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We present a systematic study of the variables affecting the electronic and optical properties
of two-dimensional(2D) crystals within ab initio GW and GW plus Bethe Salpeter Equation (GW-
BSE) calculations. As a prototypical 2D transition metal dichalcogenide material, we focus our study
on monolayer MoS2. We find that the reported variations in GW-BSE results in the literature for
monolayer MoS2 and related systems arise from different treatments of the long-range Coulomb
interaction in supercell calculations and convergence of k-grid sampling and cutoffs for various
quantities such as the dielectric screening. In particular, the quasi-2D nature of the system gives
rise to fast spatial variations in the screening environment, which are computationally challenging to
resolve. We also show that common numerical treatments to remove the divergence in the Coulomb
interaction can shift the exciton continuum leading to false convergence with respect to k-point
sampling. Our findings apply to GW-BSE calculations on any low-dimensional semiconductors.

PACS numbers: 73.22.-f, 71.35.-y, 78.67.-n

I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are layered,
weakly-coupled materials that can exist in few- and
monolayer forms. Recently, this class of materials has
attracted intense study due to the remarkable electronic
and optical properties it exhibits, such as valley-selective
circular dichroism, as well as coupling of spin and val-
ley quantum numbers1–3 and the formation of strongly
bound excitons and trions4–12. Molybdenum disulfide
(MoS2) is a prototypical TMD. In its most common semi-
conducting form (2H), monolayer MoS2 consists of a layer
of Mo atoms sandwiched between two layers of S atoms
in a trigonal prismatic arrangement. In bulk and few-
layer form, MoS2 is an indirect gap semiconductor, but
in monolayer form, it becomes a direct gap semiconduc-
tor, with a gap located at the K and K ′ points in the
Brillouin zone13,14.

The optical spectrum of MoS2 has been extensively
studied experimentally. It has an optical gap of 1.9 eV
at room temperature13,14, which blue-shifts by as much
as 0.1 eV at low temperatures between 5 and 100K15,16.
The first peak in the optical spectrum is split by spin-
orbit coupling by 0.15 eV into two peaks commonly re-
ferred to as “A” and “B”13. The electronic quasiparti-
cle bandgap is much harder to determine experimentally,
but various experiments suggest that the bandgaps of
monolayer MoS2 and several other TMDs with the same
structure lies between 0.2 and 0.7 eV above the optical
gap7–12,17, indicating a large exciton binding energy.

There have also been numerous theoretical studies of
the electronic and optical properties of monolayer MoS2

with widely differing results. The many-body pertur-
bation theory-based ab initio GW approximation18 plus
Bethe Salpeter equation (GW-BSE) approach19,20 is one
the most common and accurate methods for comput-
ing quasiparticle (QP) bandstructures and optical re-
sponse including electron-electron and electron-hole in-

teractions. However, even within the general GW-BSE
approach, there is a great deal of disagreement in the lit-
erature over everything from the magnitude and location
of the QP bandgap to the exciton binding and excitation
energies4,5,16,21–27. In this paper, we address the source
of these inconsistencies and make note of computational
issues in GW-BSE calculcations that arise for quasi-
two-dimensional (quasi-2D) semiconductors and other re-
duced dimensional systems.

The main results of the paper are the following:

• The major computational challenges when dealing
with mono- and few-layers TMDs arise from the
finite extent of atomic scale in one of the spatial
directions. This introduces rapid variations in the
screening, which leads to complications in the com-
putation of the quasiparticle and excitonic proper-
ties5,25.

• The convergence of quasiparticle gaps with respect
to the k-point sampling, dielectric cutoff and num-
ber of bands included in the self-energy operator
is much slower than what is reported in earlier
work and is closely tied to the supercell size used
and the treatment of the quasi-2D behaviour of the
Coulomb interaction. The lack of convergence is
sufficient to explain the varying results in the liter-
ature for GW-BSE calculations on monolayer MoS2

and other TMDs.

• We show that different numerical treatments of the
divergence in the Coulomb interaction shifts the ex-
citon continuum and can lead to false convergence
of the binding energy with respect to k-point sam-
pling. In particular, we find that it is possible to
obtain an apparent agreement of the calculated op-
tical gap with experiment, even though the exciton
binding energy and the higher exctionic states are
not computed correctly.
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This paper is organized as follows. In section II, we dis-
cuss the dielectric screening in quasi-2D semiconductors
and review the effect of the truncation of the Coulomb
potential. In section III, we discuss the QP bandstruc-
ture, the convergence of the self-energy, including special
considerations for quasi-2D systems, the effect of updat-
ing the Green’s function G in the GW0 approach and the
frequency dependence of the screening. In section IV, we
discuss the effect of screening on the optical response of
MoS2, characterize the excitons and their wavefunctions,
discuss how they converge in our calculations, and dis-
cuss the effects of quasiparticle lifetimes. We conclude in
section V by summarizing our results.

II. ELECTRON-ELECTRON AND
ELECTRON-HOLE INTERACTIONS AND

SCREENING IN 2D

A. Coulomb Truncation and Convergence

First-principles calculations using planewave basis sets
require periodic boundary conditions. This means that
for 2D systems, such as monolayer MoS2, it is necessary
to increase the dimension Lz of the unit cell in the ape-
riodic direction to avoid interactions between repeated
monolayers28. With conventional DFT functionals, such
as LDA or GGA, there are no long range interactions for
a neutral system, so a vacuum of ∼ 5 Å (Lz ∼ 10 Å) is
sufficient to converge the relative eigenvalues (other val-
ues, such as the work function and ionization energies,
require a larger vacuum to prevent interactions between
periodic images). However, when we compute the po-
larizability and related quantities in the GW approach,
we end up calculating a response function that is long
ranged, and it becomes computationally unfeasible to in-
clude enough vacuum to prevent periodic images from
interacting.

One effective solution for this problem is to explitly
truncate the Coulomb interaction in real space along the
aperiodic direction. This is implemented in the Berke-
leyGW package29 following Ismail-Beigi’s scheme30. The
truncated Coulomb potential has a closed form in recip-
rocal space,

vtrunc(q) =
4π

q2

[
1− e−

qxyLz
2 cos

(
qzLz

2

)]
, (1)

where qxy = (q2
x + q2

y)1/2. This allows us to directly
compute the static RPA inverse dielectric matrix without
spurious interactions between the repeated monolayers in
our supercell geometry as

ε−1
GG′(q) = δGG′ + vtrunc(q + G)χGG′(q), (2)

where χGG′(q) is the static non-interacting RPA polar-
izability.

