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Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its

length dependence in ribbons up to 9 µm long. In this paper, we use the improved Callaway model to solve the

phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness)

and non-resistive (normal) contributions. We show that for lengths smaller than 100 µm, scaling the ribbon

length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length

dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while

in the hydrodynamic regime when 10 µm<L<100 µm, the contribution from the in-plane branches saturates and

the out-of-plane (ZA) branch shows a clear logarithmic trend, driven by the non-resistive normal contribution.

We find that thermal conductivity converges beyond L>100 µm due to the coupling between in-plane and

flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range,

preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width,

which we attribute to the interplay between non-resistive normal and diffusive edge scattering in the Poisseuille

flow regime. We conclude that normal processes play a crucial role in the length and width dependence of

thermal transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-

plane (ZA) contribution to transport.

I. INTRODUCTION

In recent years, 2-dimensional materials have been the

subject of intense research because of their unique elec-

tronic and thermal transport behavior. Among such materi-

als, graphene has been studied the longest and has shown the

most promising properties, with the highest reported thermal

conductivity (ranging from 1800-5300 Wm−1K−1)1–3 and

electron mobility (intrinsic limit in the order of 105 cm2/V-

s).4 Engineering graphene devices require a firm understand-

ing of thermal transport mechanism, which is mainly domi-

nated by phonons5,6 because of strong covalent sp2 bonding,

which efficiently transfers heat by lattice vibrations. Despite

enormous progress in understanding the thermal transport in

graphene, there are several questions yet to be answered. In

3-dimensional samples, thermal conductivity converges to the

bulk value of graphite when the size exceeds the mean free

path (mfp) of phonons and transport becomes entirely diffu-

sive in nature. Heat conduction in such a case is mainly gov-

erned by resistive umklapp phonon-phonon scattering rather

than scattering from the rough boundaries. In contrast, a

length dependent behavior of thermal conductivity has been

observed in 1-D and 2-D materials even for samples much big-

ger than mean free path of phonons. There are rigorous math-

ematical proofs for such diverging behavior in momentum-

conserving one-dimensional systems7–10 and it has also been

experimentally demonstrated for carbon nanotubes.11 How-

ever, in 2-D materials, the reason for this length divergence

is still much in debate.

Recently, Xu et al.12 provided an experimental evidence of

this length divergence for samples as long as 9 µm (around

10 times greater than the average mean free path of acous-

tic phonons in suspended graphene) and attributed the reasons

for length divergence to the reduced dimensionality and dis-

placement of in-plane phonon populations at stationary non-

equilibrium conditions. In addition, quasi-ballistic propa-

gation of extremely long wavelength acoustic phonons has

been demonstrated by Mei et al.,13 where they have shown

that about 20% of phonons have mean free path greater than

100 µm, indicating a wide ballistic to diffusive crossover

regime and thermal conductivity ultimately converging to

5800 Wm−1K−1. Nika et al.14 emphasized the importance

of low frequency acoustic phonons, illustrating that with the

increase in the sample size, more such low frequency phonons

can be excited, which in turn contributes to thermal conduc-

tion, thereby leading to length-dependent behavior. Lindsay et

al.15 explained the significance of low frequency ZA phonons

towards thermal conductivity in graphene flakes, which leads

to length-dependent behavior.

In contrast to the aforementioned studies, Chen et al.3 re-

ported thermal conductivity in graphene flakes without any

sample size dependence. This was attributed to large un-

certainty in the measurement of thermal conductivity due to

grain boundaries, wrinkles, defects or polymeric residues in

the graphene sample. Park et al.16 used MD simulations to

demonstrate the length dependence over a wide range and in-

terestingly, showing a converging behavior of thermal con-

ductivity at 16 µm and finally reporting a macroscopic limit

of heat transport in graphene flakes as 3200 Wm−1K−1. Re-

cently, Barbarino et al.17 performed direct atomistic sim-

ulation called approach-to-equilibrium molecular dynamics

(AEMD) to capture thermal conductivity in large samples.

