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We study the infrared dynamics of low-energy atoms interacting with a sample of suspended
graphene at finite temperature. The dynamics exhibits severe infrared divergences order by order in
perturbation theory as a result of the singular nature of low-energy flexural phonon emission. Our
model can be viewed as a two-channel generalization of the independent boson model with asymmet-
ric atom-phonon coupling. This allows us to take advantage of the exact non-perturbative solution of
the independent boson model in the stronger channel while treating the weaker one perturbatively.
In the low-energy limit, the exact solution can be viewed as a resummation (exponentiation) of the
most divergent diagrams in the perturbative expansion. As a result of this procedure, we obtain the
atom’s Green function which we use to calculate the atom damping rate, a quantity equal to the
quantum sticking rate. A characteristic feature of our results is that the Green’s function retains
a weak, infrared cutoff dependence that reflects the reduced dimensionality of the problem. As a
consequence, we predict a measurable dependence of the sticking rate on graphene sample size. We
provide detailed predictions for the sticking rate of atomic hydrogen as a function of temperature
and sample size. The resummation yields an enhanced sticking rate relative to the conventional
Fermi golden rule result (equivalent to the one-loop atom self-energy), as higher-order processes
increase damping at finite temperature.

I. INTRODUCTION

The study of the dynamics of cold atoms near sus-
pended graphene samples presents opportunities to ex-
plore some of the foundational concepts of quantum me-
chanics. Since the binding energy of an atom on graphene
is comparable to graphene’s quantum excitation energies,
the dynamics depends on a quantum treatment of excita-
tions. Even the atomic motion must be treated quantum
mechanically for sufficiently cold atoms. Thus the the-
ory of cold atom adsorption on graphene must be a fully
quantum theory.

From a practical perspective, information gleaned from
dynamical studies of cold atoms near surfaces will likely
find use in the development and refinement of systems
and devices for quantum sensing and information pro-
cessing. In recent years, there have been many experi-
mental advances in the cooling and control of atoms and
molecules. Picokelvin sources of helium atoms can now
be experimentally prepared1, and new technologies pro-
pose to use quantum states of cold atoms and molecules
to store and process information2,3. One example of these
potential applications is realized in the “atom chip,” a
microelectronic device where currents flowing through
nanowires generate magnetic fields to process informa-
tion stored in the quantum states of cold atoms.

A second example is in quantum metrology. This in-
cludes applications such as recently developed chip-scale
atomic clocks using cold 87Rb atoms4. The operation
of these devices will be strongly impacted5 by how cold
atoms and molecules interact with surfaces. Hence our
theoretical studies will impact performance and design
of these emerging applications; for example, unintended
adsorption of alkali metal atoms leads to the so-called
“patch effect,” where random islands of dipoles can cause
a rapid dephasing of entangled states of atoms trapped

above surfaces.

Another potential application is in “atom optics”
where matter-waves play the role conventionally per-
formed by laser light in optical systems6. Enhancing the
reflection of matter waves from surfaces might be used
to make low-loss atomic mirrors7, waveguides for atom
interferometers6 or microtraps for the quantum informa-
tion processing of cold atoms8.

Research in the field of cold atom-surface interactions
traces back to the beginning years of quantum theory,
where the threshold behavior for quantum adsorption
was first explored by Lennard-Jones9. Early theoretical
work concluded that the sticking probability s(E) of a
particle with incident energy E near threshold is directly
proportional to the square of the transition matrix ele-
ment and varies inversely with the incident particle flux,
such that s(E) ∝

√
E. More recent studies10–12 have pre-

dicted new scaling laws for neutral and charged particles
based on quantum many-body effects, such as orthogo-
nality catastrophe-type phenomena.

For inelastic interactions, the primary channel of en-
ergy exchange involves the creation and annihilation of
phonons. Free-standing graphene has two in-plane acous-
tic modes and one out-of-plane flexural mode. The flexu-
ral mode has a quadratic dispersion near the zone center;
however, under uniform tension, the flexural dispersion
becomes linear, leading to vanishing phonon density of
states (DOS) for suspended graphene. In contrast to a
constant DOS at zero frequency, a linear DOS eases a
well-known divergence in the displacement autocorrela-
tion function of the nth nearest neighbors 〈(un − u0)2〉
in two dimensions13 and stabilizes the suspended layer
mechanically, circumventing the “crumpling” instability.
In the case of inelastic atom-graphene interactions, ves-
tiges of this divergence can be found in a perturbative
expansion of the atom’s self-energy14. The linear DOS of
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the flexural phonons, when combined with the frequency-
dependent atom-phonon coupling gives a (log) divergent
atom self-energy at zero temperature. This implies that
without a low-frequency cut-off, the second-order shift in
the binding energy of a light atom on suspended graphene
is formally divergent14. Recent numerical calculations
on the physisorption of atomic hydrogen to suspended
graphene15 do not take into account the effect of this in-
frared divergence which remains a theoretical challenge.

In the present work, we use a diagrammatic approach
to study the dynamics of quantum sticking near graphene
membranes. The quantum sticking probability is related
to the damping rate of the atom, calculated from its self-
energy. In fact, the study of atom self-energy to probe
various aspects of atom-surface scattering is not a re-
cent one and has been explored before16–18. The pres-
ence of infrared divergent terms, due to many emitted
low-energy flexural phonons, has been previously pointed
out14,19, and our goal in this work is to provide a system-
atic study of these effects in the context of renormalized
perturbation theory.

