
Using a plasmon-pole model that conserves sum rules,

we find g2
q = vqω

2
0/(2ωq) ≈ vqω0/2 with vq = 4π/q2.

For the special case of k = 0, we find

Jk=0(ω) =
ω0

π

∫ ∞
0

dqδ(ω + ω0 − [α− β]q2) (12)

=
ω0

2π

Θ(sgn(α− β)(ω + ω0))√
|(α− β)(ω + ω0)|

,

which has a peak at −ω0.
In the general case of nonzero k, we have to evaluate

Jk(ω) = (13)

ω0

2π

∫ ∞
0

dq

∫ 1

−1

duδ(ω + ω0 − αk2 + 2αku+ [β − α]q2).

Using that
∫ 1

−1
duδ(A + Bu) = Θ(|B| − |A|)/|B|, we

find that

Jk(ω) = (14)

ω0

4π|α|k

∫ ∞
0

dq

q
Θ(2kq|α| − |ω + ω0 − αk2 + [β − α]q2|).

We now assume that β − α > 0 and distinguish the
two cases: i) ω∗k ≡ ω + ω0 − αk2 > 0 and ii) ω∗k < 0. To
find the position of the peak of Jk(ω), it is sufficient to
consider case i) and we find that

Jk(ω) =
ω0

4π|α|k

∫ ∞
0

dq

q
Θ(2kq|α| − ω∗k − [β − α]q2)

(15)

=
ω0

4π|α|k
Θ(1− fk) log

[
1 +
√

1− fk
1−
√

1− fk

]
,

with fk = [β − α]ω∗k/(k|α|)2. This function diverges as
ω∗k → 0 indicating that Jk(ω) is peaked at −[ω0 − αk2].

For case ii), we have to evaluate

Jk(ω) =
ω0

4π|α|k

[∫ q∗

0

dq

q
Θ(2kq|α|+ ω∗k + [β − α]q2)+

(16)∫ ∞
q∗

dq

q
Θ(2kq|α| − ω∗k − [β − α]q2)

]
=

ω0

4π|α|k
log

[
1 +
√

1− fk
−1 +

√
1− fk

]
,

with q∗ =
√
|ω∗k|/[β − α].

Note that the solutions above also describe the case of
β − α < 0, but now Eq. (5) describes negative ω∗k and
Eq. (6) describes positive ω∗k.
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