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In the quantum anomalous Hall effect, chiral edge modes are expected to conduct spin polarized
current without dissipation and thus hold great promise for future electronics and spintronics with
low energy consumption. However, spin polarization of chiral edge modes has never been established
in experiments. In this work, we theoretically study spin polarization of chiral edge modes in the
quantum anomalous Hall effect, based on both the effective model and more realistic tight-binding
model constructed from the first principles calculations. We find that spin polarization can be
manipulated by tuning either a local gate voltage or the Fermi energy. We also propose to extract
spin information of chiral edge modes by contacting the quantum anomalous Hall insulator to a
ferromagnetic (FM) lead. The establishment of spin polarization of chiral edge modes, as well as
the manipulation and detection in a fully electrical manner, will pave the way to the applications
of the quantum anomalous Hall effect in spintronics.

PACS numbers: 73.20.-r, 72.25.-b, 85.75.-d

Introduction - For a two dimensional electron gas un-
der a strong magnetic field, Landau levels are formed
and drive the system into a state characterized by the
zero longitudinal resistance and the quantized Hall con-

ductance with an integer value of e2

h
. This phenomenon

is known as the quantum Hall (QH) effect, which was dis-
covered by Von. Klitzing in 19801. Recently, it was the-
oretically predicted2–4 that this type of quantization in
the Hall conductance can also be realized in magnetic in-
sulating materials at a zero external magnetic field. This
phenomenon, dubbed as the “quantum anomalous Hall
(QAH) effect”, was soon observed experimentally in mag-
netically doped topological insulators (TIs), the Cr or V
doped (Bi,Sb)2Te3 films5–9. The physical origin of the
QAH effect is spin-orbit coupling and exchange coupling
between magnetic moments and electron spins in mag-
netic materials, rather than magnetic fields and the asso-
ciated Landau levels2. The experimental observation of
the exact quantization of Hall conductance and neglegible
longitudinal resistance confirm the dissipationless nature
of transport for the QAH effect8,9 and the mapping of
global phase diagram establishes the topological equiva-
lence between the QH effect and the QAH effect7,10.
Similar to the case of the QH effect, dissipationless

currents in the QAH insulators are carried by one dimen-
sional (1D) chiral edge modes (CEMs), which propagate
along one direction at the edge of the system and are ro-
bust against disorder scatterings. CEMs are believed to
hold great promise for the potential applications in elec-
tronics and spintronics with low power consumption11.
For any spintronic application, it is required for CEMs
to carry spin polarization (SP). Naively, one may expect
that SP of CEMs should exist and follows bulk magne-
tization, but this issue has seldom been studied theoret-
ically. In Ref.12, SP of CEMs was studied in the context
of a two band model, which is more relevant to cold atom
systems. For condensed matter systems, it is more com-
plicated since spin and orbital are mixed with each other

due to spin-orbit coupling13.
In this letter, we investigate SP of CEMs of the QAH

effect in magnetically doped (Bi,Sb)2Te3. Surprisingly,
we find that SP of CEMs though exists but does not fol-
low bulk magnetization, and sensitively depends on the
boundary conditions. In particular, we find that the di-
rection of SP of CEMs can be manipulated by a local
gate voltage, thus opening the possibility of controlling
SP of CEMs in a fully electrical manner. We provide a
simple physical picture of SP of CEMs based on the ef-
fective four-band model and further study its behavior in
the more realistic calculations based on the tight-binding
model constructed by the Wannier function method of
the first principles calculations14,15. We propose the spin
valve effect16 of CEMs in a standard experimental setup
of the Hall measurement with ferromagnetic (FM) leads
to extract spin information of CEMs.
Spin polarization of chiral edge modes - To study SP

of CEMs in a QAH insulator, we first consider an effec-
tive four band model for magnetically doped (Bi,Sb)2Te3
films4. The low energy physics of this system is dom-
inated by two surface states from top and bottom sur-
faces, which hybridize with each other to open a gap due
to the finite size effect. Meanwhile, the exchange cou-
pling of electron spin arises from the doping of magnetic
atoms. Thus, the effective Hamiltonian Heff is given by