We will consider membranes at finite temperature T,
where the infrared divergence problem is especially se-
vere since the number of thermally-activated phonons
tends to infinity with increasing membrane size. How-
ever, there is a well-defined way to take into account
(through resummation) such infrared-singular processes;
especially suggestive is an exact solution for a particle
(atom) interacting with a bath of phonons (independent
boson model20), even though our problem is not exactly
solvable in the same sense due to the presence of two
types of atom-phonon couplings19.

Quite remarkably, the problem under consideration is
also technically similar to the infrared problems present
in finite-T “hot” quantum electrodynamics (QED) and
quantum chromodynamics (QCD) due to the long-range,
unscreened, nature of gauge interactions21–24. These
problems are usually resolved within the finite T gen-
eralization of the so-called Bloch-Nordsieck scheme21,22,
which extracts the exact infrared behavior of the the-
ory by summing the most important Feynman diagrams;
it is quite similar to the exact solution of the indepen-
dent boson model (IBM) for single atom – phonon bath
mentioned previously. Physically this corresponds to the
correct account of the damping provided by many emit-
ted phonons, and we will implement similar schemes to
obtain the sticking rate of adatoms (equivalent to calcu-
lating the atomic damping rate).

Since the infrared divergences are caused by emitted
low-momentum phonons q → 0, at any finite-T around
the Debye temperature, the system is effectively in the
high temperature (hot) limit as far as its infrared prop-
erties are concerned, T � vsq, where vs is the flexural
phonon speed. Similar to the case of hot QED, this allows
for a particularly theoretically clean and elegant way to
perform resummation of the leading infrared divergences
which come as powers of logarithms.

We present a detailed study of the atomic self-energy

at one and two loops, and subsequently perform resum-
mation of the leading infrared terms in the spirit of the
IBM or hot QED, but adapted for our two-channel situ-
ation. This allows us to obtain reliable non-perturbative
results for the damping rate as a function of temperature
(T) as well as membrane size (L), which serves as the ef-
fective infrared cutoff in the problem. The description of
these dependencies and the theoretical methodology we
use to calculate them is the main goal of this work.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce the effective model of atoms in-
teracting with graphene membranes. In Section III, we
analyze the infrared divergences that appear up to two-
loops and then present the non-perturbative solution in
the spirit of the IBM in Section IV. Our results for a
H atom’s sticking rate as a function of temperature and
size are collected in Section V. Section VI contains our
conclusions. Some technical aspects of high-order per-
turbation theory are presented in Appendices A and B.

II. MODEL OF COLD ATOMS ON GRAPHENE
MEMBRANE AT FINITE TEMPERATURE

We study the interaction of a cold atom with a
clamped, elastic membrane (Fig. 1), where the inelastic
interaction between the atom and the membrane occurs
through the creation and annihilation of flexural phonons
of the membrane. For atoms focussed near the center
of the suspended membrane, the circularly symmetric
modes dominate the inelastic scattering. Thus we con-
sider the atom interactions with only the axisymmetric
(m = 0) modes19.

The Hamiltonian of the system is written as H =
Hp + Hph + Hc. The terms represent the Hamiltonian
for the particle, phonon-bath and the coupling term, re-
spectively, and are given as:

Hp = Ekc
†
kck − Eb0b

†b (1)

Hph =
∑
q

ωqa
†
qaq (2)

Hc = −gkb(c†kb+b
†ck)

∑
q

ξq(aq+a
†
q)−gbbb†b

∑
q

ξq(aq+a
†
q)

(3)

Here, ck (c†k) annihilates (creates) a particle in the en-

trance channel |k〉 with energy Ek; b (b†) annihilates
(creates) a particle in the bound state |b〉 with energy
-Eb0 in the potential of a static membrane in its ini-
tial equilibrium position; aq (a†q) annihilates (creates)
a phonon in the membrane with energy ωq; gkb is the
coupling strength of phonon-assisted transitions of the
atom between continuum |k〉 and bound state |b〉; gbb
is the coupling strength of the bound atom to flexural
phonons. The form of ξq depends on the specific particle-
excitation coupling, and particularly in this model, ξq is
q-independent19.
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FIG. 1. (Color online) Sketch of the membrane with an im-
pinging atom. The membrane distorts from its initial equilib-
rium plane with the presence of the adatom.

We take the membrane to be initially in thermal equi-
librium with temperature T , while the atoms have an
initial energy of Ek. The atom self-energy must be cal-
culated using non-equilibrium Green functions (Keldysh
or the contour-ordered Green functions). The Feynman
rules using the Keldysh formalism are summarized below
for our model:

• The solid dot corresponds to the interaction vertex
gkb.

• The open dot corresponds to the interaction vertex
gbb.

• Lines labeled by b correspond to the bare (retarded)
Green function in the bound stateGrbb(E) = 1/(E+
Eb0 + iη)

• Lines labeled by k correspond to the bare (retarded)
Green function of the atom in the continuum state
Grkk(E) = 1/(E − Ek + iη).

