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Abstract: One-dimensional carbon nanostructures such as nanotubes and nanoribbons can 

feature near-ballistic electronic transport over micron-scale distances even at room temperature.  

As a result, these materials provide a uniquely suited solid-state platform for radiation 

mechanisms that so far have been the exclusive domain of electron beams in vacuum.  Here we 

consider the generation of terahertz light based on two such mechanisms, namely the emission of 

cyclotron-like radiation in a sinusoidally corrugated nanowire (where periodic angular motion is 

produced by the mechanical corrugation rather than an externally applied magnetic field), and 

the Smith-Purcell effect in a rectilinear nanowire over a dielectric grating.  In both cases, the 

radiation properties of the individual charge carriers are investigated via full-wave 

electrodynamic simulations, including dephasing effects caused by carrier collisions.  The 

overall light output is then computed with a standard model of charge transport for two 

particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and                                                         a Electronic mail: rpaiella@bu.edu 
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armchair single-wall nanotubes.   Relatively sharp emission peaks at geometrically tunable THz 

frequencies are obtained in each case.  The corresponding output powers are experimentally 

accessible even with individual nanowires, and can be scaled to technologically significant levels 

using array configurations.  These radiation mechanisms therefore represent a promising new 

paradigm for light emission in condensed matter, which may find important applications in 

nanoelectronics and THz photonics.   

 

PACS numbers: 41.60.-m, 78.67.Ch, 73.23.Ad 

 

I. INTRODUCTION  

Carbon nanostructures including graphene and nanotubes represent a promising materials 

platform for future device applications in nanoelectronics and photonics.  Of particular interest 

for such applications are the large carrier mobilities of these materials, which have enabled the 

observation of ballistic electronic transport over micron-scale distances even at room 

temperature.  Specific examples of such ballistic samples reported to date include single- and 

multi-wall carbon nanotubes [1-4], suspended graphene sheets [5, 6], graphene/boron-nitride 

heterostructures [7, 8], and epitaxial graphene nanoribbons [9].  Because of their exceptionally 

long mean free paths, a distinctive analogy can be drawn between the electron (and hole) gases 

in these nanomaterials and electron beams in vacuum-based systems, so that novel applications 

inspired by traditional vacuum-tube devices may be envisioned.  In the present work, we 

investigate numerically the use of one-dimensional (1D) carbon nanostructures for the generation 

of terahertz light based on two related electron-beam radiation mechanisms: (I) the emission of 

cyclotron-like radiation in the presence of mechanical corrugation (as opposed to an externally 
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applied magnetic field), and (II) the Smith-Purcell effect (i.e., radiation by charges in uniform 

rectilinear motion near a grating [10]).  Similar electron-beam radiation mechanisms already 

form the basis of well-established vacuum-tube devices such as free-electron lasers (FELs) [11] 

and microwave magnetrons and orotrons [12].  At the same time, they represent a radically new 

paradigm for light emission in condensed matter, with very limited prior work (either 

experimental [13] or theoretical [14-16]) involving traditional semiconductors.   

 

FIG. 1: Schematic cross-sectional view of representative device structures for the demonstration of 

THz electron-beam radiation in 1D carbon nanostructures.  (a) Corrugated carbon nanowire for the 

generation of cyclotron-like THz radiation.  (b) Carbon nanowire in the near-field vicinity of a 

grating for the generation of THz Smith-Purcell radiation.   

The basic sample geometries under study are illustrated schematically in Fig. 1.  In Fig. 

1(a), a 1D conductor (such as a carbon nanotube or graphene nanoribbon) is corrugated 

mechanically to produce a sinusoidal trajectory.  In practice, this geometry could be realized 

through the direct growth or conformal transfer of the conducting wire on a substrate surface 

patterned in the shape of a sinusoidal grating.  Because of the conductor 1D nature, in the 
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presence of a bias voltage the injected electron (or hole) trajectories are confined to the 

sinusoidal path defined by the corrugation.  As a result, radiation is produced by these carriers 

due to their periodic angular motion.  This mechanism is analogous to cyclotron radiation in 

FELs, except that the angular motion is obtained via geometrical constraints rather than through 

the application of an external magnetic field (e.g., with a periodic array of alternating magnets as 

in typical FEL undulators).   

In Fig. 1(b), we consider a rectilinear conducting wire in the immediate vicinity of a 

periodic dielectric grating, which could be patterned in the supporting substrate (as in the figure) 

or fabricated directly above the wire.  In this case, radiation can still be emitted by the charge 

carriers in the 1D conductor as they pass near the grating under uniform rectilinear motion, via 

the Smith-Purcell effect.  This radiation mechanism was initially discovered through the 

observation of visible light emission from a high-energy electron beam traveling near a metallic 

grating in vacuum [10].  In a simple picture, the emitted radiation can be attributed to the 

periodic angular motion of the polarization charges that are induced under the grating surface by 

the moving charges in the electron beam.  More precisely, the underlying physical mechanism 

can be explained in terms of the evanescent electromagnetic fields that are created by the actual 

moving charges and then diffractively scattered into radiation by the grating [17].  The use of the 

Smith-Purcell effect for the generation of microwaves in vacuum-based devices (orotrons) is 

already well established [12].  Its observation in condensed matter has also been reported, with a 

high-mobility GaAs/AlGaAs heterojunction, but only at cryogenic temperatures and with 

extremely broad and weak output spectra [13].   