We now examine how the features of the dielectric ma-
trix evolve with supercell size with and without Coulomb

truncation. In isotropic bulk systems, the screening is
dominated by the “head” element G=G′=018,31–33. In
quasi-2D systems, however, the Gz’s (the reciprocal lat-
tice vectors along the aperiodic direction) are almost con-
tinuous, so it is no longer reasonable to look at the single
element Gz=0. In Fig. 1, we plot ε−1

GG′(q) for elements
where Gx=G′x=Gy=G′y=0 and Gz=G

′
z for several differ-

ent values of Gz. When the truncated Coulomb interac-
tion is used, the behavior of ε−1

GG′(q) changes depending
on whether Gz is odd or even. ε−1(q) goes smoothly to
a value less than 1 as q goes to 0, when Gz is odd, and
sharply returns to 1 as q goes to 0, when Gz is even.
This behavior arises from the cos term in the truncated
Coulomb interaction, and contrasts with the untruncated
case, where ε−1(q) goes to a number less than 1 as q goes
to 0 for all Gz’s, with most of the screening coming from
Gz=0.

The screening behavior with and without Coulomb
truncation also depends, unsurprisingly, on the amount
of vacuum Lz. In both cases, consecutive Gz’s for Gz > 0
become more similar as Lz increases, since the separation
between Gz’s is 2π

Lz
. Consequently, the number of Gz’s

required to capture the screening behavior increases pro-
portionally with Lz.

There is also a direct correlation between the q-
dependence of the dielectric matrix with Lz when we em-
ploy the truncated Coulomb interaction. As shown in the
left panels in Fig. 1, the “dip” feature for even Gz’s be-
comes sharper as Lz increases, so the k-point sampling
must be fine enough to resolve the features in ε−1

00 (q).
An important consequence is that convergence of k-point
sampling is tied to the size of the supercell. Fig. 2 shows
the convergence of the QP gap with respect to k-point
sampling and the size of the vacuum. When Coulomb
truncation is used (Fig. 2 (b)), the QP gap converges
more slowly for larger Lz’s, reflecting the need to resolve
sharper features in ε−1

00 (q). However, the QP gap con-
verges to the same value regardless of the supercell size
when Coulomb truncation is used.

The picture is different and shows a significantly slower
k-point convergence when we don’t employ Coulomb
truncation. As shown in Fig. 2 (a), the QP gap still
displays a very strong dependence on k-point sampling
at the densest grid size of 36× 36. There are two impor-
tant differences here with respect to the case with trun-
cated Coulomb potential: (1) these calculations converge
to a smaller incorrect QP gap, and (2) the convergence
with respect to k-point sampling is not monotonic but
changes direction as the k-grid sampling becomes finer.
Both these facts are understood from the long wavelength
behavior of the screening. Whenever q <∼ 1/Lz, the cal-
culation without a truncated Coulomb potential includes
a spurious polarization due to the repeated monolayers
in the aperiodic direction. This spurious term screens
out the Coulomb interaction and decreases the QP gap.

Finaly, it’s important to mention the dependence of
the number of bands needed for the various quantities in
the GW calculation on Lz. The number of empty states
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FIG. 1. (Color online) Evolution of the first few diago-
nal elements of the inverse dielectric matrix, ε−1(q), for
Gx=Gy=G′x=G′y=0 and Gz=G

′
z with (left) and without

(right) Coulomb truncation for Lz=15 Å (a,b), 20 Å (c,d), and
25 Å (e,f) supercell sizes. A cutoff of 35 Ry and 6, 000 bands
was used for calculating all ε−1

G,G′(q) in this figure. The value

of Gz is given in units of 2π
Lz

.

included in our calculation is well approximated by the
number of planeawaves |G〉 with kinetic energy less than
the dielectric cutoff E = |G|2/2, so it is proportional to
the supercell volume. If the number of bands is kept con-
stant while Lz is increased, the screening will not be cap-
tured properly in the GW calculation, and the QP gaps
will be overestimated. We attritube the reason why some
studies found that the QP gaps increase much more when
the vacuum is increased to this false convergence22,25.

B. Effective 2D Dielectric Function

For simplicity, we discuss here the static dielectric
function. The same discussion caries over for the dy-
namic case. In general, the dielectric function of a mate-
rial is defined as the following relation between the bare
Coulomb potential v and the effective screened Coulomb
interaction W:

W (r1, r2) ≡
∫

d3r3 ε
−1(r1, r3)v(|r3 − r2|). (3)

Our goal now is to define an effective 2D dielectric func-
tion between two electrons in a monolayer material. Due
to confinement, the modulus squared of the wavefunction
(in a tight-binding framework) associated to either elec-
tron, l = 1, 2, can be written as ρi(r− sl), where i = 1, 2
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FIG. 2. (Color online) Convergence of the error in the QP gap
with k-point sampling (a) without Coulomb truncation and
(b) with Coulomb truncation, for supercell sizes Lz = 15 Å
(black squares), Lz = 20 Å (blue circles), and Lz = 25 Å (red
triangles). Zero is set to the QP gap with Coulomb truncation
extrapolated to infinite k-point sampling for Lz =∞.

labels different orbitals and sl is a coordinate in the xy-
plane around which the orbital is centered. In analogy to
Eq. 3, we define the effective 2D inverse dielectric func-
tion in terms of the strength of the electronic interaction
integration between orbitals i and j as

Wij(s1, s2) ≡
∫

d3r1 d3r2 ρi(r1 − s1)W (r1, r2)ρj(r2 − s2)

≡
∫

d2s3

(
ε−1
2D

)
ij

(s1, s3)v(|s3 − s2|). (4)

In order to gain further insight on the form of the re-
sponse function, we assume that both W and ε−1

2D are
isotropic and depend only on s ≡ |s2 − s1|. Such a sim-
plification allows us to write the strength of the electronic
interaction between the two orbitals in real space as

Wij(s) =
1

2πLz
F0

 ∑
GzG′z

ρ∗i (q + Gz)WGzG′z (q)ρj(q + G′z)

(s),

(5)
where ρ(q + Gz) ≡

∫
d3rei(q+Gz)·rρ(r), and F0[f ](s) ≡

2π
∫∞

0
dq q f(q) J0(qs) is the Hankel transform of f .