• Wiggly lines correspond to the phonon propagators
and are given as:
D<(ω) = −2πi

∑
q[(Nq+1)δ(ω+ωq)+Nqδ(ω−ωq)]

and Dr(ω) =
∑
q[1/(ω−ωq+ iδ)−1/(ω+ωq+ iδ)].

Here, Nq is the equilibrium phonon occupation
number Nq = 1/(eβωq − 1), and ωq = vsq for a
membrane under tension.

• Each diagram is weighted by (i/~)n, where n is the
number of phonon loops.

Two additional comments are in order. First, we also
assume that, by definition, the ground state is the initial
(symmetric) vacuum of the phonons. It is possible that
at low temperature, the phonons could condense, lead-
ing to finite membrane displacement and a symmetry-
broken state; such a scenario was considered previously
by one of us within a mean-field theory approach ap-
plied to this model19. The present study can not shed
light on that result, since we aim to collect the leading
infrared-divergent terms that happens essentially in the
“high-temperature” regime (T � vsq, and T > Eb) and

FIG. 2. Feynman diagrams with two kinds of vertices: tran-
sition of atom from |k〉 to |b〉 state via a phonon has vertex
gkb (left), and atom-phonon interaction in the bound state |b〉
has vertex gbb (right).

FIG. 3. One-loop atom self-energy Σ
(r)
kk .

we are under the (well-satisfied) weak-coupling condition
g2

Eb
� 1 (and g2T

E2
b
� 1), where g2 is either g2kb or g2bb, with

dimension of energy when appropriately written (see be-
low). Under these assumptions, a perturbative expan-
sion around the symmetric vacuum seems well justified;
however, we certainly can not rule out the possibility of
symmetry breaking.

Finally, we mention that the diagram technique con-
structed above is completely equivalent to simply work-
ing with the real-time finite temperature Green’s function
for the phonons20,25. This can be easily seen by exam-
ining the structure of the one-loop result Eq. (6) and
the way it follows from Eq. (5). Furthermore, it is clear
that for the purposes of extracting the leading, infrared-
divergent logarithmic terms, it is sufficient to use the
small momentum/high temperature limit of the phonon
propagator in the form D<(ω, q) = −2πi(T/ωq)[δ(ω +
ωq) + δ(ω − ωq)].

III. INFRARED-DIVERGENT SELF-ENERGIES
AT LOW ORDERS

A. 1-loop Atom Self-Energy

Applying the above Feynman rules, we find the finite
temperature atom self-energy at the 1-loop level is given
by

Σ
(r)
kk (E) = i

∫
dω

2π

∑
q

g2kbξ
2[G<bb(E)Dr(ω)

+Grbb(E)D<(ω) +Grbb(E)Dr(ω)]

(4)
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Since we take the incoming particle to be out of equi-
librium with the phonon bath with the Green function
G<bb(E) = 0, we obtain:

Σ
(r)
kk (E) = i

∫
dω

2π

∑
q

g2kbξ
2[Grbb(E)D<(ω)

+Grbb(E)Dr(ω)]

(5)

= g2kbξ
2
∑
q

[
Nq

E + Eb0 + ωq − iη

+
Nq + 1

E + Eb0 − ωq + iη

]
Next, in the continuum limit, we obtain the real and

the imaginary part of Σ
(r)
kk for the high temperature case

(T � ωD, where ωD is membrane Debye frequency). In
this high temperature limit, we approximate Nq ≈ T/q
(we choose convenient units where the velocity of sound
vs = 1). Also, we consider the energy regime T, ωD �
Eb, and call g2kbξ

2ρ0 → g2kb, where ρ0 is the (constant)
vibrational density of states. From previous work19, we

take ξ2ρ0 = 3.77× 10−5Å
2
/meV.

As a result, we conclude that the real and the imagi-
nary parts are given as:

ReΣ
(r)
kk (E) =

2g2kbT

E + Eb0
log

∣∣∣∣E + Eb0
ε

∣∣∣∣, ε� E +Eb0 (6)

ImΣ
(r)
kk (E) = − πg2kbT

E + Eb0
(7)

where ε is the infrared cutoff estimated to be the mini-
mum phonon frequency, ε ∼ vs/L, where L is the charac-
teristic membrane size (radius), which will be a parame-
ter in our model.

Although the imaginary part is completely finite,
Eq. (6) shows that the real part of the finite temperature
atom self-energy is log-divergent for infrared frequencies.
A similar expression can be derived for the 1-loop bound
state self-energy Σbb corresponding to a Feynman dia-
gram similar to Fig. 3 with gkb replaced with gbb. The
expressions for the real and imaginary Σbb are given as:

ReΣ
(r)
bb (E) =

2g2bbT

E + Eb0
log

∣∣∣∣E + Eb0
ε

∣∣∣∣ (8)

ImΣ
(r)
bb (E) = − πg2bbT

E + Eb0
; E + Eb0 � ε (9)

The values of gbb and gkb depend on the form of
the attractive (van der Waals) potential between the
atom and the membrane; for a H atom impinging on
suspended graphene, we will take them from previous
work19. The coupling gkb has a strong energy depen-
dence, gkb = gkb(Ek) where Ek is the atom’s initial en-
ergy. This energy dependence will be taken into account

FIG. 4. Two-loop bound state self-energy diagrams. Left:
nested (rainbow). Right: vertex correction.

in our final results. The coupling g2bb = 60µeV is inde-
pendent of Ek, and in addition, is much larger than g2kb
(for all Ek considered).

g2bb � g2kb. (10)

The ratio of these couplings for an H atom is typically
g2kb/g

2
bb ∼ 10−2. Because of this inequality, the bound

state self-energy behavior in higher orders will be nu-
merically much more important than the corresponding
higher order contributions to the continuum self energy.
Thus we first proceed to investigate the next order in
powers of g2bb.