The ability of carbon nanostructures to provide micron-scale ballistic transport is 

critically important for both radiation mechanisms.   In a previous study [14], a related device 
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geometry [i.e., a semiconductor two-dimensional electron gas (2DEG) adjacent to a grating] was 

investigated theoretically in the regime of classical drift transport, as described with a 

hydrodynamic model.  In this regime, the carriers flowing through the sample can become 

strongly coupled to plasma oscillations, and the radiation output was found to be dominated by 

the diffractive scattering of these collective excitations by the grating [18].  THz emission from 

grating-coupled 2D plasmons has in fact been reported in several experimental studies with 

semiconductor 2DEGs [19-22].  In contrast, in the (quasi)ballistic conductors under study the 

injected carriers can flow through the entire sample (or a significant fraction of its length 

covering several grating periods) at constant velocity without any collisions involving plasma 

oscillations or any other scattering mechanism.  Radiation can then be produced through the 

interaction of the individual carriers with the grating, in closer analogy with the original Smith-

Purcell experiment.   

For both radiation mechanisms of Fig. 1, the emission frequency is on the order of v/Λ 

(as shown in detail below), where v is the Fermi velocity and Λ the period of either the 

sinusoidal trajectory or the nearby grating.  In metallic carbon nanostructures, the low-energy 

electrons and holes generally feature a relatively large Fermi velocity near vF ≈ 1×108 cm/s.  As 

a result, cyclotron-like and Smith-Purcell radiation frequencies spanning the entire THz spectrum 

can be obtained with periods of a few hundred nanometers.  Importantly, such values of Λ are 

smaller than the maximum mean free paths for room-temperature ballistic transport achievable 

with the devices under study, but still large enough for their practical implementation.  

Therefore, these devices can provide a promising new approach to address a key technology gap 

of modern-day optoelectronics, namely the lack of practical solid-state THz sources capable of 

room-temperature operation [23].  The use of carbon nanomaterials for THz science and 
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technology has already become the subject of increasing interest [24-26], motivated by their 

unique electronic properties.  In the area of THz sources, several theoretical proposals involving 

graphene [27-33] or carbon nanotubes [34-39] have been presented, based on several 

mechanisms including interband electronic transitions, tunable plasmonic excitations, or real-

space charge oscillations.  The experimental demonstrations of THz amplification and emission 

in optically pumped samples have also already been reported [40-44].   

In recent work, we have investigated numerically the feasibility of THz electron-beam 

radiation from the 2DEG in corrugated [45] or grating-coupled [46] graphene sheets.  In both 

cases, promising results were obtained in terms of radiated optical power and tunability of the 

emission frequencies.  Here we consider instead two specific types of 1D carbon nanostructures, 

namely zigzag graphene nanoribbons (ZZ-GNRs) and metallic armchair single-wall nanotubes 

(AC-SWNTs).  The use of 1D conductors for electron-beam radiation is intuitively compelling in 

light of the aforementioned analogy with vacuum-tube devices, where all electrons can be made 

to travel roughly along the same direction.  In contrast, in a condensed-matter 2DEG the carrier 

distribution in reciprocal space is such that, even in the presence of a bias voltage, there are 

carriers traveling along all possible directions on the 2DEG plane.  Such carriers radiate at 

different frequencies and with different efficiency depending on their direction of motion relative 

to the corrugation or grating.  Therefore, 1D conductors can be expected to provide narrower and 

stronger emission peaks, as confirmed by our simulation results presented below.  In addition, 

both zigzag-like GNRs [9] and metallic SWNTs [3, 4] have already been shown to exhibit robust 

ballistic transport over distances longer than 1 μm even at room temperature.  Therefore, they 

both represent a particularly suitable system to investigate THz electron-beam radiation in 

condensed matter, with significant promise for future technological impact.   
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The remainder of the article is organized as follows.  The electronic band structure and 

state-of-the-art transport properties of the 1D nanomaterials under study are briefly reviewed in 

the next section.  In Section III we describe the simulation methods used to compute the 

electron-beam radiation output, which involve full-wave electrodynamic calculations based on 

the finite difference time domain (FDTD) approach combined with a standard model of charge 

transport in (quasi)ballistic conductors.  The important effect of carrier collisions is also included 

in these FDTD simulations, by adjusting the length over which the motion of each electron (and 

therefore its radiation output) is coherent.  In Section IV we present the calculated emission 

spectra for both radiation mechanisms (cyclotron-like and Smith-Purcell) in both types of 

nanostructure (ZZ-GNRs and AC-SWNTs), and discuss how the output power and emission 

frequency depend on the corrugation or grating period Λ.  The main conclusions of this study are 

finally summarized in Section V.   

 

FIG. 2: Crystal structure of the 1D carbon nanowires under study:  (a) ZZ-GNR;  (b) AC-SWNT.  

In (a), a1 and a2 are the basis vectors of the crystal lattice, Ch is the chiral vector, and the letters A 

and B indicate representative carbon atoms belonging to the two sub-lattices.   
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II. 1D CARBON NANOSTRUCTURES  

A. Graphene nanoribbons 

The crystal structure of a ZZ-GNR (oriented along the y direction) is shown schematically in Fig. 