In reciprocal space, the effective 2D inverse dielectric
function is simply the ratio between the 2D screened
Coulomb interaction (2D Fourier transform of Eq. 5)
and the truly two-dimensional bare Coulomb potential,
v2D(q) = 2πe2/q. The simplest choice of orbitals is a
delta function at r = (s, z = 0), which yields the effec-



4

tive 2D screening

ε−1
2D(q) =

q

2πe2Lz

∑
GzG′z

WGzG′z (q). (6)

Eq. 6 defines an effective 2D dielectric for a quasi-2D
material, where the complicated details of the screening
in the out-of-plane direction z have been integrated out.
We note that our expression for ε−1

2D(q) differs from that
defined in Refs.25,34, who define it by the field in a region
in the slab induced by a plane-wave external potential. In
contrast, Eq. 6 measures how much the bare 2D Coulomb
potential v2D(q) = 2πe2/q between two point charges in
the middle of the MoS2 plane gets screened due to elec-
tronic screening. This is the relevant quantity to derive
low-energy Hamiltonians to model electron-electron and
electron-hole interactions in quasi-2D systems, including
excitonic states and electron scattering.

In Fig. 3 (c-f), we show the reciprocal-space effective
2D dielectric function ε2D(q). The corresponding real-
space curves are obtained by taking the Hankel trans-
form of Eq. 6 and are shown in Fig. 3 (a,b). There is
a very sharp peak in ε2D(s) at s = 1.5 Å, which cor-
responds to roughly half the thickness of the slab. This
peak can be understood if we consider the Coulomb inter-
action between two point charges embeded in a quasi-2D
semiconductor: as in 2D semiconductors, if two charges
are very close together, there is not enough space for
the electronic cloud to polarize, so ε2D(s→0) = 1. At
the same time, if the two charges are very far away, the
field lines connecting the charges travel mainly through
the vacuum, so they are not much affected by the intrin-
sic dielectric environment of the quasi-2D semiconductor
and ε2D(s→∞) = 1. Therefore, there is a finite distance
smax where ε2D(smax) must exhibit its maximum. The
value of the peak of ε2D(smax) depends on the polariz-
ability and thickness of the material. We note that Lz
should have no effect on the effective 2D screening as long
as it is large enough to contain the charge density within
the truncated Coulomb interaction approach. This is not
true for the untruncated case.

For very short distances (s < 1 Å), the effective 2D
dielectric screening with and without truncation are sim-
ilar, but at larger distances polarizability of the replica
slab together with the long-range interaction results in
drastic overscreening. Instead of approaching 1, ε2D(s)
approaches a larger finite constant, which is the macro-
scopic dielectric constant of a bulk system consisting of
layers of MoS2 separated by layers of vacuum. While
this constant indeed approaches 1 as Lz → ∞, it does
so very slowly. Thus, it is very important to truncate
the Coulomb interaction to include correctly the effects
of the dielectric response of quasi-2D systems.

Similar features are seen in the effective 2D dielectric
function for the converged results in reciprocal space, as
shown in Fig. 3 (c,d). Specifically: (1) there is a peak in
ε2D(q); (2) when the Coulomb interaction is truncated,
ε2D(q) does not depend on Lz; and (3) while ε2D(q→0) =
1 when we truncate the Coulomb potential, it incorrectly

FIG. 3. (Color online) Effective 2D screening between two
point charges in the Mo plane with Coulomb truncation (left)
and without Coulomb truncation (right). Panels (a) and (b)
compare the effective screening in real space when Lz = 15 Å
(solid blue) and Lz = 25 Å (dotted red) with a 35 Ry cutoff.
Panels (c) and (d) are the corresponding reciprocal space plots
of (a) and (b). Panels (e) and (f) compare effective screening
in reciprocal space when the cutoff is 35 Ry (dashed red) and
8 Ry (solid green) with Lz = 25 Å.

approaches a different and larger value when we don’t
truncate the potential.

We also show the effective screening for different energy
cutoffs for the dielectric matrix, in Fig. 3 (e,f). The effect
of changing the dielectric cutoff is similar for both the
truncated and untruncated Coulomb interactions. For
very small q’s, before the peak, screening does not de-
pend strongly on the cutoff. For larger q’s, decreasing
the cutoff results in overscreening. Therefore, depending
on the property one is interested in (quasiparticle or exci-
tonic levels), different convergence parameters may have
to be used. In particular, the convergence of quasiparti-
cle states, as computed within the GW approximation,
converges very slowly because the self energy depends on
ε at both short and long distances.

Finally, we compare the effective 2D screening ob-
tained from our ab initio calculations with the screen-
ing model developed by Keldysh35, which is frequently
used to describe screening of excitons in quasi-2D mate-
rials7,34,36–39. In the Keldysh model, which is based on
a slab of constant dielectric value, the potential between
two charges in a slab of thickness d has the form

V2D(s) =
πe2

2ρ0

[
H0

(
s

ρ0

)
− Y0

(
s

ρ0

)]
, (7)

where H0 and Y0 are respectively the Struve and Bessel
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FIG. 4. (Color online) Comparison of the effective 2D screen-
ing as defined by Eq. 6 (red lines) with the Keldysh model
(black lines) in real space (a) and reciprocal space (b). The
Keldysh model uses an effective slab thickness of d = 6Å to
obtain the best fit to the ab initio results.

functions of the second kind and ρ0 is a screening length,
which is ρ0 = dε

2
35, where ε is the in-plane dielectric

constant of the bulk material. If the slab is taken to be
strictly 2D, it has been shown36 that the screening length
is proportional to the 2D polarizability of the layer, and
taking the 2D Fourier transform of Eq. 7 results in a
dielectric function of the form

ε2D(q) = 1 + ρ0q, (8)

where ρ0 = 2πα2D. Here, α2D is the 2D polarizabil-
ity and can be related to the polarizability of the actual
quasi-2D slab by fitting to the long wavelength limit of
the ab initio polarizability. We fit the Keldysh model to
our ab intio effective dielectric function at small q, as de-
fined in Eq. 6, and obtain an effective screening length of
ρ0 = 35Å or an effective slab thickness of d = 6Å, which
is about twice the thickness of monolayer MoS2 measured
from the center of the sulfur atoms. A comparison of our
ab intio effective dielectric function with the best fit to
the Keldysh model is shown in Fig. 4. We see that the
Keldysh model can be adjusted to give a good descrip-
tion of the form of the screening in the long wavelength
limit and thus can describe the screening seen by exci-
tons as long as the exciton radius is on the order of or
larger than the screening length ρ0, which is unknown
without an ab initio calculation. Moreover, for phenom-
ena that depend on short-range or varying length scale
screening, the Keldysh model would drastically overesti-
mate the screening in quasi-2D systems.