B. 2-loop Bound State Self-Energy

We now turn to a calculation of the 2-loop bound
state self-energy corresponding to the diagrams shown in
Fig. 4. First, we evaluate the vertex correction diagram
by using the vertex function Γ(E,ω) (see Fig. 5).

Following the Feynman rules, we find the following ex-
pression for Γ(E,ω)

Γ(E,ω) = ig3bbξ
3
∑
q

∫
dω′

2π

T

ωq
(−2πi)

[
δ(ω′ − ωq)

+ δ(ω′ + ωq)

]
×
[

1

[E + Eb0 − ω′ + iη]

× 1

[E + Eb0 − ω − ω′ + iη]

] (11)

In the continuum limit, we call g2bbξ
2ρ0 → g2bb, so that

the real and the imaginary parts of the vertex function
Γ(E,ω) are written as

ReΓ(E,ω) =
2g3bbT

(E + Eb0)(E + Eb0 − ω)
log

∣∣∣∣E + Eb0
ε

∣∣∣∣
(12)

ImΓ(E,ω) = − πg3bbT

(E + Eb0)(E + Eb0 − ω)
(13)

Using Eqs. (12) and (13), we find the contribution to
the vertex correction diagram. The analytical expression
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FIG. 5. Vertex function Γ(E,ω) to be inserted appropriately
in Fig. 4 to derive the 2-loop bound state self-energy.

for Σbb is written as

Σ
(2)
bb = igbbξ

∫
dω

2π
Gbb(E − ω)Γ(E,ω)D<(ω) (14)

Substituting, we conclude that the real part of Σ
(2)
bb is

given by

ReΣ
(2)
bb =

2g4bbT
2

(E + Eb0)3

[
log

∣∣∣∣E + Eb0
ε

∣∣∣∣]2 (15)

A similar expression can be easily obtained for the con-
tribution from the rainbow diagram. Thus, the above
calculations show that ReΣbb for both the 1-loop and the
2-loop is plagued by log and log-squared infrared diver-
gences, respectively.

Therefore, at the 2-loop level, ReΣbb(E) is given by

ReΣbb(E) =
2g2bbT

E + Eb0
log

∣∣∣∣E + Eb0
ε

∣∣∣∣
+ 2× 2g4bbT

2

(E + Eb0)3

[
log

∣∣∣∣E + Eb0
ε

∣∣∣∣]2 + · · ·

(16)

Given the above structure of the expansion, it is clear
that in the infrared limit (E + Eb0)/ε � 1, resumma-
tion of the series must be performed to obtain reliable
results. This turns out to be possible and the infrared
dynamics of the result is equivalent to that of the ex-
act Green’s function, Gbb(E), of the independent bo-
son model20. We can show that one can use Dyson’s

Equation Gbb(E) = G
(0)
bb (E)/(1−G(0)

bb (E)Σbb(E)), where

G
(0)
bb (E) and Σbb(E) are the unperturbed bound state

Green’s function and the bound state self-energy, re-
spectively, and then derive a perturbative expression for
Gbb(E) that matches exactly the perturbative structure
of the exact bound state Green’s function correspond-
ing to the IBM. This is indeed natural since both the
IBM and the part of our model involving bb transitions
describe physically equivalent situations (a phonon bath
coupled to a single particle).

With the presence of the second (kb) channel, our
model can be viewed as a generalization of the IBM with
two coupling constants gkb and gbb; however, due to the

strong inequality Eq. (10), the infrared behavior origi-
nating from higher order processes in the kb channel is
strongly suppressed and will be neglected. For example,
one-loop (logarithmic) corrections to the b channel prop-
agator due to mixing with the k channel are of order g2kb,
much smaller than the pure bb channel contribution g2bb
calculated above. Thus the relative contribution of these
processes is smaller by a factor of g2kb/g

2
bb ∼ 10−2, based

on calculations for H atom. Higher order processes are
suppressed even stronger.

On the other hand we are ultimately interested in
the Green’s function of the k channel (Section V), and
its dominant perturbative correction, as outlined in Ap-
pendix A, originates at order g2kbg

2
bb. This is the domi-

nant part in a sense that it is much larger than the pure
mixing contribution of order g4kb, which can be neglected
due to the same reasoning as above. Additional evidence
in favor of this overall strategy is based on analysis of
higher-order contributions to the two vertices, g2kb and
g2bb, as performed in Appendix B. We find that the effec-
tive vertex g2bb grows, while g2kb decreases under renormal-
ization (i.e. upon including higher order singular correc-
tions). These results provide further justification in favor
of asymmetric treatment of the two couplings (channels)
within the model. Thus we will follow the strategy of
keeping the lowest necessary power of g2kb while treating
the bb channel non-perturbatively.