They found that intrinsic thermal conductivity in monolayer

graphene is upper-limited. Thus, there have been both the-

oretical and experimental evidences of length divergence of

thermal conductivity for large samples (up to few microns),

but still there has been an active debate going on about the

divergence of thermal conductivity for flakes when L−→ ∞.

In this paper, we study the length and width dependence of

the thermal conductivity of suspended graphene ribbons. In

Sec. II we present the details of the method used to calculate

thermal conductivity in graphene ribbons which is based on
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the full phonon dispersion and the improved Callaway model

recently proposed by Allen.18 In Sec. III we discuss our re-

sults, showing two distinct regimes of thermal transport as the

length of the graphene ribbon is increased: logarithmic diver-

gence below 100 µm, driven by the flexural branch, and con-

vergence for lengths exceeding 100 µm caused by renormal-

ization of the flexural branch due to coupling between in-plane

and cross-plane phonons in the long wavelength regime. We

also show a strong width dependence of thermal conductiv-

ity in graphene ribbons due to the non-resistive normal con-

tribution. Finally, in Sec. IV we conclude and comment on

the connection of our work to the newly discovered hydrody-

namic regime of thermal transport in 2-dimensional materials.

II. THERMAL CONDUCTIVITY CALCULATED FROM

IMPROVED CALLAWAY MODEL

A. Improved Callaway model

Several techniques have been employed to model ther-

mal transport in graphene such as non-equilibrium molec-

ular dynamics (NEMD),19,20 non-equilibrium Green’s func-

tions (NEGF)21,22 and Boltzmann transport equation simu-

lations.23–25 In our work, we have used the solution of full

phonon Boltzmann transport equation (pBTE) in order to cal-

culate thermal conductivity in GNRs based on Allen’s im-

proved Callaway model. The steady state phonon BTE can

be written as

~v(~q, b) • ∇~rN~q = −
N~q −N0

~q

τC(~q, b)
−

N~q −N∗
~q

τN (~q, b)
(1)

where N~q is the number of phonons with wave vector ~q, N0
~q

is equilibrium Bose-Einstein distribution, ~v(~q, b) is the group

velocity and τC(~q, b) is the effective relaxation time due to all

scattering mechanisms (which include phonon-phonon scat-

tering, isotope scattering, impurity scattering and edge rough-

ness scattering). Anharmonic phonon-phonon interactions

can be categorized into umklapp (U) and normal (N) pro-

cesses. Umklapp processes (which destroy crystal momen-

tum) relax the non-equilibrium distribution to the final zero-

current equilibrium Bose-Einstein distribution and are resis-

tive in nature whereas N processes conserve crystal momen-

tum and relax the perturbed distribution to a flowing equilib-

rium (N∗
~q ). In materials like graphene, where the Debye tem-

perature is very high (about 2100 K),26,27 these momentum

conserving normal processes have been shown to play a sig-

nificant role in context of heat conduction.15

The N∗
~q term represents a flowing equilibrium to which

the distribution evolves under the influence of momentum-

conserving normal phonon-phonon processes. Flow-

ing equilibrium can be envisioned as a hydrodynamic

component28—while momentum-destroying resistive pro-

cesses such as umklapp scattering tend to relax the non-

equilibrium distribution back to its equilibrium Bose-Einstein

form; the non-resistive normal processes conserve crystal mo-

mentum and hence cannot fully destroy the heat flux, but only

redistribute it among the phonon modes. Umklapp scatter-

ing, isotope scattering and edge roughness scattering all de-

stroy crystal momentum; thus all these resistive processes

can be grouped under τ−1
U (~q, b). The combined scattering

rate is given as the sum of resistive and non-resistive terms

τC
−1(~q, b) = τU

−1(~q, b) + τN
−1(~q, b), where τN

−1(~q, b) is

the scattering rate due to normal scattering. The thermal con-

ductivity expression includes an extra term over the Debye

term and is called N-drift term, which accounts for additional

conductivity from the non-resistive normal processes so that

Ktot = KC +KN .