III. QUASIPARTICLE BANDSTRUCTURE

In this section, we discuss the computational details
and results of our GW calculation of the QP bandstruc-
ture.

A. Computational Details and Convergence

We use density functional theory (DFT)40,41, as im-
plemented in Quantum ESPRESSO42, in the local den-
sity approximation (LDA) to obtain a mean-field starting
point for our GW calculation18. Different choices of the
DFT functional and a relaxed versus experimental crystal
structure can result in about 0.1 eV difference in the QP
gap of MoS2. We find that relaxing the structure with
an LDA functional increases the gap at K by 0.04 eV
compared to the experimental structure. Given identical
structures, using a GGA functional decreases the gap by
0.03 eV compared to LDA.

We use norm-conserving pseudopotentials and include
the Mo 4s and 4p semicore states and the 4d valence
state. Including the semicore 4s and 4p states is neces-
sary to accurately capture the exchange contribution to
the self energy. However, these deep 4s and 4p states are
not included in the charge density used in the Hybertsen-
Louie Generalized Plasmon Pole (HL-GPP) model18 to
calculate the self energy, since they are more than 35 eV
below the Fermi energy and, thus, do not contribute
to low-energy screening. We use a supercell with 25 Å
of vacuum in the aperiodic direction, and we relax the
supercell using a wavefunction cutoff of 350 Ry and a
24x24x1 k-grid, resulting in an in-plane lattice constant
of 3.15 Å, which deviates less than 1% from the exper-
imental lattice constant of few-layer MoS2

43. Then, we
generate wavefunctions used in the GW-BSE calculation
using a wavefunction18 cutoff of 125 Ry, which is suffi-
cient to converge the bare exchange contribution to the
QP gap to within 0.01 eV.

Our GW calculation is performed with the Berke-
leyGW package29. We calculate the dielectric matrix us-
ing the truncated Coulomb interaction discussed in sec-
tion II and using a 24x24x1 k-point sampling to converge
the QP gap to within 0.05 eV (see Fig. 2). We take
into account dynamical screening effects in the self en-
ergy through the HL-GPP model. We also use the static
remainder technique44 to reduce the number of necessary
unoccupied states.

As discussed in our previous work5, GW calculations
on MoS2 and TMDs in general converge very slowly with
respect to the energy cutoff (ES) of the dielectric matrix
and the number of bands (Nb) included in the polariz-
ability and Coulomb-hole summations of the self energy.
The slow convergence of ES arises from the presence of
localized d orbitals near the Fermi energy and the differ-
ent character of the valence and conduction bands. The
slow convergence of Nb arises due to the large number
of G-vectors in the dielectric matrix and the supercell
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size, as discussed in section II.A. Our calculation required
Nb = 6000 bands and a dielectric cutoff of ES = 35 Ry to
converge the QP gaps to better than 0.05 eV, for a total
error bar of ∼ 0.1 eV when combined with the error bar
due to k-point sampling. To test the convergence of the
number of bands we calculated QP gaps with a dielectric
cutoff of up to ES = 45 Ry and up to Nb = 12000 bands
(Fig. 5).

As Shih et al.45 have noted, the dielectric cutoff and
bands are interdependent parameters and attempting to
converge the number of bands using a dielectric cutoff
that is too small or converge the dielectric cutoff using
too few bands will result in false convergence. The static
remainder technique speeds up convergence considerably
when only a few bands are included, but for a precision
of greater than 0.1 eV, the convergence with respect to
bands for a fixed ES is about the same with and without
static remainder. The static remainder is still helpful,
however, because when using static remainder, conver-
gence with respect to bands is in the opposite direction
as convergence with respect to ES , resulting in some can-
cellation of error.

We also self-consistently update the eigenvalues of the
Green’s function, G, when building the self-energy oper-
ator Σ. We find that going to G1W0 increases the QP
gap at K by 0.08 eV compared to G0W0. Further up-
dating G increases the QP gap at K by only 0.02 eV,
so we stop at the G1W0 level. The bandgap is 2.59 eV
at the G0W0 level and 2.67 eV at the G1W0 level, with
spin-orbit interactions included.

We also compare results obtained using the HL-GPP
model with the full-frequency dielectric matrix calcu-
lated using the contour-deformation approach46,47. At
the G0W0 level, the full-frequency bandgap is 2.45 eV
and increases to 2.54 eV after self-consistently updating
the eigenvalues in G. Thus, inclusion of the explicit dy-
namical effects decreases the gap by 0.13 eV compared
with the HL-GPP.

We include spin-orbit as a perturbation, and find that
the valence band at K is split by 0.15 eV. The details of
the implementation are discussed in section IV.A.3.

B. Results

The bandstructure of monolayer MoS2 at the LDA and
G1W0 levels are shown in Fig. 6. We find that monolayer
MoS2 is a direct bandgap material at all levels of theory.
The direct gap at the K point increases from 1.71 eV at
the LDA level to 2.59 eV at the G0W0 level to 2.67 eV at
the G1W0 level. The spin-orbit splitting of the valence
band at K is 0.15 eV.

The GW correction varies by k-point. The largest cor-
rection to the gap is 1.2 eV at the M point, and the
smallest is 0.96 eV at the K point. The GW correction
also changes the effective masses, making the electron
mass smaller than the hole mass. At the LDA level, the
electron and hole effective masses at the K point are
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FIG. 5. (Color online) Convergence of the QP gap at the M
point with respect to the number of bands included in the
partial sum for the Coulomb-hole contribution to the self en-
ergy, for dielectric cutoffs of 15(blue), 25(red), 35(green), and
45(magenta) Ry. The static remainder correction is included.
The dashed lines indicate the value of the QP gap extrapo-
lated to infinite bands.
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FIG. 6. (Color online) LDA (dashed blue curve) and G1W0

(solid red curve) band structure of monolayer MoS2.

0.5m0 and 0.6m0 respectively. At the G1W0 level, the
electron and hole effective masses are 0.4m0 and 0.2m0

respectively.