IV. BOUND STATE GREEN FUNCTION
WITHIN THE INDEPENDENT BOSON MODEL

Based on the previous analysis we proceed to calcu-
late the exact bb Green’s function which will provide the
dominant contribution to the atom damping rate, to be
calculated in the next Section. As already mentioned, if
we consider only the bound state |b〉 contributions, we
have the same Hamiltonian as that of the IBM:

H = −Eb0b†b+
∑
q

ωqa
†
qaq − gbbb†b

∑
q

ξq(aq + a†q) (17)

The exact Green’s function Gbb(t) corresponding to
Eq. (17) is given as:20

Gbb(t) = −ie−it(−Eb)e−φ(t) (18)

where

φ(t) =
∑
q

(
gbbξ

ωq

)2[
Nq(1−eiωqt)+(Nq+1)(1−e−iωqt)

]
(19)

and the binding energy Eb is defined Eb = Eb0 +
g2bb
∑
q

1
ωq

, shifted by the phonon interaction.

In the high temperature approximation, Eq. (19) then
becomes

φ(t) =
∑
q

2g2bbξ
2

q2
T

q

[
1− cos(qt)

]
(20)
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Substituting Eq. (20) in Eq. (18), the Green’s function
Gbb(t) takes up the form:

Gbb(t) = −ie−it(−Eb) × exp

[
−
∑
q

2g2bbξ
2T

q3
[1− cos(qt)]

]
(21)

In the continuum limit, we obtain

Gbb(t) = −ieitEb × exp

[
− 2g2bbT

∫ ωD

ε

[
1− cos(qt)

q3

]
dq

]
(22)

The integral in Eq. (22) can be expressed in terms of
known functions∫ ωD

ε

[1− cos(qt)]

q3
dq = − 1

2q2
+

cos(qt)

2q2

+
1

2
t2Ci(qt)− t sin(qt)

2q

∣∣∣∣ωD

ε

(23)

where the function Ci(x) has the following expansion26

for x� 1,

Ci(x) = γ + log |x|+
∞∑
n=1

(−1)nx2n

2n(2n)!

and γ is the Euler-Mascheroni constant.
The integrand of Eq. (23) oscillates and decays rapidly

with increasing q, so the contribution at the upper limit
of integration is negligible (especially since ωD/ε � 1).
The exponentiated function which appears in Eq. (22)
oscillates as a function of time around the constant value
exp (−g2bbT/ε2) which is due to the first term on the right-
hand side of Eq. (23). This number is vanishingly small
for all reasonable values of the cutoff and the other con-
stants.

Next, we take the Fourier transform of Eq. (22),

Gbb(E + Eb) = −i
∫ ∞
0

dteit(E+Eb)

× exp

[
− 2g2bbT

∫ ωD

ε

[
1− cos(qt)

q3

]
dq

]
(24)

Before performing a full numerical evaluation, it is use-
ful to estimate the decay of the envelope of oscillations.
This can be done for large times, but subject to the limit
t� 1/ε (keeping in mind that ε is small), so that in the
integral the largest contribution comes from momenta
qt � 1, and the logarithmic term dominates. In this
case, Eq. (24) reduces to

Gbb(E+Eb) ≈ −i
∫ ∞
0

dtei(E+Eb)t exp

[
−g2bbTt2 log

∣∣∣∣ 1

tε

∣∣∣∣]
(25)

In this regime, the oscillations are not visible. We
see that for our model, the damping factor is given as

f(t) ≈ exp

[
− g2bbTt2 log

∣∣∣∣1/(tε)∣∣∣∣] which has a different
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eG̃

b
b
(Ẽ
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ωm= 0.0125
ωm= 10−5
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FIG. 6. (Color online) Variation of the real part of the dimen-

sionless Green’s function in the bound state G̃bb for different
values of the effective infrared cutoff ωm.
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FIG. 7. (Color online) The imaginary part of the (dimension-

less) Green function in the bound state G̃bb vs. energy Ẽ for
different values of the infrared cutoff ωm.

structure than the case of 3D QED, where the damping
factor is f(t) ≈ exp[−αTt log(ωpt)] with ωp and α being
the plasma frequency and the fine structure constant.21

Next, we consider the more general case and numeri-
cally integrate Eq. (24). We use the following transforma-
tion of variables: (E+Eb)t = x and q/(E+Eb) = y and
under the approximation that ωD � Eb, E, we rewrite a
non-dimensional form of the bound state Green’s func-
tion G̃bb:

G̃bb(Ẽ) = − i√
λ

∫ ∞
0

dx
eix

Ẽ

× exp

[
− 1

Ẽ2

∫ ∞
ωm
Ẽ

[
1− cos(yx)

y3

]
dy

]
.