2(a).  As in all sp2-hybridized carbon allotropes, the underlying lattice is triangular with two 

carbon atoms per unit cell, denoted A and B.  In zigzag nanoribbons, all atoms on each edge 

parallel to the ribbon axis belong to the same sublattice (A on one edge, B on the other).  The 

opposite extreme is that of armchair edges, which consist of an equal number of alternating A 

and B atoms.  This distinction is important, because the edge shape has a profound impact on the 

nanoribbon electronic band structure [47].  In particular, ZZ-GNRs support localized edge states 

near the Fermi energy.  In contrast, in armchair nanoribbons edge states are absent, and an 

energy bandgap can be found depending on the ribbon width.   In practice, the edges of typical 

nanoribbons contain both zigzag and armchair sections, and the electronic properties tend to be 

dominated by the zigzag sites [48].  Therefore, our present focus on ZZ-GNRs is quite general in 

terms of applicability to practical samples.  Furthermore, the main channel for ballistic transport 

measured in graphene nanoribbons so far is actually associated with the low-energy subbands 

involving edge states [9], which are characteristic of zigzag-like samples only.   

 In general, the energy band diagram of any graphene-derived nanostructure can be 

computed from that of graphene through the application of suitable boundary conditions.  In 

graphene, the conduction and valence bands are well described by the following analytical 

expression based on a simple tight-binding model [48],  

ሻܓേሺܧ ൌ േݐට1 ൅ 4 cos൫√యೖೣೌమ ൯ cos൫ೖ೤ೌమ ൯ ൅ 4cosଶሺೖ೤ೌమ ሻ,                        (1) 

where a is the length of the lattice basis vectors a1 and a2, and t is the nearest-neighbor hopping 

parameter.  According to eq. (1), the bandgap energy ܧା െ ିܧ  is zero at two distinct high-
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symmetry points within the first Brillouin zone, labeled K and K�.  In the vicinity of these 

points, both bands have conical dispersion ܧേ ൎ േ԰vF݇, where the wavevector k is measured 

from K or K� and vF ൌ ൫√3ܽݐ൯ ሺ2԰ሻ⁄  is the Fermi velocity.  This behavior is similar to that of 

ultra-relativistic particles described by the massless Dirac equation, albeit at smaller speeds.  A 

two-dimensional analogue of the massless Dirac equation can in fact be derived from eq. (1) 

using the k·p approximation.  In this formulation, the states near the K point are described by a 

two-component energy eigenvector ΨK ൌ ሾΨKA, ΨKBሿT , where ΨKA  and ΨKB  are the electronic 

envelope functions over sublattices A and B, respectively.  Then, the appropriate boundary 

condition for a zigzag-like edge that mostly contains atoms of one sublattice (e.g., A) is that the 

envelope functions associated with the other sublattice (ΨKB) must vanish everywhere along the 

edge [49].  Application of this condition to a ZZ-GNR of width W leads to the following 

dispersion relation   tanhሺܹߙሻ ൌ േ ߙ ݇ൗ ,                                                        (2) 

where k indicates the electronic wavevector along the ribbon axis, and the parameter ߙ is related 

to the energy eigenvalues E according to  ܧ ൌ േ԰vF√݇ଶ െ  ଶ.  The nanoribbon subbands areߙ

finally computed by solving eq. (2) for E as a function of k.   

Representative results are shown in Fig. 3 for a ZZ-GNR of 40-nm width.  Of particular 

interest here are the lowest-energy conduction and valence subbands, which exhibit a nearly flat 

dispersion for k between K୷ ൌ 2π 3ܽ⁄  and K୷ᇱ ൌ 4π 3ܽ⁄  (the y components of the wavevector at 

K and K�, respectively).  Vice versa, for k < K୷  or > K୷ᇱ , the slope of both bands rapidly 

increases to the graphene limit of ݀ܧ ݀݇ ൌ േ԰vF⁄ .  These subbands contain the aforementioned 

localized states confined near the edges of the nanoribbon, as can be verified by computing the 

corresponding envelope functions.  In contrast, for all states in the remaining subbands, the 
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wavefunctions are delocalized across the entire width of the nanoribbon.  More detailed band 

structure calculations also show that electron-electron interactions can lift the degeneracy of the 

partially flat subbands, thereby opening a bandgap even in ZZ-GNRs [49, 50].  However, 

whether these modifications are included or not in our analysis, the Fermi level can still be 

pushed to the high-slope portion of the lowest-energy conduction (or valence) subband at similar 

carrier densities.  The resulting radiation spectra are then going to be essentially the same, since 

they are mostly determined by the carriers near the Fermi level.    

 

FIG. 3: Electronic band structure of a ZZ-GNR with 40-nm width.  The wavevector k is measured 

along the axis of the nanoribbon, relative to the center of the graphene first Brillouin zone.    

The possibility of ballistic transport in graphene nanoribbons even in the presence of 

disorder has been investigated theoretically in Ref. 51.  The key conclusion of this study is that 

the lowest-energy conduction and valence subbands involving edge states can provide a perfectly 

conducting channel, as long as impurity scattering is sufficiently long range that it cannot 

promote intervalley transitions (i.e., from states near  to states near , and vice versa).  The 

underlying physics is related to the violation of pseudo time-reversal symmetry associated with 

the different number of forward and backward traveling modes within each valley.  

Experimentally, room-temperature ballistic transport associated with these conducting channels 
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has been measured in ~40-nm-wide nanoribbons, over distances as long as 16 μm [9].  In 

contrast, transport in the higher-energy subbands of the same samples was found to be diffusive, 

with much shorter mean free paths of about 200 nm.  The nanoribbons used in these 

measurements were synthesized via epitaxial growth on SiC, a technique that can be scaled to 

high-density arrays over large device areas.   