Heff = vτz ⊗ (kyσx − kxσy) +m(k)τx ⊗ σ0 +M · τ0 ⊗ ~σ

+V (x, y)τz ⊗ σ0 +A(k)τ0 ⊗ σ0

+h(k3+ + k3−)τ0 ⊗ σz , (1)

where σx,y,z and τx,y,z matrices are Pauli matrices of spin
and layer (top or bottom) degree of freedom, and σ0 =
τ0 = I2×2. m(k) = m0 +m2(k

2
x + k2y) gives hybridization

between the top and bottom surface states. The M term
describes exchange coupling between electron spin and
magnetization of magnetic doping. We only consider the
out-of-plane magnetizationMz. A(k) = A0+A1(k

2
x+k

2
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FIG. 1. Spin polarization Sx,y,z of chiral edge state in our
effective model is plotted at fixed local gate voltage (V = 0.1
eV) in (a), and at fixed Fermi energy (EF = 0.35 eV) in (b).

is a higher order correction of the surface states and h
is defined as the strength of hexagon warping effect17,18.
The V term denotes the asymmetric potential between
the top and bottom layers which has spatial dependence
and can be induced by a global or local gate voltage.
The edge spectrum of our effective model, as well as

the corresponding SP, can be evaluated with the help
of the iterative Green’s function method19,20. We con-
sider a semi-infinite system with the x direction still
translationally invariant and one edge parallel to x di-
rection (x-edge). The following set of parameters, v =
1,Mz = 0.5,m0 = 0.1,m2 = 0.25, A0 = 0.15, A1 =
0.05, h = 0.1, is chosen to keep the system in the QAH
regime. The local Green’s function G(kx, ω) on the x-
edge can be evaluated iteratively. The total local density
of states (DOS) and the spin DOS along the ith direc-
tion (i = x, y, z) are defined as ρ0 = − 1

π
Im[tr(G)] and

ρσi
= − 1

π
Im[tr(Gσi)], respectively. As shown in the Sup-

plementary Materials13, the CEM can be easily identified
from the peak of local DOS ρ0 on the x-edge. The corre-
sponding SP Si along the ith direction (i = x, y, z) for the
CEM is normalized by the total DOS as Si = ρσi

/ρ0. In
Fig. 1 (a) and (b), the SP of the CEMs is plotted for all
three spin components with different local gate voltages
and chemical potentials. Let us take the lattice constant
to be unity and label the lattice site with an integer index
n ≥ 1, with (n − 1) being the distance between the nth
lattice site and the boundary. Here the local gate voltage
V is added only on all n = 1 lattice sites, which leaves
the bulk states unchanged. We find that for a zero gate
voltage (V = 0), only the z component (Sz) SP of CEMs
is non-zero. If we apply a local gate voltage, SP becomes
non-zero for both the y and z direction, but still keeps
zero for the x direction. Therefore, SP of CEMs can exist
within the y-z plane and can be controlled by a local gate
voltage. It is also interesting to notice that the local gate
voltage mainly controls the amplitude of Sy, but barely
change that of Sz (see Fig. 1(b))13. The chemical po-
tential can also tune the magnitude of Sz (both Sy and
Sz) at a zero (finite) local gate voltage, as shown in Fig.
1 (a). Therefore, our effective model (Eq. 1) suggests
that SP of CEMs can be manipulated by either applying
a local gate voltage or tuning the chemical potential.
Next we provide an analytical solution of the eigen

wave function for the Hamiltonian (Eq. 1) with V =
A0 = A1 = h = 0 to understand the electrical tunability
of SP of CEMs. Assume m0,2 > 0, the system will enter
QAHE regime when |Mz| > m0. The zero mode of the
Hamiltonian Heff localizing on the edge can be solved
exactly13 as