(26)

Here we define the dimensionless cutoff ωm and energy
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Ẽ in the following convenient way:

λ = 2g2bbT, ωm = ε/
√
λ, Ẽ = (E + Eb)/

√
λ . (27)

The real and the imaginary parts of Eq. (26) are given
as follows:

ReG̃bb(Ẽ) =
1√
λ

∫ ∞
0

dx
sin(x)

Ẽ

× exp

[
− 1

Ẽ2

∫ ∞
ωm
Ẽ

[
1− cos(yx)

y3

]
dy

] (28)

ImG̃bb(Ẽ) = − 1√
λ

∫ ∞
0

dx
cos(x)

Ẽ

× exp

[
− 1

Ẽ2

∫ ∞
ωm
Ẽ

[
1− cos(yx)

y3

]
dy

] (29)

We choose parameters appropriate for a graphene mem-
brane with a physisorption well Eb = 40 meV, g2bb = 60
µeV, and ωD = 65 meV. The variation of the imaginary
and the real parts of G̃bb with the dimensionless infrared
frequency cutoff ωm is captured in Figs. 6 and 7 respec-
tively.

As discussed previously, there exists also a time-
independent factor exp (−g2bbT/ε2) that leads to a sin-
gular δ(ω) function contribution with spectral weight
exp (−1/2ω2

m) to the imaginary part. This contribution
is not visible in Fig. 7 since for the cutoff values used,
the additional δ-function spectral weight is vanishingly
small. It can however become appreciable upon further
increase of ωm beyond 0.2 or so, which would take us
beyond the region of validity of our model.

We conclude that both real and imaginary parts are
well-behaved but still exhibit some infrared cutoff de-
pendence. Most importantly, there is no quasiparticle
pole and the Green’s function is damped. The residual
cutoff dependence reflects the low dimensionality of the
membrane flexural fluctuations.

V. STICKING RATES

We use the numerically solved G̃bb to derive the reno-
malized 1-loop atom self-energy Σrkk, which in turn is
used to derive the sticking rate Γ of the cold atom on
finite temperature graphene membranes. We recall, the
rate of transition of the cold atom from the continuum
state |k〉 to the bound state |b〉 is given as:

Γ = −2Z(Ek)ImΣkk(Ek) (30)

where, Z is the renormalization factor and is given as:

Z =

[
1 −

(
∂ReΣkk(Ek)/∂E

)]−1
and Ek is the initial

atom energy, respectively.

From Eq. (5), we obtain the following expression for
the atom self-energy

Σ
(1)
kk = g2kbT

∫ ωD

ε

[
1

q
G̃bb

(
E + Eb − q√

λ

)
+

1

q
G̃bb

(
E + Eb + q√

λ

)]
dq

(31)

Our final results, summarized in Eqs. (30) and (31)
reflect the idea that, in order to obtain numerically ac-
curate results, is is sufficient to keep the lowest (first)
order in the smallest coupling g2kb while using the fully
renormalized Gbb which contains all orders in the strong
coupling g2bb.

We numerically integrate Eq. (31) for two different in-
frared cut-off frequencies which physically correspond to
two different sizes of the graphene membrane. We con-
sider 1µm and 100 nm sizes. The velocity of flexural
sound waves in graphene is taken to be vs =

√
γ/σ =

6.64 × 103 m/s, where γ and σ are defined as the out-
of plane membrane tension and membrane mass density
for graphene19,27,28, so that the physical cut-off corre-
sponding to the two above mentioned membrane sizes
are calculated as ε = 4.33 × 10−3 meV and 0.043 meV,
respectively.

It should be mentioned that anharmonic effects in the
flexural phonon dispersion can become important as tem-
perature increases, and they are a subject of current
research29–32; however, if the tension γ is large enough
such effects are naturally suppressed. The tension value
we use from Refs. [15 and 19] is fairly large but lies in
the border region where anharmonic corrections could
become noticeable; detailed studies of such effects are
beyond the scope of the present work.

Now we present the numerical studies for the above-
mentioned membrane sizes. For each membrane size, we
calculate the dependence of Γ on temperature. For a
membrane size of 100 nm, the dimensionless lower cut-
off ωm for the selected temperatures 1160K, 928K and
696K are given as 0.0125, 0.0141, 0.01628, respectively.
In Fig. 8 we see that the sticking rate increases with in-
creasing temperature, a reflection of the physics of damp-
ing. A higher temperature corresponds to lower physical
cut-off and hence a much broader curve of Im G̃bb (see
Fig. 7). The broadening of the curve implies more damp-
ing and hence a higher decay rate.

A similar trend is observed for the membrane size of
1 µm (Fig. 9) where ωm are given as 0.00125, 0.001397
and 0.00163 for the above-mentioned temperatures.

For comparison, the transition rate can also be esti-
mated using Fermi’s golden rule (GR) for both in the
zero-temperature and finite temperature cases. The
golden rule is equivalent to first-order in perturbation
theory (in g2kb) and obviously does not contain the ad-
ditional complex physics related to infrared effects dis-
cussed previously.



8

2 4 6 8 10 12

E (meV)

0.000

0.005

0.010

0.015

0.020
S

tic
ki

ng
R

at
e

Γ
(m

eV
) L=100 nm

T
Eb

= 2.5
T
Eb

= 2.0
T
Eb

= 1.5

FIG. 8. (Color online) The sticking rate Γ(E) of the cold atom
on graphene membrane (L = 100 nm), as a function of the
initial atom kinetic energy E. An increase in Γ is observed
for increasing temperature T of the membrane.
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FIG. 9. (Color online) For a membrane size of L = 1µm, Γ
is seen to increase even further with temperature T , which
is an indication of the increasing damping of the atom wave
function.