B. Carbon nanotubes 

The other type of 1D nanostructure considered in this work, AC-SWNTs, is illustrated 

schematically in Fig. 2(b).   These nanotubes can be conceptually visualized as ZZ-GNRs rolled 

up about their long axes, so that both ends of the resulting nanocylinders feature armchair edges.  

As shown in Fig. 2(a), the chiral vector of AC-SWNTs (i.e., the vector running across the 

unrolled nanotube perpendicular to its axis) is ۱ܐ ൌ ݊ሺ܉૚ ൅ ૛ሻ܉ ൌ  ො, where n is an integerܠ3݊ܽ√

related to the tube circumference ܥ ൌ √3݊ܽ.  In general, the electronic band structure of carbon 

nanotubes can be obtained from that of graphene by imposing periodic boundary conditions with 

periodicity C along the direction of the chiral vector, i.e., by requiring that the wavevector 

component in the direction of ۱ܐ  is quantized in integral multiples of 2π/C [52].  For AC-

SWNTs, this condition simply becomes  ݇௫ ൌ ଶ௦గ√ଷ௡௔,                                                            (3) 

for any integer s between 1 and 2n.   

 Figure 4 shows the electronic band structure of an AC-SWNT with n = 15 (corresponding 

to a typical tube diameter C/π of 2 nm), computed by substituting eq. (3) into eq. (1).   As 

illustrated by this plot, AC-SWNTs are metallic, which follows from the fact that the crystal 

wavevectors of the high-symmetry points K and K� (where the graphene bandgap is zero) 

satisfy the boundary condition of eq. (3) for s = n.  As a result, the conical shape with slope ԰vF 
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and the zero-energy crossing of the graphene conduction and valence bands near K and K� are 

preserved in the s = n subbands of AC-SWNTs near  and .  This arrangement is particularly 

favorable for the radiation mechanisms under study, because all electrons and holes in the main 

conducting channels (the s = n subbands) travel at the same, relatively high velocity vF, and 

therefore can radiate at the same frequency with relatively high output power.  In passing we 

note that approximately one third of all possible types of SWNTs (depending on their chiral 

vector ) can be expected to be metallic based on similar arguments.  Therefore, 

the calculation results presented below may also be extended to these other types of nanotubes, 

although in many instances (but not in AC-SWNTs) curvature effects lead to the opening of a 

small bandgap [52].   

 

FIG. 4: Electronic band structure of an AC-SWNT with 2-nm diameter. The wavevector k is 

measured along the axis of the nanotube, relative to the center of the graphene first Brillouin zone.    

The electronic transport properties of metallic SWNTs have been widely investigated 

over the past several years, including the theoretical prediction [53] and experimental 

observation of (quasi)ballistic conduction [2-4].  At room temperature, the electronic mean free 

path lm of high-quality samples is limited by electron-phonon scattering and its specific value 

depends on the applied voltage.  At low bias (less than about 0.2 V), no carrier has sufficient 
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energy to emit an optical phonon, and the mobility is limited by a relatively weak acoustic-

phonon scattering mechanism, leading to large mean free paths exceeding 1 micron [3].  At 

higher voltages, the emission of optical phonons becomes allowed, and lm is correspondingly 

decreased by an order or magnitude.  Finally, at low temperatures and low bias, mean free paths 

as long as ~8 μm have been measured, only limited by impurity scattering [4].  In general, the 

electron-beam radiation mechanisms under study require ballistic transport over at least a few 

periods Λ of the sinusoidal trajectory or nearby grating, and THz radiation frequencies are 

obtained with periods of a few 100 nm.  Therefore, metallic SWNTs also appear to be suitable 

for these mechanisms, even at room temperature, as long as the applied voltage is kept 

sufficiently small.   

 

III. SIMULATION METHODS  

In order to investigate the radiation properties of the nanostructures of Fig. 1, we first consider an 

arbitrary individual electron in these 1D conductors and compute its light output using the FDTD 

method.   In these calculations, the moving electron is modeled with an equivalent distribution of 

oscillating dipoles, so that the built-in dipole radiation sources of the FDTD simulation engine 

[54] can be employed.  The polarization density of the equivalent dipole distribution ۾ሺܚ,  ሻ isݐ

derived from the current density carried by the electron ۸ሺܚ, ,ܚሻ based on the general relationship ۸ሺݐ ሻݐ ൌ ,ܚሺ۾߲ ሻݐ ⁄ݐ߲  [i.e., ۸ሺܚ, ߱ሻ ൌ െ݅߱۾ሺܚ, ߱ሻ in the frequency domain] [55].  Here ۸ሺܚ, ሻݐ ൌെܚݍሶ௘ሺݐሻߜሺܚ െ  ሻ dependsݐ௘ሺܚ ሻሻ, where –q is the electron charge and the electron trajectoryݐ௘ሺܚ

on the specific device geometry.  In the corrugated wire of Fig. 1(a) (where the corrugation is 

along the y direction),  ܚ௘ሺݐሻ ൌ ሻݐ௘ሺݕොܡ ൅ ሻݐ௘ሺݕߨsinሺ2ܣොܢ Λ⁄ ሻ,                                     (4) 
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where A and Λ are the corrugation amplitude and period, respectively.  The electron 

instantaneous position along the y direction, ye(t), can be calculated numerically as a function of 

time by combining eq. (4) with  |ܚሶ௘ሺݐሻ| ൌ v௞ ൌ ܧ݀ ݀ሺ԰݇ሻ⁄ ,                                             (5) 

where k is the electronic wavevector along the axis of the wire and E(k) is the electron energy 