Ψ(y) = C(e−λ
−

+
y−e−λ

−

−

y)[|t〉⊗(| ↑y〉)+|b〉⊗(| ↓y〉)], (2)

where C is a normalization factor and λ± = 1
2m2

(v ±
√

v2 + 4m2(m0 −Mz)). Here | ↑y (↓y)〉 denote spin up
(down) state along the y direction, and |t(b)〉 denotes the
contribution from the top (bottom) layer of thin films.
The wave function (2) of CEMs consists of two parts: one
part on the top surface with SP along the +y direction
and the other on the bottom surface with SP along the
−y direction. Thus, the SP is locked to the layer (top
or bottom) for the CEMs. A local gate voltage can push
the wave functions of CEMs into one layer, thus leading
to the change of SP.
The above analysis of SP of CEMs is based on the

effective four-band model (Eq. 1) and one may ask if
these results still hold for a realistic system, such as Cr
or V doped (Bi,Sb)2Te3. To answer this question, we
carry out explicit calculations for a magnetically doped
Sb2Te3 thin film system with the realistic tight-binding
model constructed from the maximal localized Wannier
function (MLWF) method14,15 based on the first prin-
ciples calculations, which has been successfully applied
to the quantitative study of the QAH effect in magnet-
ically doped (Bi,Sb)2Te3

21,22. The exchange coupling
between electron spin and magnetization is included in
the tight-binding model in the mean field approximation
Hex = λSbσ

Sb
z + λTeσ

Te
z . Here we consider only the con-

tribution from out-of-plane magnetization and σ
Sb(Te)
z is

the z directional spin operator for Sb (Te) atoms. In
our calculation, we consider a film with two quintuple
layers and choose the exchange coupling strength to be
λSb = 0.4 eV and λTe = 0.0 eV, which is strong enough
to drive the system into the QAH phase. The edge dis-
persion is also calculated with the iterative Green func-
tion method in a semi-infinite configuration along (100)
direction, as shown in Fig. 2 (a). For edge modes, we
find three left movers (the modes I, II and IV) and two
right movers (the modes III and V), suggesting that one
chiral edge mode (left mover) and the other two trivial
1D edge modes (or non-chiral edge modes)21. Since the
mode IV is directly connected to V, these two modes
must be trivial 1D edge modes and thus we focus on the
modes I, II and III below. The influence of the local gate
voltage (V = 0.1 eV) is shown in Fig. 2 (b), from which
one can see that the number of left and right movers is
unchanged, but their energy dispersions are shifted.
After obtaining the edge state Green function, it is

straightforward to calculate the corresponding SP vector
S. First of all, Sx is vanishingly small compared to other
spin components. This confirms the results from the ef-
fective four band model. Thus, S only appears in the y-z
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FIG. 2. Edge spectrum and edge state SP angle θ for mag-
netically doped Sb2Te3 QAH systems are plotted with: (1)
V = 0 eV in (a) and (c). (2) V = 0.1 eV in (b) and (d). In
(c) and (d), SP angle of edge mode I, II and III are plotted
in red, blue and green.

plane and can be characterized by its magnitude |S| and
a polarization angle θ relative to +z axis. For Sy, we no-
tice that it vanishes at V = 0 for the effective four band
model, while it is non-zero in the realistic tight-binding
model. This difference is because of the out-of-plane mir-
ror symmetry in our four band model, which is absent in
realistic crystals. Therefore, both Sy and Sz are non-
zero even at V = 0 in realistic tight-binding model. We
plot Fermi energy EF dependence of polarization angle
θ at the local gate V = 0 eV and V = 0.1 eV in Fig. 2
(c) and (d). The polarization angles θ for the modes I
(red lines) and III (green lines) behave similarly to each
other, while that of the mode II (blue lines) reveals a
completely different characteristics. This is a clear ev-
idence that the modes I and III are connected to each
other, forming a non-chiral edge mode, while the mode
II can be identified as the non-trivial CEM. In Fig. 2
(d), we notice an abrupt change of polarization angle θ
for the modes I and II when EF is between 0 meV and
20 meV. Compared with the energy dispersion in Fig. 2
(b), we find that this change results from the strong hy-
bridization effect between the modes I and II. Thus, the
CEM and non-chiral mode are not well defined in this
regime. In the other regime, we find a smooth change
of SPs with respect to local gate voltages and chemical
potentials.