Allen18 improved the Callaway model29 and proposed a

modified expression in order to correctly include the contribu-

tion of resistive (processes which destroy crystal momentum)

and non-resistive (which conserves crystal momentum) pro-

cesses towards thermal conductivity and added a correction

term

(

λ1λ2

λ3

)

, summed over all the branches b, to the De-

bye term KC . The accuracy of the improved Callaway model

(ICM) was compared with the iterative solution of the BTE by

Ma et al.,30 to find that the trend of lattice thermal conductiv-

ity against temperature obtained from the ICM compares more

favorably to the full iterative BTE solution than the RTA or the

original Callaway model, especially in those cases where nor-

mal scattering is significant.

The modified ICM expressions are given as

Ktot = KC +KN = KC +
∑

b

λ1,bλ2,b

λ3,b
(2)

where KC is the Debye term, arising from relaxation time

approximation (RTA) and sometimes also called as KRTA,

and is given by

KC =
1

Aδ

∑

~q,b

~ω~q,bv
2
‖(~q, b)τC(~q, b)

∂N~q

∂T
(3)

where A is the area of GNR sheet, δ (=0.335 nm) is thickness

of graphene monolayer31, v‖ is the velocity of phonons along

the ribbon direction. The correction terms can be expressed

as:

λ1,b =
1

Aδ

∑

~q

v‖(~q, b)q‖τC(~q, b)
∂N~q

∂T
(4)

λ2,b =
1

Aδ

∑

~q

v‖(~q, b)q‖

[

τC(~q, b)

τN (~q, b)

]

∂N~q

∂T
(5)

λ3,b =
1

Aδ

∑

~q

(

q2‖

~ω~q,b

)

[

τC(~q, b)

τU (~q, b)

]

∂N~q

∂T
(6)

where q‖ is the component of wavevector along the ribbon

parallel to the rough edges. The expressions for different types

of scattering rates included in this study are discussed in the

next section.
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B. Instrinsic scattering rates and their expressions

The expression for resistive umklapp scattering rate is taken

from the work of Morelli et al.32 and is given as τ−1
U (~q, b) =

BUω
aU

~q,bT
bU e−θb/3T , where BU =

~γ2

b

Mθbv2

b

. vb is velocity of

sound for each branch b and is calculated by average slope of

its dispersion curve near Γ point,33 γb is the Gruneisen param-

eter, θb is the Debye temperature of each phonon branch,M is

the average atomic mass of carbon. Here aU and bU are equal

to 2 and 1 respectively, which have been used in innumerable

studies conducted so far and produced excellent results.

An empirical form for normal scattering has been adopted

from the paper by Morelli et al.:32 τ−1
N (~q, b) = BNωaN

~q,bT
bN ,

where

BN (aN , bN) = (kB/~)
bN

~γ2
bv

(aN+bN−2)/3

MvaN+bN
(7)

This simple model allows us to efficiently study a broad range

of sizes and temperatures with good accuracy. Several stud-

ies have been carried out to determine the best empirical val-

ues for the constants aN and bN , which can accurately de-

scribe the contribution from momentum-conserving normal

processes. For our study, we have used aN and bN to be

1 and 3 respectively, which has been used in several studies

to explain the contribution from normal processes in mate-

rials like diamond34 and LiF35 and fits experimental as well

as first principle data in quite good agreement. In particu-

lar, first principles calculations predict a constant (aN = 0)

frequency dependence in pristine graphene; however, the con-

stant dependence of the anharmonic scattering rate on phonon

frequency was found to disappear in the presence of strain.36

Even infinitesimally small amounts of strain were found to

lead to a quadratic (aU = 2) dependence for in-plane LA

and TA branches and linear (aN = 1) for flexural ZA branch.

This linear dependence can be also tied to the maximum scat-

tering rate in the long wavelength limit. In long wavelength

limit (ω → 0), the upper bound on the phonon scattering

rate (Γmax = 1/τmin) is dictated by the Ioffe-Regel limit;37

equivalently, it can be obtained from Cahill’s minimum ther-

mal conductivity model,38 according to which ωτmin = π.

In addition, as pointed out by Bonini et al.,36 for the quasi-

particle criterion (ωτ ≥ 1) to hold, the exponent aN in

τ−1
N (~q, b) ∝ ωaN

~q,b has to be greater than or equal to 1 in the

long wavelength limit.