(computed as a function of k as described in the previous section).  Equation (5) simply 

expresses the condition that, if the electron occupies the Bloch state of wavevector k, its speed is 

equal to v௞.  To determine the equivalent polarization density, we Fourier transform ۸ሺܚ,  ሻ andݐ

divide the result by –iω, leading to the following expression:  ۾ሺܚ, ߱ሻ ൌ ௤௜ఠ ቂܡො ൅ ොܢ ଶగ஺ஃ cosሺ2ݕߨ Λ⁄ ሻቃ ݖሺߜሻݔሺߜ െ ݕߨsinሺ2ܣ Λ⁄ ሻሻ݁௜ఠ௧ሺ௬ሻ,         (6) 

where t(y) is the time instant when the electron position along the corrugation satisfies ݕ௘ሺݐሻ ൌݕ.  For the Smith-Purcell geometry of Fig. 1(b), eqs. (4)-(6) still apply with the corrugation 

amplitude A set equal to zero, in which case the electron position along the y direction (i.e., 

perpendicular to the grating lines) simply becomes ݕ௘ሺݐሻ ൌ v௞ݐ.   

Equation (6) describes a continuous distribution of electric dipoles linearly positioned 

along the electron trajectory, having position-dependent magnitude, phase and direction of their 

dipole moments.  In the FDTD simulations, this distribution is discretized into a collection of 

neighboring dipoles separated by a small distance Δy = Λ/20 along the y direction.  The radiation 

output is then computed as the superposition of the light waves emitted by all the dipoles.  In the 

Smith-Purcell geometry of Fig. 1(b), the phase relationship among these dipoles is such that the 

propagating components of their output fields cancel one another (as expected, since a charge in 

uniform rectilinear motion does not radiate).  The superposition of the evanescent components, 

however, remains finite, and can be diffracted into radiation by the nearby grating.   The end 
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result is light emission at a discrete set of frequencies associated with the different orders of 

diffraction.  In this framework, the dephasing effect of electronic scattering can also be included 

by setting the length of the equivalent dipole distribution equal to the electron mean free path 

between consecutive collisions lm.  As a result, coherent electron-beam radiation is only 

produced over a finite number of periods equal to lm/Λ, as in the case of an electron undergoing 

recurrent collisions in a realistic sample.   

Next, we consider a ZZ-GNR or AC-SWNT of length L and electron density N (e.g., 

introduced via electrostatic doping with a back gate), in the geometry of Fig. 1(a) or 1(b) under a 

bias voltage V.  Its total output power spectrum per unit length can be calculated as follows  

୲ܲ୭୲ሺ߭ሻ ൌ ଶ௅ ∑ ௞ܲሺ߭ሻ݂ሺܧ଴ሺ݇ሻሻሾ1 െ ݂ሺܧ଴ሺ݇ሻ െ ݄߭ሻሿ௞ ,                          (7) 

where ߭ is the emission frequency, the factor of 2 accounts for the spin degeneracy, ܧ଴ሺ݇ሻ is the 

dispersion relation of the lowest conduction subband, ௞ܲሺ߭ሻ is the output power spectrum of a 

single electron in the Bloch state of energy ܧ଴ሺ݇ሻ, and f is the electronic distribution function.  

Pauli blocking effects are explicitly included in this equation through the last two terms, where ݂ሺܧ଴ሺ݇ሻሻ is the probability that the initial electronic state is occupied, and 1 െ ݂ሺܧ଴ሺ݇ሻ െ ݄߭ሻ is 

the probability that the corresponding final state after photon emission is empty.  It should be 

noted that eq. (7) does not include any contribution to the output radiation from the higher-

energy subbands of the wire, even though these subbands may contain an appreciable number of 

electrons (particularly in highly doped and/or large wires).  The reason is that (quasi)ballistic 

transport in these 1D carbon conductors has only been measured in the lowest-energy subbands 

(i.e., the partially flat subbands involving edge states in ZZ-GNRs [9], and the linear subbands 

with zero energy separation in metallic SWNTs [2-4]).  In contrast, for the higher-energy 
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subbands the measured mean free paths are too small to allow for appreciable electron-beam 

radiation.   

 For each device geometry (either cyclotron-like or Smith-Purcell), the single-electron 

emission spectra ௞ܲሺ߭ሻ depend on the wavevector k only through the velocity v௞ ൌ ଴ܧ݀ ݀ሺ԰݇ሻ⁄ .  

These spectra are computed via the FDTD simulations described above for a selection of all 

possible velocities v௞ ൑ vF, and are generally found to consist of a sharp peak at a frequency on 

the order of v௞ Λ⁄  (weaker features at higher-order harmonics are also obtained in the same 

calculations, but are not considered in the following analysis for simplicity).  From these 

simulation results, the center frequency, full width at half maximum (FWHM), and integrated 

power of each peak are determined.  Next, the values of the same parameters for all other 

velocities v௞ are extrapolated using a polynomial fit.  The single-electron spectra ௞ܲሺ߭ሻ for all 

values of v௞  are then approximated in eq. (7) with Gaussian peaks having the correct center 

frequencies, FWHMs, and integrated powers (as determined with this fitting procedure).  The 

choice of a Gaussian function is consistent with the shape of the FDTD single-electron emission 

peaks, and does not in any case significantly affect the resulting shape of ୲ܲ୭୲ሺ߭ሻ.   