Experimental detection of edge spin polarization - Our
theoretical calculations based on both the effective model
and realistic tight-binding model have clearly demon-
strate electrically tunable SP in magnetically doped
(Bi,Sb)2Te3. However, the experimental detection of SP
is not an easy task since the bulk is FM and it is un-
clear how to distinguish SP of CEMs from that of bulk

ferromagnetism by magnetization measurement. In con-
trast, when the Fermi energy is tuned into the bulk gap,
the transport signals are dominated by CEMs. Thus, it is
more promising to search for SP of CEMs from transport
measurements.
Our proposal is based on a four terminal device with

a FM probe as the fourth probe, as shown in Fig. 3
(a). This experimental setup is similar to that in the
study of disordered leads in the QH system and here FM
leads play the role of disordered leads23. When SP of the
CEM is parallel to magnetization M of the FM lead, it
can flow into the lead, while when they are opposite, it
will be scattered. We apply a voltage drop between the
leads V1 and V3 (V1 = V and V3 = 0) and also intro-
duce a split gate, denoted as SG in the Fig.3 (a). Due
to the split gate, there are two types of currents flow-
ing from the lead V2 to V4: the current i1, which goes
through V3, and the current i2 flowing directly from V2
to V4. Based on the Landauer-Büttiker formula24,25, the
current i1 to the lead V4 shares the same chemical po-
tential as V3 = 0, while the current i2 is determined by
the chemical potential in the lead V2 = V1 = V . Impor-
tantly, we assume that chemical potentials of two cur-
rents i1 and i2 have not reached equilibrium when they
enter the FM lead. This is determined by the inelastic
scattering length, which is estimated as several µm for
the QH case26, and we expect a similar length scale in
our case. Thus, the corresponding SPs are also expected
to be different for these two currents. Since the scat-
tering rate into the FM lead V4 depends on the relative
angle between the SP of CEMs and M. We expect the
transmissions of V2 → V4 and V3 → V4 also depend on
M of the FM lead. As a result, the chemical potential
in V4 will vary when rotating M. This provides a de-
tectable signal, which is similar to the spin valve effect16,
in transport measurements and can be directly related to
SP of CEMs. It should be emphasized that the split gate
SG plays an essential role here. Without the split gate,
all currents flowing into V4 come from V3, and thus the
corresponding chemical potential in V4 must be equal to
that of V3, independent of magnetization direction of the
FM lead.
To formulate this idea, we assume that only p (p <

1) fraction of the net edge current i0 can flow from V2
to V3 due to the split gate, as shown in Fig. 2 (a), so
i1 = pi0, i2 = (1 − p)i0. We further assume the q′ (q)
fraction of the current i1 (i2) has spin polarizing along
M. Since SP of CEMs depends on chemical potential, it
is reasonable to assume q 6= q′. Therefore, the currents
from V2 (V3) to V4 are q

′i1 and qi2, respectively, as shown
in Fig. 3 (a). The Hall conductance G24 can be derived
based on Landauer-Büttiker formula13 as

G24 =
I1

V2 − V4
= G0

(1− p)q + pq′

q′
(3)

with the conductance quanta G0 = e2

h
. From Eq. (3),

one can see that when there is no split gate (p = 1),

G24 = G0 = e2

h
, which recovers the quantized Hall
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(a)

(b)

FIG. 3. Our proposed four terminal transport setup is shown
in (a) with lines showing current flows. In (b), we show the
spin valve effect at the FM lead V4: Only current with spin
parallel to M can flow into V4, while those with spin anti-
parallel to M will be reflected. θ dependence of transmission
qis at EF = 33 meV are plotted in (c). Based on this, we plot
the evolution of transverse resistance R24 with θ in (d).

conductance and is independent of its spin information.
When a split gate is introduced, 0 < p < 1 and q 6= q′,
and G24 will deviate from the quantized value and we dis-
cuss how to extract the information of SP of CEMs from
the Hall resistance measurement in the Supplementary
Materials13.