Naturally occurring isotopes of carbon can result in scat-

tering due to difference in their atomic masses. Thus, iso-

tope scattering is also included while calculating the effective

scattering rate and is given as25 τ−1
Iso(ω) = (ΓΩ0/12)ω

2g(ω),
where the effective density of states is calculated by sum-

ming the density of states over all the branches b; g(ω) =
∑

b gb(ω). The mass-difference constant Γ is given by Γ =
∑

i fi(1−Mi/M)2 = c(1− c)/(12− c)2. The natural abun-

dances of C12 and C13 are 98.9% and 1.1% respectively and

thus, c= 0.011. The total intrinsic scattering rates can, thus, be

mathematically expressed as

1

τint.(~q, b)
=

1

τU (~q, b)
+

1

τN (~q, b)
+

1

τIso(ω)
(8)

C. Boundary scattering and contacts

In graphene nanoribbons, boundaries start playing a signif-

icant role in scattering of the heat carriers. As the edges of

GNRs are not perfectly smooth, thus phonons tend to scatter

from the boundaries and this effect becomes prominent with

increase in rms value of edge roughness and decreased width

of nanoribbons. In this work, the scattering rate due to line

edge roughness (LER) is calculated in the same way as was

done by Aksamija and Knezevic.39 A momentum-dependent

specularity parameter p(~q) = exp(−4q2∆2sin2θE) has been

introduced in order to accurately treat phonon scattering from

edge roughness. It represents the ratio of specular reflections

to the total number of interactions with the boundary. ∆ rep-

resents rms value of the line edge roughness and θE represents

the angle made by incident phonons (~q) with the edge direc-

tion. The final expression for an effective LER scattering rate

is given by39

τ−1
LER(~q, b) =

v⊥(~q, b)

W
Fp(~q)

/[

1−
Λ⊥
int.(~q, b)

W
Fp(~q)

]

(9)

where Λ⊥
int.(~q, b) = v⊥(~q, b)τint.(~q, b) is the phonon mean

free path due to all the intrinsic processes (anharmonic

phonon-phonon scattering and isotope scattering) across the

ribbon perpendicular to edges. v⊥(~q, b) is the velocity of

phonons in the direction perpendicular to the rough edges and

τint.(~q, b) represents the relaxation time of phonons due to all

intrinsic scattering processes. The complex interplay between

line edge roughness scattering and internal scattering mecha-

nisms for graphene ribbons is encapsulated in the parameter

Fp(~q) called the form factor

Fp(~q) =
[1− p(~q)]

[

1− exp
(

−W/Λ⊥
int.(~q)

)]

1− p(~q)exp[−W/Λ⊥
int.(~q)]

. (10)

Contacts are assumed to be ideal and in equilibrium, which

is captured by treating the interaction of phonons with the

contacts analogously to the interaction of phonons with com-

pletely diffuse edges (p(~q) = 0) except having width (W )

replaced by length (L) and the component of the phonon

group velocity being taken along, rather than across, the

ribbon. Thus, a length dependent scattering term is given

as τ−1
end(~q, b) = v‖(~q, b)/L

[

1− exp
(

L/Λ
‖
int.(~q)

)]

, where

v‖(~q, b) is the velocity of phonons along the ribbon parallel

to the rough edges and Λ
‖
int.(~q, b)(= v‖(~q, b)τint.(~q, b)) rep-

resents the phonon mean free path due to all intrinsic scatter-

ing processes along the ribbon direction. The scattering rates

(normal, umklapp, isotope and edge roughness) are added to

get total combined rate in suspended graphene as

1

τC(~q, b)
=

1

τint.(~q, b)
+

1

τLER(~q, b)
+

1

τend(~q, b)
(11)

and thus, can be used to calculate the resistive Debye term

KC and the non-resistive normal contribution KN of thermal

conductivity in GNRs.
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III. RESULTS AND DISCUSSION

To study length dependence of thermal conductivity at

room temperature, we scaled ribbon length while keeping the

width constant (W=1.5 µm) in order to mimic the experi-

mental set-up by Xu et al.12 In Fig. 1a, thermal conductiv-

ity of free-standing graphene has been plotted against length

for various discretization densities of the phonon dispersions.