1. Comparison with other Calculations

There is significant disagreement on the electronic
structure of monolayer MoS2, including whether it has a
direct or indirect gap, at various levels of theory, though
it is well-known that the experimental gap is direct13.
We compare our results with previous GW calculations
on monolayer MoS2 in Table I. Several calculations24,25
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find an indirect gap from Γ to K the G0W0 level, and
Shi et al.24 argue that self-consistently updating G makes
the gap direct. We find a direct gap at the K point at
all levels of theory regardless of k-point sampling and
the truncation of the Coulomb interaction. Different k-
points converge with respect to Nb and ES at different
rates, and the Γ point converges much more quickly than
the K point, so the indirect gap seen in some calcula-
tions is likely an artifact of a too small dielectric cutoff.
Because the self-energy correction is larger at Γ than at
K, self-consistently updating G may fortuitously restore
the direct gap in those calculations.

Besides convergence, the largest source of differences
across previous GW calculations on monolayer MoS2 is
the use of a truncated Coulomb interaction. As dis-
cussed in section II A and also seen in Refs.22,25, not us-
ing Coulomb truncation in a calculation with periodic
boundary conditions results in over screening and de-
creases the QP gap by 100− 300 meV depending on the
supercell size used.

IV. OPTICAL PROPERTIES

A. Computational Details and Convergence

1. False Convergence and Shift of the Electron-hole
Continuum

As several works have noted, the optical properties of
monolayer MoS2, as calculated using the Bethe-Salpeter
Equation (BSE) formalism, converge very slowly with re-
spect to k-point sampling5,22,25. In reduced-dimensional
systems, the screening varies rapidly as q approaches
the long wavelength limit (See section II). Excitons at
the K point in MoS2 are highly localized in momentum
space, which means they are extended in real space, so
most of the screening comes from the rapidly varying
portion of ε2D(q). Hence, convergence with respect to
k-point sampling is slow because it is necessary to re-
solve the fast changes in spatial dependence in screening.
The extent of the exciton wavefunction in k-space is dis-
cussed in greater detail in Section IV.B.2. We find that
a 300x300x1 k-grid is required to converge the exciton
binding energy to within 0.1 eV (Fig. 7) for the lowest
energy state. It is even more demanding for the excited
exciton states.

The convergence of the excitation energies with k-
point sampling varies depending on the treatment of
the divergent term W (q=0). For semiconductors, the
screened Coulomb interaction W (q) diverges at q = 0,
and it is common to avoid this divergence by replac-
ing the screened interaction, W (q=0), with an aver-
age over a small region of the Brillouin zone25,29 near
q = 0. We compare two different methods of treating
the q = 0 term. In the first, we average the screened
Coulomb interaction over a small volume in reciprocal
space around q = 0. That is, we replace the divergent

term, W00(q→0), with

W avg
00 (q) =

NqV

2π

∫
cell

d2q W00(q), (9)

where “cell” indicates an integral over the volume of the
Voronoi cell around q = 0, Nq is the total number of q-
points, V is the volume of the unit cell in real-space, and
W00 refers to the divergent “head” element, G=G′=0.

This averaging treatment results in faster convergence
of the excitation energies with k-point sampling, but the
convergence is non-variational – i.e. the excitation en-
ergy initially increases with k-point sampling (Fig. 7 (a)).
The non-variational convergence occurs because replac-
ing W (q=0) with its average means that a k-point-
dependent value is being added to the diagonal of the
BSE matrix, which is equivalent to shifting the exciton
continuum by W avg(q=0).

We emphasize that, while the widely-used averaging
scheme is useful for improving the convergence of the ex-
citation energies, it may lead to misleading binding en-
ergies, defined as the difference between the optical gap
and the continuum of optical transitions. From Fig. 7,
the excitation energy from a relatively coarse 24x24x1 k-
grid appears to agree better with experiment than finer
k-grids, but if the shift to the continuum energy is taken
into account, the binding energy is only 0.2 eV. As k-
grid sampling increases, the continuum energy increases
linearly with 1/

√
Nk. Even more surprisingly, the exci-

tation energy varies in a non-uniform way, and increases
until we hit a k-grid finer than about 90x90. For k-grids
finer than this, we start to sample q vectors before the
peak in the quasi-2D dielectric screening. Because the
excitons are fairly spread out in real space, it is neces-
sary to sample very small wave vectors to capture the
small screenings associated with these lengh scales.

In an alternative treatment of q = 0, we fix the ex-
citon continuum at the QP gap (Ec − Ev) by setting
W00(q=0) = 0, which is the value of W avg in the limit
of infinite k-points. In this scheme, the excitation en-
ergies converge slower with respect to k-point sampling,
but the continuum does not move and the convergence is
variational. There is again a kink in the convergence of
the excitation energy around 90x90, which comes from
increased sampling in the small q region. If we define
the binding energy as the difference between the excita-
tion energy and the onset of the electron-hole or exciton
continuum, the binding energy converges at roughly the
same rate regardless of the treatment of W (q=0).

Therefore, even though the comonly-used averaging
scheme of the screened Coulomb interaction typically
converges the optical excitation faster, it does so by mov-
ing the continuum of optical excitations and introduces
errors in both the excitonic wave functions and the ener-
gies of higher excited exciton states. This is particularly
important if one is interested in properties such as the ra-
dius of the excitonic wave function OR the energies and
characters of excited excitonic states.



8

TABLE I. Comparison of smallest quasiparticle band gap (EGWgap,min) and the QP gap at the K point (EGWgap,K) from a selection of
different GW calculations on monolayer MoS2. The calculations differ by the use of the truncated Coulomb interaction, the level
of self-consistency, the method for including dynamical effects in the polarizability and the mean field starting point, including
the DFT functional and the in-plane lattice constant (a), as well as convergence parameters. The compared convergence
parameters are: use of Coulomb truncation, supercell size along the aperiodic direction (Lz), k-grid size, the energy cutoff for
the dielectric matrix (ES) and the number of bands included in the summation in the polarizability and the Coulomb-hole term
in the self energy (Nb). The methods for describing dynamical effects in the polarizability (Freq. Dep.) are the Hybertsen-
Louie Generalized Plasmon Pole (HL) model18, the Godby-Needs Plasmon Pole model (GN)48, or explicit calculation of the
full frequency dielectric matrix (FF).

Convergence Parameters Starting Meanfield QP Gaps

Coulomb
Trunc.

Lz
(Å)

k-grid
ES

(Ry)
Nb

Freq.
Dep.