 Finally, the occupation probabilities f in eq. (7) are computed using a standard model for 

the electronic distribution function of ballistic conductors with ideal (i.e., reflection-less) 

contacts [56].  In this model, all electrons moving from left to right can only originate from (and 

therefore must be in thermal equilibrium with) the contact on the left side of the conductor, and 

vice versa.  As a result, for states with positive velocity (i.e., with ݀ܧ଴ ݀݇⁄ ൐  0), the occupation 

probability ݂ሺܧ଴ሺ݇ሻሻ can be taken to be a Fermi-Dirac distribution function with Fermi energy 

equal to the chemical potential ߤ௟  of the left contact.  Similarly, all electrons in states with ݀ܧ଴ ݀݇⁄ ൏  0 can be assumed to be in thermal equilibrium with the same chemical potential ߤ௥ 
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as the right contact.  To determine ߤ௟ and ߤ௥, first we note that their difference must be equal to 

the applied voltage V times the electron charge –q.  Second, we require that the sum of the 

occupation probabilities of all states in the conducting wire (including states in the higher-energy 

subbands) must be equal to the electron density N.  The same description of the electronic 

distribution function f leads to the Landauer formulation of conduction, which provides a well-

established model of (quasi)ballistic transport [56].   

 

IV. RESULTS AND DISCUSSION 

The simulation methods just described were applied to several structures based on the corrugated 

wire of Fig. 1(a) or the Smith-Purcell configuration of Fig. 1(b), for different values of the period 

Λ and the electron mean free path lm.  In each structure the substrate material below the 

conducting wire is SiO2, modeled with a frequency-dependent permittivity from the internal 

database of the FDTD simulation engine [54].  This choice of substrate material is based on the 

aforementioned measurements of (quasi)ballistic transport with metallic SWNTs [2-4].  

Alternative substrates may also be considered for the same devices, including hexagonal-BN, 

SiC (as used with the ballistic ZZ-GNRs of ref. 9), and HfO2.  In fact, theoretical studies indicate 

that improved transport properties may be obtained with carbon-based conductors deposited or 

grown on such substrates, due to reduced remote scattering from surface optical phonons and 

coupled plasmon-phonon modes compared to SiO2 [57, 58].  The corrugation of the cyclotron-

like samples is sinusoidal with amplitude A = Λ/4, whereas in the Smith-Purcell devices the 

grating consists of rectangular ridges of width W = Λ/2 and height H = 300 nm.  These 

parameters were selected via initial FDTD simulations so as to maximize the output radiation 

power.  The lateral dimensions of the 1D conductors are the same as in the band-structure 
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calculations of section II, i.e., the simulated ZZ-GNRs have a width of 40 nm (as in the ballistic 

samples of ref. 9) and the AC-SWNTs have a typical nanotube diameter of 2 nm.  Additional 

calculations show that the output radiation depends only weakly on these lateral dimensions, as 

long as the dispersion of the lowest-energy conduction subband maintains the same features 

shown in Figs. 3 and 4.   

In the FDTD calculations of the single-electron emission spectra, the computational 

domain has the shape of a cube centered about the dipole distribution, with 600-μm side length 

and perfectly matched layers on all boundaries.  The corrugated substrate or grating lies at the 

center of the x-y plane, with 5×5 μm2 area.  All the FDTD computational parameters including 

mesh size and frequency resolution were optimized through extensive convergence tests.  In 

passing, we note that the large disparity between the calculated emission wavelengths (several 10 

μm) and the periodicities of the underlying nanostructures (a few 100 nm) makes these 

simulations extremely demanding in terms of computational resources.  As explained above, in 

the FDTD calculations we consider an electron traveling along the conductor trajectory at a few 

different velocities v௞ (specifically, 0.2, 0.4, 0.6, 0.8, and 1 times the graphene Fermi velocity vF ).  The details of the conductor band structure (ZZ-GNR versus AC-SWNT) are then 

introduced when the total output power spectra are computed from the FDTD simulation results 

using eq. (7).  In all calculations presented below based on this equation we assume a Fermi 

energy EF = 100 meV above the Dirac point, an applied bias voltage V = 0.1 V, and room 

temperature.   In the case of ZZ-GNRs, a wide range of electron velocities v௞ ൑ vF contribute to 

୲ܲ୭୲ሺ߭ሻ, due to the significant curvature of the lowest-energy conduction subband near such 

Fermi energy.  In AC-SWNTs the lowest-energy conduction subband is relatively linear near EF 

and all radiating electrons have velocity close to vF.   
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 Representative FDTD simulation results for a cyclotron-like device are shown in Fig. 5 

for all five electron velocities considered.  Specifically, the traces plotted in this figure are 

obtained by dividing the single-electron power spectra ௞ܲሺ߭ሻ by the photon energy ݄߭, which 

gives the photon emission rate per unit frequency.  The corrugation period Λ here is 68 nm, and 

the corresponding length lcycle traveled by the electron in each cycle of the sinusoidal trajectory is 

approximately 100 nm.  The mean free path lm (i.e., the length of the equivalent dipole 

distribution in the FDTD simulations) is taken to be 3 μm, which is large enough to ensure that 

the resulting broadening does not affect the shape of the output spectra ୲ܲ୭୲ሺ߭ሻ, but otherwise 

reasonably short to minimize the computational time.  The results presented here therefore apply 