The red curve in Fig. 1a shows a convergence in thermal con-

ductivity for a coarse discretization of q-points having 83,074

points in the first Brillouin zone. Previous studies suggest that

a major part of thermal conductivity comes from the quadratic

out-of-plane ZA modes and divergence is a consequence of

long wavelength problem. Klemens41 was among the first to

propose a logarithmic divergence of thermal conductivity in

the two-dimensional phonon gas. In his simplified umklapp-

limited model, the spectral specific heat (C(ω)) in two dimen-

sion is proportional to ω while the intrinsic mean free path

li(ω) ∝ ω−2T assuming a quadratic umklapp scattering rate

and linear dispersion. Klemens then attributed the logarithmic

divergence to the problem of long waves: in the limit q→0,

as the phonon wavelength gets larger; the spectral phonon

density (N(ω) = n0(ω)g(ω) ∝ 1/ω) diverges, leading to

a logarithmic divergence in the resulting thermal conductivity

integral.31

A. Numerical convergence and renormalization of ZA modes

In order to treat the problem of long waves more accurately,

we repeated our calculation of thermal conductivity keeping

all parameters exactly the same, but employing a much denser

discretization grid of q-points having 415,368 points for the

dispersion and numerical integration. We obtained a similar

converging behavior but with larger values of thermal conduc-

tivity at L=1000 µm, as shown by the black curve in Fig. 1a,

than the one obtained from a coarser grid of 83,074 points

(shown by red curve in the same figure). This led us to fur-

ther investigate convergence in the long wavelength limit and

consequently, we plotted cumulative thermal conductivity as a

function of phonon wavelength for different densities of grid

discretization as shown in Fig. 1b. In Fig. 1b, for all dis-

cretization densities (without renormalization), steps can be

observed at the largest wavelength in the discretization, in-

dicating an increase in thermal conductivity due to the ad-

dition of more long wavelength phonons. Despite of adding

more discretization of q-points around q−→0 by making the

dispersion grid denser, the results still do not converge fully

as shown by the dashed black line joining the total cumu-

lative thermal conductivity for different grid densities. This

behavior is even more prominent in case of infinite graphene

(L=W=1000 µm, LER=0 nm) as shown by the dashed black

line in the inset of Fig. 1b. So we conclude that the conver-

gence observed in Fig. 1a is not an actual convergence but

rather a numerical one, caused by the finite number of dis-

cretization points. Thus our results show that even for a rib-

bon with fixed width and diffuse edges, thermal conductivity

diverges with length as long as the dispersion of the out-of-

plane ZA modes is quadratic.

However, there are many studies in the literature showing

how strain due to various effects (e.g. temperature expan-

sion (crumpling), in-plane-to-cross-plane coupling, and sev-

eral others) affects the flexural modes in the long wavelength

regime. Castro Neto et al.42 and Xu et al.43 show the effect

of thermal stress on flexural modes in freestanding graphene

and long wavelength ZA modes are reported to be completely

linearized (ω ∝ q). Several recent studies44 have shown that

increasing the size of the free-standing graphene will gradu-

ally cause a stiffening of the flexural modes, arising out of

the coupling between in-plane and out-of-plane modes. This

coupling has also been found to result in renormalization of

ZA modes; however flexural phonon modes are reported to be

partially linearized (ω ∝ q1.5). The blue curve in Fig. 1a and

Fig. 1b represents thermal conductivity with dense discretiza-

tion grid and partially linearized (renormalized) ZA disper-

sion i.e. with ω ∝ q1.5 (renormalization will be further dis-

cussed in the next section). This stiffening of ZA modes

causes convergence of thermal conductivity with length and

leads to a finite value of thermal conductivity, as evidenced

by the smooth convergence and the lack of large steps in the

long wavelength limit (Fig. 1b, for both finite and infinite

graphene). Good agreement between our result (solid blue

line) with previously reported first principles15 (cyan-colored

diamond markers in Fig. 1a) and molecular dynamics16 calcu-

lations (magenta-colored circular markers in Fig. 1a) confirm

that the improved Callaway model can be used as an effec-

tive tool for the treatment of momentum-conserving normal

processes. Our calculated thermal conductivity, when scaled

with Kmax to compensate for contact resistance in the exper-

iments, follows the same trend as that of the measured data,12

shown in the inset of Fig. 1a.