For the realistic systems of magnetically doped
(Bi,Sb)2Te3, we have shown additional non-chiral modes
coexisting with CEMs. Thus, it is natural to ask how
these non-chiral modes influence the above transport
measurement. We consider one pair of non-chiral edge
mode (mode I and III in Fig. 2 (a)) and one CEM (mode
II) and further assume no inter-channel scattering be-
tween different modes for simplicity. We take the modes
I and II flowing clockwise (as shown in Fig. 3 (a)), and
the mode III flowing counter-clockwise (flipping the di-
rections of currents in Fig. 3 (a)). q1,2,3 (q

′
1,2,3) is defined

as the transmission into FM probe of edge current i2 (i1)
for the modes I,II and III, with Q = q1 + q2, Q

′ = q′1 + q′2
and p̄ = 1 − p. The explicit expression of transverse re-
sistance is shown in the Supplementary Materials13. In
the limit where the split gate vanishes (p = 1 − p̄ = 1),
the transverse conductance G24 becomes

G24 =
e2

h

7(Q′ + q3)− 3q3Q
′

2Q′ − q3
(4)

which deviates from the quantized value. Thus, in con-
trast to the single CME case, Hall resistance will depend

on the magnetization direction of FM leads even without
any split gate for the case with both CME and non-chiral
modes.
To apply Eq. (4) to magnetically doped Sb2Te3 films,

we need to extract the coefficients qis from our realistic
tight-binding model. As discussed above, qis are deter-
mined by the projection of SP of CEMs into the magneti-
zation direction M of FM leads. Since SP of CEMs only
exists in the y-z plane, we only concern the projection of
SP into the y-z plane. Let’s assume M has an angle θ
relative to +z direction in the y-z plane, as shown in Fig.
3 (b). The corresponding projection operator for CEMs
is defined as:

P ↑↑
θ = | ↑θ〉〈↑θ |, with | ↑θ〉 = e−iσx

θ

2 | ↑z〉 (5)

Consequently, the angle dependent transmission qi(θ) for
the ith edge mode is given by

qi(θ) =
〈ψi|P

↑↑
θ |ψi〉

〈ψi|P
↑↑
θ |ψi〉+ 〈ψi|P

↓↓
θ |ψi〉

(6)

where |ψi〉 is the wave function for the mode i. With
Eq. 4 and Eq. 6, we can calculate the transmissions
qi(θ)s for the modes I, II and III as a function of θ and
Fermi energy for the local gate voltage V = 0.1eV for
our realistic tight-binding model13. For the chemical po-
tential EF = 33 meV, θ dependence of transmission qis
and the Hall resistance R24, are shown in Fig. 3 (c) and
(d), respectively. R24 shows a strong dependence on θ,
thus revealing the spin valve effect for CEMs16. This pro-
vides a very clear and experimentally feasible evidence to
detect spin signal in a QAH insulator.
Discussions - In summary, we have shown that SP of

CEMs can be generated, manipulated and detected in a
QAH insulator in a fully electric manner. This paves the
way of potential applications for the QAH effect in spin-
tronics. Disorder is inevitable in realistic samples and
we show the stability of SP of CEMs against disorder in
the Supplementary Materials13. Although we focus on
the magnetically doped (Bi,Sb)2Te3 films here, the elec-
tric controllability of SP of CEMs is a general property
of a QAH insulator. The bulk topology (non-zero Chern
number) only guarantees the existence of CEMs, but the
detailed form of wave functions of CEMs depends on lo-
cal electric environment, and thus can be controlled by a
local gate voltage. We expect a similar effect also occurs
in other QAH insulators, such as Mn doped HgTe quan-
tum wells3 and InAs/GaSb quantum wells27, where the
local gate voltage can induce a local Rashba spin-orbit
coupling and tilt SP of CEMs.
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