DFT a (Å)
EGWgap,K

(eV)
EGWgap,min

(eV)
Direct
Gap

Present
Work (G1W0)

Y
Y

25
25

24x24x1
24x24x1

35
35

6000
6000

HL
FF

LDA
LDA

3.15
3.15

2.67
2.54

2.67
2.54

Y
Y

G1W0
5 Y 25 24x24x1 35 6000 HL LDA 3.15 2.7 2.7 Y

G1W0
5 Y 25 12x12x1 35 6000 HL LDA 3.15 2.84 2.84 Y

G0W0
16 Y 25 24x24x1 35 6000 HL PBE 3.18 2.63 2.63 Y

G0W0
25 Y 23 45x45x1 3.7 200 GN LDA 3.16 2.77 2.58 Na

G0W0
23 N 24 18x18x1 2b 200 GN LDA 3.15 2.41 2.41 Y

G0W0
22 N 20 12x12x1 15 120c FF PBE 3.18 2.60 2.60 Y

G0W0
24 N 19 12x12x1 22 197 FF PBE 3.16 2.60 2.49 N

sc-GW0
24 N 19 12x12x1 22 197 FF PBE 3.16 2.80 2.80 Y

G0W0
4 N 15 6x6x1 20 96 FF HSE 3.18 2.82 2.82 Y

sc-GW0
49 N 9 – 7 – FF PBE 3.19 2.40 2.40 Y

QSGW21 N 19 8x8x2 – – FF LDA – 2.76 2.76 Y

a Gap from Γ → K
b ES estimated from supercell size and number of reported G-vectors in dielectric matrix (50).
c Number of bands estimated from supercell size and reported energy of highest band.

As a final remark, we note that the fact that the ex-
citon is tightly localized in k-space reduces the dielectric
cutoff, ES , needed to capture the screening for exciton
calculations as opposed to those for those for QP ener-

gies. As seen in Fig. 3, for q < 0.1 Å
−1

, the screening is
the same for ES = 8 Ry and ES = 35 Ry. Indeed, when
we reduce the cutoff from 35 Ry to 8 Ry the binding en-
ergies of the first 40 excitonic states change by less than
10 meV.

2. Computational Details

In this section, we describe the techniques that allows
us to solve the BSE with a very dense k-point sampling
and include spin-orbit effects.

In Fig. 7, we explicitly solve the BSE on k-grids with up
to 600x600x1 k-points in the full Brillouin zone. However,
to save computational cost, we only included k-points

within 0.2 Å
−1

of the K point. This is reasonable for test-
ing convergence, since more than 99% of states contribut-

ing to the lowest energy exciton fall within 0.1 Å
−1

of the
K point. To obtain the entire optical spectrum, however,
it is necessary to consider the entire Brillouin zone using
a k-point sampling of at least 300x300x1, which is very
computationally demanding.

Rohlfing and Louie19 originally proposed an interpola-
tion scheme to eliminate this computational bottleneck
using two distinct k-grids, a coarse one where the matrix
elements for the BSE are calculated, and a fine one onto
which the matrix elements are interpolated and on which
the BSE Hamiltonian is diagonalized. However, this in-
terpolation scheme is no longer accurate for quasi-2D ma-
terials since the dielectric matrix has a lot of structure
for small q’s, contrary to the case for bulk systems.

Here, we modify this interpolation scheme to fully cap-
ture these fast variations in ε−1

00 (q) for small q’s. As in
the original scheme, we use two k-grids: a fine 300x300x1
k-grid and a coarse 24x24x1 k-grid where we explicitly
calculate the BSE matrix elements between all coarse
k-points kco. However, in addition to these matrix el-
ements, we also calculate transitions from each coarse
k-point to a number of fine k-points that form a cluster
around each coarse k-point. We call this second set of
matrix elements that capture small q’s the cluster ma-
trix elements.

When we perform the interpolation of the matrix el-
ements from the coarse to the fine k-grid, we use the
original scheme from Rohlfing and Louie19 if a particular
transition has a wave vector q = kfi − k′fi larger than a
given threshold. Otherwise, we use the cluster matrix el-
ement. This interpolation scheme explicitly captures the
fast variation in screening at small q’s, and the result-
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FIG. 7. (Color online) (a) Convergence with respect to k-
point sampling of the exciton continuum (dashed lines) and
the 1st (1s) excitation energy (solid lines) for the A series of
excitons when setting W (q → 0) = 0 (red) or using W avg(q →
0) (black). (b) Convergence of the binding energy, defined as
the difference between the continuum onset and the excitation
energy of the 1st exciton in the A series when setting W (q →
0) = 0 (red) or using W avg(q → 0) (black).

ing excitation energies of the first 20 exciton states are
within 20 meV of excitation energies found by explicitly
calculating the BSE matrix on a 300x300x1 k-grid.

In addition to k-point sampling, it is also important to
consider spin-orbit interactions in the optical absorption
spectrum. If one directly solves the BSE on a relativistic
basis set that includes spin-orbit interactions, the time
to diagonalize the BSE grows by a factor of 64 compared
to the non-relativistic case and would not allow one to
use such fine k-point sampling. An alternative scheme to
include spin-orbit interactions is therefore desirable.

Our solution is to take advantage of the facts that (1)
spin-orbit splitting is smaller than the exciton binding
energy; and (2) spin along the z-axis is a good quantum
number at the K and K ′ points for monolayer TMDs2.
This allows us to efficiently include spin-orbit effects as a
perturbation. We perform both a spin-unpolarized DFT
calculation, which is used as the starting wave functions
for our GW calculation, and a non-collinear calculation
with spin-orbit interactions included. We approximate
the first-order spin-orbit correction to the GW quasi-
particle energies to be the difference between the two
Kohn-Sham eigenvalues. That is, we take ∆εSO

GW(nkσ) ≈
∆εSO

LDA(nkσ) ≡ εnon−col(nkσ) − εunpol(nk), where σ is
the spinor index of the states in the non-collinear cal-
culation. This is a reasonable approximation since the
overlaps between the spinor wave functions and the scalar

wave functions are exactly 1 at K and greater than 0.7 in
other regions with spin-orbit splitting, in our LDA cal-
culation.

To obtain the absorbance with spin-orbit interaction,
we apply a first-order perturbation theory to the solu-
tion of the Bethe-Salpeter equation, which is justifiable
because the quasiparticle gap (∼ 2.7 eV) is much larger
than the spin-orbit splitting (∼ 150 meV). Each exci-
tonic state |S〉 can be expanded as a linear combination
of pairs of single-particle valence and conduction band
states as

|S〉 =
∑
vck

ASvck |vck〉 . (10)

We want to calculate the spin-orbit corrected exciton
energies ΩSσ = ΩS + ∆ΩSσ , where ΩS is the energy of
the |S〉-state, neglecting spin-orbit, and ∆ΩSσ is the first-
order energy correction,

∆ΩSσ ≡ 〈S|HSO
σ |S〉 (11)

=
∑
vck

∑
v′c′k′

(
ASv′c′k′

)∗
ASvck 〈v′c′k′|HSO

σ |vck〉 ,

where the spin-orbit Hamiltonian, HSO, is block-diagonal
in the spin-index σ and HSO

σ is a block of the spin-orbit
Hamiltonian for the spin σ.

