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Accumulation layers with very large concentrations of electrons where many subbands are
filled became recently available due to ionic liquid and other new methods of gating. The low
temperature mobility in such layers is limited by the surface roughness scattering. However theories
of roughness scattering so far dealt only with the small-density single subband two-dimensional
electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the
multisubband large concentration case. We show that with growing 2D electron concentration n
the surface dimensionless conductivity σ/(2e2/h) first decreases as ∝ n−6/5 and then saturates as
∼ (daB/∆

2)� 1, where d and ∆ are the characteristic length and height of the surface roughness,
aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness
and the related increase of the scattering rate, the 2DEG remains a good metal.

I. INTRODUCTION

The electron mobility is a very important parameter of
electronic devices. In heavily doped bulk semiconductors,
the low temperature mobility is determined by the
electron scattering on ionized donors and is relatively
small. Larger low temperature mobilities can be
achieved near the surface of a lightly doped say n-type
semiconductor, where the electron accumulation layer
is induced by the applied surface electric field. In
such devices the mobility becomes sensitive to the
semiconductor surface roughness, which can be imagined
as a collection of atomic-size steps of total height ∆
and characteristic size d � ∆ along the surface. The
roughness scattering dominates at high electric fields E
when electrons are squeezed closer to the surface. In this
case1–6 the mobility µ limited by the surface roughness
scattering behaves as µ ∝ 1/E2. For a large enough field
E the two-dimensional (2D) concentration of electrons
n ∝ E so that µ ∝ 1/n2 and the surface conductivity
σ = neµ ∝ 1/n. This result holds for an inversion
layer in a lightly doped p-type semiconductor when the
electric field E is larger than the electric field of the
depletion layer. The low temperature mobility is also
extensively studied in quantum wells, where it is limited
by the surface roughness of both interfaces. This mobility
strongly depends on the width of the quantum well7–9.

Because of the dominating interest in higher mobilities,
the surface roughness scattering was studied theoretically
only for relatively small concentrations n, when only
the first energy quantization subband is filled at low
temperatures2–9. Also, it was difficult to induce large
electron concentrations n (higher than 1013 cm−2 in
Si). So the the roughness scattering in the case of large
concentrations n when many subbands are filled at low
temperatures has remained unexplored.

The last decade, however, witnessed growing interest in
accumulation layers with large n which allow to achieve
qualitatively new properties of the electron gas, such as
superconductivity or magnetism. New methods to create

large electron concentrations were developed. One of
them is based on ion gating with help of an electrolyte
or a room temperature ionic liquid, which does not need
an insulator layer and, therefore, makes a double layer
with a very large capacitance. In Si concentrations
n ∼ 5 · 1013 cm−2 were achieved using gating by an
electrolyte10 and by an ionic liquid11. Even larger
concentrations ∼ 1014 cm−2 were induced in single and
bilayer graphene12,13, ZnO14, MoS2

15 and SrTiO3
16,17

with this method.
Another important method is based on heterojunctions

of polar and nonpolar perovskites such as GdTiO3 and
SrTiO3, which accumulate 3 · 1014 cm−2 electrons18.
Concentrations n up to 1015 cm−2 were obtained
combining this effect with the electron spill-out for a
special band alignment19. Similar physics takes place in
GaN-based heterojunctions where concentrations up to
4.4× 1013 cm−2 were achieved20–22.

At na2B > 1 the dimensionless parameter rs < 1
and many electron subbands are filled. Here rs =(
πna2B

)−1/2
, the effective Bohr radius aB = κ~2/m∗e2

in Gaussian units, κ is the dielectric constant, m∗ is the
effective electron mass. In the cases of ZnO and MoS2

mentioned above na2B reaches 5. In semiconductors with
relatively large aB such as GaAs, InAs, InSb, and PbTe,
it should be easy to reach na2B � 1.