to the optimal case of highly ballistic samples, whereas the effect of shorter mean free paths is 

described later in this section.  For each electron velocity v௞, the frequency of peak emission in 

the spectra of Fig. 5 is approximately equal to v௞/݈௖௬௖௟௘  (i.e., v௞ vி ൈ 10 THz⁄  for ݈௖௬௖௟௘ ൌ100 nm), which is consistent with expectations for cyclotron-like radiation [55].  It should be 

noted that only a relatively narrow spectral region is considered in each one of these calculations, 

centered about the main radiation peak, so that the aforementioned weaker emission features at 

higher-order harmonics are not included.   
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FIG. 5: Photon emission rate per unit frequency of an electron in a corrugated carbon nanowire, 

plotted as a function of radiated frequency for five different values of the electron velocity vk.  The 

corrugation period and amplitude are 68 nm and 17 nm, respectively.   Inset: total photon emission 

rate of the same electron, integrated over all frequencies, versus electron velocity.   

The spectra of Fig. 5 also show that the single-electron output power increases rapidly 

with increasing electron speed.  This behavior is again in agreement with basic expectations: for 

example,  according to the Larmor formula for cyclotron radiation (which however only 

applies in the limit of A << Λ) [55].  Therefore the radiation mechanisms under study benefit 

strongly from the relatively large electron velocities of carbon-based nanostructures.  In 

particular, in the AC-SWNTs of Fig. 4, the slope  of the lowest-energy 

conduction and valence subbands is approximately equal to  ≈ 1×108 cm/s over a broad energy 

range across the Dirac point.  In the ZZ-GNRs of Fig. 3, the lowest subbands feature a nearly flat 

dispersion with almost zero velocity near the Dirac point, but their slope  then rapidly 

approaches  as the energy is increased or decreased beyond a few ±10 meV.  As already 

mentioned, in the calculations presented below we assume a chemical potential EF = 100 meV, 
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so that even in the ZZ-GNRs the carriers near the Fermi level [i.e., the carriers that produce the 

largest contribution to the sum of eq. (7)] travel at a relatively high velocity close to vF.   

 The inset of Fig. 5 shows the total emission rate 1 ߬௥௔ௗ⁄  integrated over all frequencies 

and plotted as a function of electron velocity.  Values above 1×106 photons/s are obtained for v௞ ൎ vF, corresponding to a radiative lifetime ߬௥௔ௗ of less than 1 μs.   We emphasize that such 

emission rates are significant at THz frequencies.  In fact, similar or smaller rates are obtained 

for spontaneous emission from the active materials of THz quantum cascade lasers (QCLs), 

which represent the current state-of-the-art for solid-state THz sources, albeit limited to 

operation at cryogenic temperatures [23].   For example, spontaneous emission lifetimes ranging 

from 3 μs to over 60 μs are reported in refs. 59-61 for different THz QCL designs.  Finally, we 

note that the same FDTD simulations of Fig. 5 applied to Smith-Purcell devices produce 

qualitatively similar results.   

 Figure 6 shows a selection of emission spectra ୲ܲ୭୲ሺ߭ሻ computed with eq. (7) for different 

combinations of carbon nanostructure (ZZ-GNR or AC-SWNT) and radiation mechanism 

(cyclotron-like or Smith-Purcell).  Each panel contains four spectra corresponding to different 

values of the corrugation or grating period Λ.  These values were selected to produce emission 

peaked near 4, 6, 8, and 10 THz, as an illustration of the inherent geometric tunability of the 

underlying radiation mechanisms.  The linewidth and shape of these spectra are determined 

almost entirely by the dispersion of the single-electron emission frequency with velocity |v௞|.  In 

general, the output radiation is mostly produced by the electrons in states within a few units of 

thermal energy kBT from the Fermi level, due to Pauli blocking constraints.  The emission 

spectra then depend on the velocity distribution of these electrons, which can be inferred from 

Figs. 3 and 4.  In ZZ-GNR samples, |v௞| near EF exhibits an appreciable variation with k, which 
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results in the asymmetric broadening observed in Figs. 6(a) and 6(b), with the slower electrons 

emitting at lower frequencies and at a smaller rate.  In AC-SWNTs,  near EF is nearly 

constant with k, but with slightly different values in the two branches of opposite slope on either 

side of each conduction-subband minimum.  As a result, the AC-SWNT emission spectra consist 

of two narrow overlapping peaks centered at slightly different frequencies, which can be 

observed most clearly in the 10-THz feature of Fig. 6(c).  In any case, all spectra shown in Fig. 6 

are significantly narrower than the output of similar radiation mechanisms in 2D graphene 

samples [45, 46], which suffer from substantial broadening caused by carriers traveling along 

different directions and emitting at different frequencies.   

 

FIG. 6: Output radiation spectra per unit length for different periods of the grating or corrugation: 

(a) cyclotron-like radiation from sinusoidally corrugated ZZ-GNRs; (b) Smith-Purcell emission 

from ZZ-GNRs near a rectangular grating; (a) cyclotron-like radiation from sinusoidally corrugated 

AC-SWNTs; (b) Smith-Purcell emission from AC-SWNTs near a rectangular grating.   