We assume that HSO
σ is diagonal in the |vck〉 basis,

which is valid due to the large overlap between the spinor
and scalar wave functions. Then, the spin-orbit correc-
tion to the excited-state energies becomes

∆ΩSσ =
∑
vck

|ASvck|2∆εSO
vckσ (12)

where ∆εSO
vckσ are the spin-orbit corrected differences in

energy between the valence and conduction states

∆εSO
vckσ = (εGW(ck) + ∆εSO

GW(ckσ))

− (εGW(vk) + ∆εSO
GW(vkσ)). (13)

Finally, the imaginary part of the dielectric function
with spin-orbit interactions is calculated using the spin-
orbit corrected exciton energies,

ε2(ω) =
16π2e2

ω2

∑
Sσ

|e · 〈0|v |Sσ〉 |2δ(ω − ΩSσ), (14)

where e is the polarization of the incoming light, v is the
velocity operator, and |Sσ〉 = |S〉.

B. Optical Spectrum

The absorption spectrum of monolayer MoS2 with and
without electron-hole interactions is shown in Fig. 8. The
lowest energy exciton, which forms peak A in the spec-
trum, has a binding energy of 0.63 eV. Peaks A and B
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are spin-orbit split states that arise from excitons form-
ing from transitions between the spin-orbit split valence
band maximum and the conduction band minimum at
the K and K ′ points in the Brillouin zone. Both A and
B have bright excited states, which we label A’, B’, etc.
The peak A” overlaps with peak B’. We also see a large
peak, which we label peak C, near the continuum onset
at 2.7 eV.

The lowest interband transition energies, i.e. the en-
ergies of direct transitions from the valence band to
the conduction band throughout the Brillouin zone, are
shown in Fig. 8(d). The deepest valleys are parabolic val-
leys at K and K ′ points, which give rise to the A and B
series of excitons. There is also a shallower Mexican-hat
shaped valley around the Γ point. Transitions from this
Mexican hat valley give rise to peak C and its excited
states.

The fine features due to excited states of peaks A and
B, which appear in our calculated spectra, are broadened
out in the experimental spectra. This is a signature of
lifetime effects due to electron-phonon and other inter-
actions. We account for the electron-phonon lifetime ef-
fects in our calculation following Marini50, and the result
is plotted in Fig. 8 (b). We consider both emission and
absorption of phonons at T = 300 K, and we extrapolate
the scattering rate for quasiparticle energies larger than
those computed by Li et al.51. This leaves the A and B
peaks relatively sharp, while broadening out the inter-
mediate peaks between B and C, resulting in excellent
agreement with experiment for peak shape and position
and the magnitude of the absorbance.

1. Comparison with other Calculations

As with the QP bandgap, there is a wide range of
disagreement in the literature about the binding energy
of the exciton giving rise to peak A at the GW-BSE
level, with values ranging an order of magnitude from
0.1 − 1.1 eV. A comparison of values obtained in differ-
ent calculations is given in Table II. There is, however, a
smaller spread in the calculated values of the excitation
energy of peak A. This is largely because errors which re-
sult in over screening or under screening tend to affect the
QP gap and binding energy in opposite ways, resulting in
a cancellation of error in the excitation energy. The main
sources of difference across various BSE calculations in
the literature are: (1) the k-grid sampling, as mentioned
in Section IV A 1; and (2) the truncation of the Coulomb
interaction. Coulomb truncation is especially important
to obtain the correct binding energy because, as seen in
Fig. 3 (a,b), Coulomb truncation mainly affects screen-
ing in the small-q region where the exciton wavefunction
is sensitive because of its localization in k-space. For
instance, Refs.25 and23 have both noted that very fine
k-point sampling is required to converge the solution of
the BSE, yet obtain drastically different results (0.6 and
0.15 eV, respectively) for the binding energy.

Γ KK

K K

K K
2.7eV

4.2eV

(d) Interband transition energies:

4.2 eV

2.7 eV

FIG. 8. (Color online) (a) Absorption spectra of MoS2 with-
out (dashed red curve) and with (solid green curve) electron-
hole interactions using a constant broadening of 25 meV. (b)
Same calculated data as in Fig. 8 (a), but using an ab ini-
tio broadening based on the electron-phonon interactions50,51.
(c) Experimental absorbance13. (d) Direct valence to conduc-
tion band transition energies in the 1st Brillouin zone.

C. Excitonic Spectrum of Series A and
Comparison with Rydberg Series

We can obtain further insight of the structure of the
excitonic states by comparing them to a 2D hydrogenic
model. In Fig. 9, we plot the energies of the excitons in
the series A obtained from our GW-BSE calculation with
those from an effective 2D hydrogenic model Hhydrog =

− ∇
2

2m∗ + e2

ε∗r . This effective model is built by fitting the
effective dielectric constant ε∗ to reproduce the binding
energy of peak A. Because there is very little coupling
between the K and K ′ valleys54, the A and B series of
excitons are both doubly degenerate, and so we focus
here on the states in the A series coming from a single
valley.

As previously noted5,7,10,11, the hydrogenic model de-
viates from the ab initio results in two significant ways:
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TABLE II. Comparison of a selection of GW-BSE calculations for monolayer MoS2, including the excitation energy (Ω) of
peaks A, B, A’, B’, and C, and the binding energy (Eb) of peak A, which is taken to be the difference between the QP gap and
the excitation energy. If spin-orbit was not included in the calculation the excitation energy of peak B(B’) is reported as the
same as peak A(A’). Parameters affecting the calculation are k-grid sampling, the use of a truncated Coulomb interaction, and
the number of valence (Nv) and conduction (Nc) states.