B. Analytical calculations

Here, the analysis of the divergence of thermal conductivity

with length is generalized to include the quadratic dispersion

of the ZA branch and the non-resistive normal contribution,

both of which were ignored in previous analyses. For a gen-

eral dispersion of the form ω ∝ qs, frequency dependence of

the group velocity (~v(~q) = ∇ω(~q)) is given as v ∝ ω(s−1)/s

while the density of states D(ω) ∝ ω(2−s)/s. In the long

wavelength limit (ω −→ 0) and for finite width, the resis-

tive part of thermal conductivity (KC) is mainly dominated

by edge roughness scattering which, according to equation 9,

varies as τ−1
LER(ω) ∝ v(ω). Thus the resistive part of thermal

conductivity (KC(ω)) ∝ v2(ω)τLERD(ω) ∝ ω(1/s) indicat-

ing that KC converges with length and reaches the diffusive

regime as long as we maintain finite width of the samples,

irrespective of the value of the exponent s, as our results in

Fig. 1c indicate.

The length dependence of the resistive component of

thermal conductivity (KC) can be captured through a sim-

ple Landauer model,45,46 where the heat conduction is de-

scribed by constant thermal conductance (G) in the ballis-

tic regime. Then the length variation in KC is well de-
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scribed by a transition from the ballistic to the diffusive

regime as K(L) = [A/(LGball) + 1/Kdiff ]
−1.40 Setting

(Gball/A)=2×109 WK−1m−2 exactly fits the resistive part

of thermal conductivity as shown in Fig. 1c. The mean free

path (λ) is calculated from this value by angle averaging in

2D as Kdiff = (Gball/A)(π/2)λ. The mfp of phonons in

suspended graphene with rough boundaries and W=1.5 µm

is thus calculated to be 358 nm, somewhat smaller than pre-

viously reported values of around 800 nm for large square

samples47 due to the presence of edge roughness of 2 nm in

our case. Hence we conclude that the resistive contribution

to the thermal conductivity is undergoing a simple ballistic-

to-diffusive transition as length is increased, saturating when

L>10 µm.

On the other hand, the length dependence of thermal con-

ductivity of long ribbons (L>1 µm) is dominated by the hy-

drodynamic contribution, represented by KN , and its length

dependence is different from what can be observed in ballistic

regime. The non resistive normal contribution (KN ) is com-

prised of the three factors: λ1, λ2 and λ3, where, by analysis

analogous to that for KC , we find that λ2 ∝ ω(3−s)/s and

λ3 ∝ ω(5−2s)/s (based on Eqs. 5 and 6). Thus for s ≤2.5

both λ2 and λ3 will converge with increasing length. How-

ever, λ1 ∝ ω(3−2s)/s and thus, for a purely quadratic dis-

persion (s=2) λ1 diverges and consequently, the total thermal

conductivity (Ktot) will not converge even in the presence of
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edge roughness (λ1 would converge only when s 6 1.5). This

is evident in Fig. 1b where red and black curves show a con-

tinuing step behavior as length is increased; we obtain a finite

value only because our discretization is finite and length even-

tually exceeds the largest phonon wavelength captured in the

long wavelength limit.