 23

 The total radiation power per unit length produced by the structures of Fig. 6, integrated 

over all frequencies, is plotted as a function of the corresponding frequency of peak emission in 

Fig. 7.  The comparison among the different nanomaterials and radiation mechanisms under 

study is clearly displayed in this figure.  For both types of 1D conductors (ZZ-GNRs and AC-

SWNTs), cyclotron-like emission is always more efficient than Smith-Purcell radiation.  This 

observation makes intuitive sense, since the latter mechanism involves charges in uniform 

rectilinear motion and relies on the (non-unity) diffraction efficiency of the underlying grating.  

Furthermore, regardless of the emission process, AC-SWNTs consistently produce stronger 

radiation than ZZ-GNRs emitting at the same frequency.  This difference can be ascribed to the 

more favorable band structure of metallic nanotubes, which leads to a narrower distribution of 

carrier velocities near the maximum speed  for all the radiating charges.   

 

FIG. 7: Total output power per unit length of the structures of Fig. 6, integrated over all 

frequencies and plotted as a function of the corresponding frequency of peak emission.   

The data of Fig. 7 also show that experimentally measurable cyclotron-like or Smith-

Purcell radiation can be produced even by a single nanotube or nanoribbon.  Specifically, for all 

structures considered in this figure, output powers of several pW (i.e., above the noise equivalent 

power of standard Si THz bolometers) are obtained with reasonable conductor lengths of about 
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100 μm.  For comparison, we also note that the power levels per unit length shown in Fig. 7 are 

three orders of magnitude higher than theoretical predictions for THz interband spontaneous 

emission across fully inverted bands in metallic SWNTs [38].  The device structures under study 

can therefore be envisioned as promising building blocks for future nanoscale electronic circuits 

operating at ultrahigh frequencies.  Furthermore, if the same structures can be integrated in high-

density arrays, technologically significant power levels for THz-photonics applications are 

obtained (e.g., in the μW range).  In particular, the ballistic ZZ-GNRs described in section II.A 

are produced by epitaxial growth techniques [9], which are readily applicable to the fabrication 

of ordered arrays with macroscale (e.g., mm-range) dimensions.  Significant progress has also 

been reported in recent years towards the synthesis of high-density arrays of aligned nanotubes 

[44, 62].  In principle, these ZZ-GNR or AC-SWNT arrays could also be combined with an 

optical cavity for the demonstration of coherent stimulated emission, and ultimately even lasing, 

in analogy with the operation of traditional FELs.  The design and analysis of suitable device 

geometries will be the subject of future study.   
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FIG. 8: Output radiation spectra per unit length for different values of the electronic mean free 

path: (a) cyclotron-like radiation from sinusoidally corrugated ZZ-GNRs; (b) Smith-Purcell 

emission from ZZ-GNRs near a rectangular grating; (a) cyclotron-like radiation from sinusoidally 

corrugated AC-SWNTs; (b) Smith-Purcell emission from AC-SWNTs near a rectangular grating.   

Finally, the effect of electronic collisions is illustrated in Fig. 8, where again each panel 

corresponds to a different combination of carbon nanostructure and radiation mechanism.  In 

each case, we consider three different values of the mean free path lm (i.e., the length of the 

equivalent dipole distribution in the FDTD simulations), namely 3, 1, and 0.5 μm.  The period Λ 

is fixed at the value that produces emission near 10 THz (68 and 100 nm for the cyclotron-like 

and Smith-Purcell devices, respectively), and all other parameters are the same as in Fig. 6.  As 

expected, decreasing the electronic mean free path causes a broadening of the emission spectra 

and a reduction in their peak values.  A shift in the center frequencies is also observed 
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(particularly in the case of Smith-Purcell emission), as is often the case in the presence of 

collision broadening [63].  In any case, even for the lowest mean free path of 0.5 μm considered 

in these plots, the emission peaks remain well resolved with relatively large quality factor.  The 

key conclusion is that the radiation phenomena under study can be implemented using realistic 

high-quality samples based on existing technologies.   

 

V. CONCLUSIONS  

In summary, we have investigated numerically the use of 1D carbon nanostructures (specifically 

ZZ-GNRs and AC-SWNTs) for the generation of THz light based on two related electron-beam 

radiation mechanisms (i.e., cyclotron-like emission in the presence of mechanical corrugation 

and the Smith-Purcell effect).  In all cases we find that experimentally accessible output powers 

at geometrically tunable THz frequencies can be obtained even with individual nanowires.   Of 

all combinations of radiation mechanism and carbon nanostructure considered, cyclotron-like 

emission from AC-SWNTs produces the highest output power at all frequencies.  On the other 

hand, ZZ-GNRs have the advantage of more immediate compatibility with integration in high-

density arrays, at least based on current fabrication methods.  The cyclotron-like sample 

geometry may also be more challenging to implement compared to Smith-Purcell devices, due to 

the critical requirement of conformal adhesion on a nanoscale sinusoidal grating.  Both radiation 

mechanisms are also found to be relatively robust with respect to electronic collisions, with 

pronounced emission peaks obtained even in the presence of sub-micron mean free paths.  These 

results suggest that 1D carbon nanostructures represent a uniquely suited materials platform for 

the demonstration and study of electron-beam radiation processes in condensed matter.   Possible 

applications include ultrahigh-frequency oscillators for future nanoelectronic circuits, and (in the 
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case of high-density arrays) radiation sources for THz photonics.  The observed increase in 

output power with increasing frequency of peak emission (see Fig. 7) is particularly significant 

in this respect, since existing room-temperature THz sources are limited to frequencies below ~ 1 

THz [23].  The radiation mechanisms under study may therefore provide a promising solution to 

this important technology gap.   
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