For the zero temperature case

Γ(T = 0) = 2π
∑
f

|〈f |Hc|i〉|2δ(Ef − Ei) (32)

Here, we use the initial state and energy as: |i〉 = |k〉|0〉
and Ei = Ek. The final state and energy is given as:
|f〉 = |b〉|1q〉, Ef = −Eb0 + ωq. The coupling term

is given as Hc = −gkb(c†kb + b†ck)
∑
q ξq(aq + a†q) −

gbbb
†b
∑
q ξq(aq + a†q). Therefore, in the continuum limit,

the sticking rate Γ reduces to:

ΓGR(T = 0) = 2πg2kb (33)

Similarly, using the golden rule, an expression for Γ
can be derived for finite temperature. For T � Eb0, we
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FIG. 10. (Color online) With the increase in the cut-off ωm

(or decrease in the size of the membrane), the sticking rate Γ
is seen to decrease. However, we anticipate that within our
model Γ will not be smaller than the golden rule (GR) results
derived for that specific temperature.

obtain

ΓGR(T ) = 2π
∑
f

|〈f |Hc|i〉|2δ(Ef − Ei)Nq (34)

where Nq is the equilibrium phonon number. In the limit
of ωD � T , we have Nq ≈ T/q, and therefore:

ΓGR(T ) = 2π
∑
q

g2kbξ
2δ(−Eb0 + ωq − Ek)

T

q
(35)

In the continuum limit, we find the finite-temperature
sticking rate from Fermi’s golden rule as

ΓGR(T ) =
2πg2kbT

(Ek + Eb0)
(36)

We now compare the transition rates obtained from the
golden rule both for zero and finite temperatures with the
sticking rates obtained using G̃bb for the already men-
tioned ωm. We see in Fig. 10 that the sticking rates
derived by incorporating G̃bb is enhanced compared to
the golden rule results, which is natural since it reflects
additional damping arising from higher-order processes.

VI. SUMMARY AND DISCUSSION

In summary, we have considered the infrared dynam-
ics of atoms interacting with a graphene membrane at
finite temperature. This problem exhibits particularly
severe infrared divergences order by order in perturbation
theory, due to the singular nature of low-energy flexural
phonon emission. Our model can be viewed as a two-
channel generalization of the independent boson model,
with a much weaker atom-phonon coupling constant in
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one of the channels relative to the other. This allows us
to take advantage of the exact non-perturbative solution
of the IBM in the stronger channel while treating the
other one perturbatively. In the low-energy limit, the
exact solution can be viewed as a resummation (expo-
nentiation) of the most divergent diagrams in the per-
turbative expansion, which we have checked explicitly.
As a result of this procedure we obtain the atom Green’s
function which we use to calculate the atom damping
rate, in turn related to the quantum sticking rate. A
characteristic feature of our results is that the Green’s
function retains some infrared cutoff dependence, which
is relatively weak but still detectable by relating the in-
frared cutoff to the inverse membrane size. We provide
detailed predictions for the sticking rate of H atoms as
a function of temperature and size. Sticking is generally
enhanced relative to the conventional Fermi golden rule
result (which is equivalent to the lowest, 1-loop perturba-
tive term) which is natural since higher order processes
are required to increase damping at finite temperature.
Although we observe an enhancement from the golden
rule result, we still see the trend of decreasing sticking
rates for low energies, contrary to some recent results,
where numerical calculations predict an increased stick-
ing rate with low incident energies27.

It is also worth noticing, as we mention in the Intro-
duction, that our approach is very similar in spirit to
the calculation of fermion damping rates in “hot” QED
and QCD, where the gauge structure of the theory is
not particularly important as far as infrared properties
are concerned. This problem has a long history, and the
relevant theoretical approach, based on the finite tem-
perature version of the Bloch-Nordsieck method, relies
on exponentiation of infrared-divergent perturbation se-
ries (and is thus similar to the solution of the indepen-
dent boson model in solid state theory.) The role of the
long-range gauge propagator is played in our case by the
phonon propagator. There are also important differences
between our results and those in hot gauge theories. One
difference, which has experimental consequences for the
damping rate, is the residual dependence on the infrared
cutoff, which can be traced to the quasi-1D nature of our
problem (in the sense that a normally incident atom ex-
cites only axisymmetric flexural phonons). On the other
hand, our perturbative expansion does not contain any
polarization loop corrections (which are important ingre-
dients of hot gauge theories), since in the case of a single
atom interacting with phonon bath, those are completely
absent from the theory.

We envisage applications of our approach to related
physical systems, such as graphene under additional uni-
axial strain, and other atomically thin materials, for ex-
ample dichalcogenides and similar systems. In these ma-
terials various types of strain are expected to exist33,
as well as larger (compared to graphene) spin-orbit in-
teractions. Additional uniaxial strain for example also
affects strongly the van der Waals potential near the
surface34. Therefore the atom damping rate is expected

to be very sensitive to the physical characteristics of the
atom-surface interactions, such as the strain-modified
shape of the phonon flexural modes and the van der
Waals interactions between atoms and surfaces which
determine the bound state energies and corresponding
atom-phonon coupling parameters.
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Appendix A: 2-loop Atom Self-energy

Here we calculate the 2-loop atom self-energy corre-
sponding to the diagrams shown in Fig. 11. These are
the leading diagrams with two loops which reflect the
change of the self-energy in the open k channel due to
the influence of the b channel.