As we noted earlier, Mariani and von Oppen44 reported

that increasing the size of the graphene sheet leads to stiff-

ening of the flexural modes due to the coupling force between

bending and stretching degrees of freedom, thereby causing

renormalization of flexural modes as ωZA = βZA(q)q
2 where

βZA(q) = αZA[1 + (qc/q)
2]1/4, qc being the cut-off wave-

vector. The temperature dependent transition point qc is cal-

culated to be 0.1 (in the units of 2π/lattice constant).44 When

L→ ∞ (q→0), qc ≫q and ωZA becomes proportional to

q3/2. Renormalization of ZA modes and their partial lin-

earization in the long wavelength regime (where s=3/2) causes

λ1 (∝ ω(3−2s)/s), λ2 (∝ ω(3−s)/s) and λ3 (∝ ω(5−2s)/s) all

to converge with length, as can be seen in Fig. 1d. Therefore

the non-resistive normal contribution (KN ) eventually con-

verges to a finite value owing to the coupling between the

in-plane and out-of-plane degrees of freedom. The solid blue

curve in Fig. 1a and Fig. 1b show convergence of thermal con-

ductivity with length to a bulk value of 3400 Wm−1K−1 for

ribbon width of 1.5 µm, in good agreement with both exper-

imental measurements and first principles calculations.48 We

have also computed cumulative thermal conductivity against

phonon wavelength for different values of qc (0.01, 0.05 and

0.2 in the units of 2π/lattice constant) and found that the con-

vergence in the long wavelength limit as shown in Fig. 1b is

independent of qc.

However, it should be noted that besides the strain induced

due to coupling between the in-plane and out-of-plane modes

as studied by Mariani and von Oppen44, there are other stud-

ies in the literature reporting different kind of renormaliza-

tion. Castro Neto et al.42 and Xu et al.43 gave an expres-

sion of the form ωZA = q
√

κq2+S
ρ , where κ is the bend-

ing rigidity of graphene, ρ is the mass density and, S is the

surface tension. This expression can be rearranged to a form

ωZA = q2αZA[1 + (qc/q)
2]1/2, where αZA =

√

κ/ρ, and

qc =
√

S/κ. In both of these cases,42,43 the dispersion of

flexural modes becomes linearized (ωZA ∝ q) in the long

wavelength limit (q −→ 0) under tension. We show in our

analytical calculations that for any dispersion of the general

form ω ∝ qs, all the terms KC , λ1, λ2 and λ3 converge

as long as s ≤ 1.5. Thus we conclude that, irrespective of

whether the dispersion of ZA modes gets partially linearized

(ωZA ∝ q1.5) or completely linearized (ωZA ∝ q) due to ten-

sion, Ktot converges to a finite value.

Fig. 2a shows branchwise components of thermal con-

ductivity and their length dependence. Earlier studies have

shown that length divergence in thermal conductivity is due

of quadratic dispersion of out-of-plane modes, however be-

cause of the coupling between the in-plane and flexural modes

renormalization of ZA dispersion takes place, which leads to

partial linearization of flexural modes and thereby causes ther-

mal conductivity to converge when L→ ∞ in long wavelength

limit. We observe here that the divergence in KN beyond 10

µm is driven by the out-of-plane ZA branch, but renormaliza-

tion of the ZA branch prevents λ1 (Equation 4) from diverging

(for s=3/2, λ1 ∝ ω(3−2s)/s= constant) and the hydrodynamic

component eventually reaches saturation for L >100 µm, in-

dicating the onset of the Ziman regime where extrinsic effects

such as length no longer play a role.

C. Temperature, Width and LER dependence

We used a sample of 10 µm long and 1.5 µm wide to study

the effect of temperature and line edge roughness (LER) on

thermal conductivity in graphene ribbons. In Fig. 2b, ther-

mal conductivity (Ktot) along with its resistive (KC) and non-

resistive normal components (KN ) are plotted against temper-

ature. At low temperatures, thermal conductivity is mainly

comprised of resistive contribution while at room tempera-

ture and above, the resistive contribution is suppressed con-

siderably due to strong umklapp phonon-phonon scattering

and non-resistive normal contribution starts playing an impor-

tant role. Thus in graphene, KC fails to capture the contri-

bution coming from momentum-conserving normal processes

and leads to under-evaluation of thermal conductivity at and

above room temperatures. It can also be seen that at low tem-

peratures, the out-of plane (ZA) modes coming from KC con-

tribute significantly to thermal conductivity whereas at high

temperatures, most of the conductivity comes from the hy-

drodynamic contribution (represented by KN ) of the in-plane

branches (LA and TA).