Convergence Parameters Peak A Peak B Peak A’ Peak B’ Peak C

Coulomb
Trunc.

k-grid (Nv, Nc)
Ω

(eV)
Eb

(eV)
Ω

(eV)
Ω

(eV)
Ω

(eV)
Ω

(eV)

Present Work Y 300x300 (4, 4) 2.04 0.63 2.17 2.32 2.45 2.7

Ref.5 Y 300x300 (4, 4) 2.04 0.63 2.17 2.32 2.45 2.73
Ref.5 Y 72x72a (7, 8) 1.88 0.96 2.02 2.20 2.32 2.54
Ref.16 Y 60x60a (4, 4) 1.94 0.62 2.08 2.4 – 2.7
Ref.25 Y 45x45 (1, 1) 2.2 0.6 2.2 – – –
Ref.22 Nb 12x12 (–, –) 1.9 1.1 1.9 – – –
Ref.23 N 51x51 (–, –) ∼2.2 0.15 ∼2.3 – – 3.0
Ref.53 N 30x30 (2, 4) 2.0 ∼0.7 2.15 – – ∼2.95
Ref.27 N 27x27 (6, 6) 2.03 – 2.14 – – >2.6
Ref.26 N 16x16 (6, 8) 2.11 – 2.25 – – 2.55
Ref.24 N 15x15 (6, 8) 2.22 0.54 2.22 2.5 2.5 3.0
Ref.4 N 6x6 (4, 8) 1.78 1.04 1.96 – – 3.0
Ref.49 N – (6, 8) 1.86 0.56 – – – –

a k grid interpolated following Rohlfing and Louie.52
b Eb and QP gap are extrapolated to Lz = ∞

(1) first, the binding energies of excited states are much
larger than expected from a 2D hydrogenic model; and
(2) states with higher angular momentum have a larger
binding energy than states with lower angular momen-
tum. Additionally, there is also some splitting of states
with the same angular momentum, such as 2p and 3d, due
to the trigonal warping of the MoS2 bandstructure at the
K and K ′ valleys. The f states do not split because they
have the same three-fold symmetry as the bandstructure.
Although the excitation energies of the solutions of the
BSE deviate from the hydrogenic model, for simplicity,
we still label the states as 1s, 2s, 2p, etc., using the same
notation as a 2D hydrogenic model, based on the number
of radial and azimuthal nodes in the envelope function of
the exciton wavefunction.

To understand the physical reasons for these differ-
ences between the hydrogenic model and the ab initio
calculation, we will first analyze the character of the ex-
citonic wave functions and see how the actual ab initio
and q-dependent screening differs from the hydrogenic
model. Each excitonic state |S〉 can be expressed as a
linear combination of the electron-hole transitions |vck〉,

|S〉 =
∑
vck

ASvck |vck〉 . (15)

The coefficients ASvck describe the envelope function or
electron-hole pair amplitude of the exciton wavefunction
in reciprocal-space. The envelopes of the wavefunctions
of the first few states in the A series of excitons are plot-
ted in Fig. 10. The plots are centered around the K
point in the Brillouin zone. The nodal structure of the

envelope function of the states is apparent from this plot.
The plots also show that the excitonic wavefunctions are
highly localized in k-space, with most transitions falling

within 0.1 Å
−1

or about 5% of the Brillouin zone. In fact,
this is well within the region of fast variation in screening
seen in Fig. 3 and explains for the most part why conver-
gence with respect to k-point sampling is so slow, since
the k-point sampling must be fine enough to resolve both
the region before the peak in the dielectric screening and
the nodal structure of the exciton wavefunctions.

The deviations of the results of the ab initio calculation
from those of the hydrogenic model may now be under-
stood. If we compare the real-space screening ε(s) with
the envelope of the exciton wavefunctions in real space, as
shown in Fig. 11, it is clear that the varying distribution
of the wavefunction in real-space results in different states
experiencing different screening and therefore different ef-
fective electron-hole interaction. In general, states with
larger principal quantum number n have a larger binding
energy than expected from the hydrogenic model because
they have a larger radius and are thus less screened than
states with smaller radii. Similarly, states with larger
angular momentum quantum number are more strongly
bound than in the model because there is a node in the
wavefunction where screening is strongest.

Therefore, this effective state-dependent screening ex-
plains why (1) excited excitonic states, such as 2s and 3s,
appear lower in energy than what is predicted by a 2D
hydrogenic model (which assumes a constant dielectric
constant), and (2) degenerate states with the same prin-
cipal quantum number n split, and the excitation energy
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FIG. 9. Comparison of the exciton state energy levels for the
A series obtained from ab initio GW-BSE calculation (left)
with an effective 2D hydrogenic model (right). Bright [dark]
exciton states are represented by opaque red [translucent blue]
lines.
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FIG. 10. (Color online) Electron-hole pair amplitudes of low-
est energy exciton wavefunctions in reciprocal space for states
(a) 1s, (b) 2p, (c) 2s, (d) 3d, (e) 3p, (f) 4f, (g) 3d, (h) 4d and
(i) 4p. Each plot is centered around the K point in the Bril-
louin zone.
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FIG. 11. (Color online) (a) Modulus squared of the exciton
wavefunction in real-space for the states 1s (solid blue line),
2s (red line with dash and dot), 2p (green dashed line), and
3d (cyan line with dash and two dots). (b) The effective 2D
dielectric function over the same range in real space.

for states with higher angular momentum is lower.

V. CONCLUSION

In summary, we find that many-body effects, namely,
the electron-electron and electron-hole interactions for
quasiparticle and optical excitations, in MoS2 are well-
described by the GW-BSE method, which gives results
in good agreement with experimental optical spectra and
conclusions about the bandgap. We find that, for MoS2,
G0W0 results do not differ qualitatively from sc-GW0,
as has been previously claimed. Instead, variations in
GW-BSE results in the literature arise largely from dif-
ferent treatments of the long-range Coulomb interaction
in periodic supercell calculations and convergence of k-
grid sampling and cutoffs for the dielectric screening. We
find that truncating the Coulomb interaction to prevent
artificial over screening from periodic images is essential
to obtain accurate results. The 2D nature of the sys-
tem also gives rise to strong spatial variations in screen-
ing, which must be captured by very fine k-point sam-
pling. The sharpest variation in screening is at small
q-vectors (q<∼ π/d, where d is the layer thickness), where
the screening rapidly vanishes as the wave vector q ap-
proaches zero. Even finer k-point sampling is required
to converge the BSE, as the exciton electron-hole ampli-
tude functions in MoS2 are tightly localized in k-space.
Finally, a large energy cutoff for the dielectric matrix is
required to capture the spatial variation associated with
the different characters of the VBM and CBM of MoS2,
and a correspondingly large number of empty states is
required to avoid artificially truncating the dielectric ma-
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trix and capture the nearly continuous states arising from
using a large vacuum. These are general conclusions that
can be applied to GW-BSE calculations on any semicon-
ductor in low dimensions.
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