FIG. 11. 2-loop atom self-energy diagrams: rainbow (left)
and vertex correction (right).

We begin our calculation by deriving an analytical ex-
pression for the vertex function Γ(E,ω) which is given
by a diagram topologically similar to Fig. 5, but in the
kb channel:

Γ(E,ω) = ig2bbξ
2gkbξ

∑
q

∫
dω′

2π

T

ωq
(−2πi)

[
δ(ω′ − ωq)

+ δ(ω′ + ωq)

]
×
[

1

[E + Eb0 − ω′ + iη]

× 1

[E + Eb0 − ω − ω′ + iη]

]
(A1)
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In the continuum limit, we have,

Γ(E,ω) = g2bbξ
2gkbξρ0

∫ E+Eb0

ε

[
1

(E + Eb − q)

× 1

(E + Eb0 − ω − q + iη)

+
1

(E + Eb0 + q)(E + Eb0 − ω + q + iη)

]
dq

q
(A2)

Under the approximation, q � E + Eb0 and calling
g2bbξ

2ρ0 → g2bb, the real and the imaginary parts of the
vertex function Γ(E,ω) are written as:

ReΓ(E,ω) =
2g2bbTgkbξ

(E + Eb0)(E + Eb0 − ω)
log

∣∣∣∣E + Eb0
ε

∣∣∣∣
(A3)

Similarly, the imaginary part is given as

ImΓ(E,ω) = − πg2bbTgkbξ

(E + Eb0)(E + Eb0 − ω)
(A4)

Using the vertex function Γ(E,ω), we derive the contri-
bution from the vertex-corrected self-energy first. The
analytical expression can be written as

Σ
(2)
kk = igkbξ

∫
dω

2π
Gbb(E − ω)Γ(E,ω)D<(ω) (A5)

Performing the calculation, we find an expression for the

real part of Σ
(2)
kk :

ReΣ
(2)
kk =

2g2kbg
2
bbT

2

(E + Eb0)3

[
log

∣∣∣∣E + Eb0
ε

∣∣∣∣]2 (A6)

A similar expression is derived for the contribution from
the rainbow diagram. Thus, the above calculations show
that the real part of Σkk at two-loop order is log squared
infrared divergent.

Appendix B: Vertex Renormalization

Now we calculate the vertex renormalization for the
two different types of vertices in our model. The one
loop vertex diagrams are shown in Fig. 12.

The corrections to the vertices are represented as (gkb+

δΓ
(1)
kb ) and (gbb+δΓ

(1)
kb ). By evaluating the corresponding

diagrams we obtain for the infrared-divergent parts:

δΓ
(1)
kb (E) = − g3kbT

π(E + Eb0)2
log

∣∣∣∣E + Eb0
ε

∣∣∣∣, (B1)

δΓ
(1)
bb (E) =

g3bbT

π(E + Eb0)2
log

∣∣∣∣E + Eb0
ε

∣∣∣∣. (B2)

Here, the external phonon frequency is set to zero (in-
frared limit), while E is the external atom energy. The

FIG. 12. Vertex diagrams corresponding to transitions from:
|k〉 → |b〉 states (left), and |b〉 → |b〉 states (right).

FIG. 13. Higher order crossed vertex corrections to the kb
vertex.

most important feature of these results is that the cor-
rections have different signs, i.e. while the kb vertex de-
creases, the bb vertex increases.

It is possible to write down and solve the corresponding
Dyson equations for the fully renormalized vertex func-
tions, which is equivalent to summing an infinite series
of ladder diagrams as is conventionally done in QED35.
This results in the following expressions for the effective
vertices in the two channels:

Γkb(E) =
gkb

1 +
g2kbT

π(E+Eb0)2
log

∣∣∣∣E+Eb0

ε

∣∣∣∣ , (B3)

and

Γbb(E) =
gbb

1− g2bbT

π(E+Eb0)2
log

∣∣∣∣E+Eb0

ε

∣∣∣∣ . (B4)

Again, it is clear that Γkb(E) decreases while Γbb(E) in-
creases in the infrared limit. Γbb(E) in fact contains a
Landau pole, although due to the smallness of the ef-
fective coupling, the system never reaches the pole for
physical values of the parameters (coupling, temperature
and cutoff).

Finally, we consider even higher order renormalization
effects. For the kb vertex, the next level of complexity
is represented by the crossed vertex corrections shown in
Fig. 13. By evaluating the diagram we obtain

δΓ
(2)
kb (E) = − 2g3kbg

2
bbT

2

π2(E + Eb0)4
log2

∣∣∣∣E + Eb0
ε

∣∣∣∣, (B5)
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which confirms that the kb vertex keeps decreasing. Cor-
responding results can be derived for the bb vertex (which
experiences an increase). These results are conceptually

important because they reaffirm the different tendencies
in the two channels, although numerically these diagrams
are very small for physical parameter values.
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