Next we turn to the width dependence of thermal conduc-

tivity in suspended graphene ribbons at room temperature and

vary the width W while keepingL=10µm and a constant edge

roughness ∆=2 nm, which puts the ribbons in the fully diffu-

sive edge scattering regime. It can be seen in Fig. 2c that the

resistive part of thermal conductivity (KC) shows a gradual

width dependence. It is because for ribbons narrower than

200 nm, the ribbon is in the ballistic regime where both KC is

suppressed by line edge roughness (LER) scattering (τ−1
LER ∝

1/W). In this range, the contribution from non-resistive pro-

cesses (KN ) is also significantly reduced by the presence of

resistive LER scattering, whereas widths above 200 nm put

the ribbon in the Poiseuille regime.49 In the Poiseuille flow

range, where 200 nm≤ W ≤10 µm, the KN is affected by the

interplay of LER scattering and normal scattering, leading to a

pronounced width dependence exceeding that of the resistive

component. The contribution of the non-resistive normal pro-

cesses to width dependence has not been previously reported

and can be understood as a consequence of the hydrodynamic

phonon transport suggested by Lee et al..49 Beyond 10 µm,

KN transitions into the Casimir regime where normal pro-

cesses dominate over resistive LER scattering and the thermal

conductivity again converges to a finite value.

Unlike their supported counterparts, LER scattering plays

a very crucial role in the thermal conductivity of suspended

graphene ribbons. Fig. 2d shows a strong dependence of ther-

mal conductivity (Ktot) for edge roughness up to 0.5 nm (rms

value). In this figure, it can be seen that Ktot corresponding
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FIG. 2. (a) Branchwise contribution of thermal conductivity against length (L) of GNRs. Black solid and dashed lines (in (a)-(d)) represent

total thermal conductivity (Ktot = KC +KN ) and non-resistive normal contribution (KN ) respectively and black dotted lines ((in (a)-(d))

represent resistive contribution (KC). Blue, green and red curves ((in (a)-(d)) represent TA, LA and ZA components of KN respectively. (b)

Effect of temperature on contribution of Ktot, KC and KN . (c) shows width dependence of Ktot, KC and KN . (d) represents the effect of

edge roughness on Ktot, KC and KN . Length of GNRs (in (b), (c) and (d)) is 10 µm, Width (in (a), (b) and (d)) is 1.5 µm and temperature

(in (a), (c) and (d)) is 300 K.

to zero edge roughness is same as that of Ktot for 1000 µm

wide ribbon as can be seen in Fig. 2c, which again indicates

that for such wide ribbons the effect of edge roughness com-

pletely dies off. The effect of edge roughness and width of the

ribbons can not be completely decoupled. As we keep on re-

ducing the width of the ribbon from 1000 µm with fixed edge

roughness is equivalent to increasing the edge roughness for

a given width of the ribbon. KN shows a strong LER depen-

dence up to 0.5 nm whereas KC shows weaker dependence on

edge roughness as is the case for width dependence of thermal

conductivity.

IV. CONCLUSION

In conclusion, we have studied the length divergence of

suspended graphene ribbons, employing the newly developed

improved Callaway model to accurately capture the signifi-

cant contribution from the non-resistive normal processes in

the hydrodynamic regime. We have shown through both nu-

merical and analytical calculations that this non-resistive nor-

mal contribution dominates the length dependence for lengths

greater than 1 µm and leads to a logarithmic divergence, even

in ribbons with fixed width and edge roughness. This diver-

gence is caused by the combination of the quadratic dispersion

of the out-of-plane ZA phonon branch in the long wavelength

limit.

However, for lengths exceeding 100 µm, we find that ther-

mal conductivity converges to a constant value. This conver-

gence is independent of width and not caused by edge disor-

der; rather, it is due to linearization of the ZA branch by cou-

pling between the in-plane and out-of-plane degrees of free-

dom. This coupling removes the quadratic dependence of the

ZA dispersion and limits the normal contribution of the ZA

branch to a finite value. We also uncover a prominent width

dependence arising from the non-resistive normal contribution
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for widths exceeding 200 nm, which delineates the emergence

of Pouiselle hydrodynamic heat flow. Our study confirms the

role of non-resistive normal processes in the length and width

scaling of thermal conductivity and provides quantitative lim-

its to the hydrodynamic regime of heat flow in graphene rib-

bons.
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