As we said above the roughness scattering limited
mobility for the multisubband case has not been
theoretically studied. In this paper, we fill this gap and
study the low temperature mobility limited by surface
roughness in an accumulation layer with large n. Our
multisubband result for the dimensionless conductivity
σ(n)/(2e2/h) at d < aB is shown on Fig. 1 as a
function of the dimensionless concentration na2B for the
exponential model of roughness23 by the thick solid line
(black). The conductivity first decreases with n as
∝ n−6/5 and then saturates at the level

σ

2e2/h
' 1.2daB

∆2
, (1)

which is much larger than unity assuming that both d�
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FIG. 1. (Color online) The schematic log-log plot of
the dimensionless conductivity of an accumulation layer
σ/(2e2/h) limited by the surface roughness scattering as a
function of the dimensionless 2D electron concentration na2B
at d < aB . The thick solid line (black) shows the conductivity
for a multisubband accumulation layer. It first decreases as
(na2B)−6/5(a4B/d

2∆2) and then saturates at na2B ∼ (aB/d)5/2,
where the wavelength k−1

F ∼ d. The thin solid line (red)
represents the 1/n dependence derived for a single subband3.
Conjectured extrapolation24 of this dependence to larger
concentrations is shown by the thin dashed thin (red).

∆ and aB � ∆. The thin solid line (red) schematically
shows the 1/n dependence of the conductivity derived for
a single subband by previous work3.

We see that with growing n the multisubband
conductivity at first approximately continues the single
subband dependence 1/n, but then saturates. The
saturation happens when the electron wavelength k−1F
is equal to the size d of the roughness. Before this
point, the roughness felt by electrons is averaged over
all irregularities within the region of size k−1F . As
the concentration increases, kF increases and fewer
irregularities are averaged over making the surface
“rougher” for electrons. This results in decreasing σ(n).
When k−1F gets below d, the electron “hits” only a single
irregularity and the level of “roughness” is fixed leading
to the saturation of the conductivity.

Our results show that at large n where many subbands
are filled an accumulation layer remains metallic. This
agrees with decent mobilities observed in Refs. 10, 14,
15, and 25.

The organization of our paper is as follows. In
Sec. II, we explain the structure of an accumulation
layer where electrons occupy many energy quantization
subbands. In Sec. III, we introduce two models of
the surface roughness including the exponential one
assumed in Fig. 1 and the Gaussian widely used in
earlier studies. In Sec. IV, we present an intuitive
quasi-classical interpretation of our mobility results for
the exponential roughness. In Sec. V, we introduce
the more formal quantum-mechanical approach starting
from the case of a single subband connecting to previous
studies. In Sec. VI, we discuss the multisubband case,
take into account the scattering of electrons between

different subbands, and give the final scattering rate and
mobility. We conclude in Sec. VII. In the main text of
the paper we use the scaling approach and drop numerical
coefficients. In Appendix A we estimate the coefficients
of the conductivity for the most interesting case of the
exponential roughness.

II. ELECTRONIC STRUCTURE OF AN
ACCUMULATION LAYER

The accumulation layer is created near the surface of
an n-type semiconductor when the orthogonal-to-surface
electric field E induces a large 2D concentration of
excessive surface electrons n = E/4πe in the layer of
width ∼ L. We assume that n/L is much larger than the
bulk concentration of electrons N in the semiconductor.
This means that the bulk Fermi level at low temperatures
is either below the conduction band bottom or slightly
above it. In Fig. 2 illustrating the accumulation layer
we actually assumed that the bulk Fermi level coincides
with the conduction band bottom, which in this paper
serves as the reference point of the electron energy.
Our description of the electron accumulation layer is
applicable also to an inversion layer in the very lightly
doped p-type semiconductor, where the 2D concentration
ndepl of ionized acceptors forming the depletion layer
is much smaller than the 2D concentration n of the
electrons so that we can still use n = E/4πe.

FIG. 2. (Color online) Schematic plot of the subbands
electrons occupy at low temperatures in the accumulation
layer. The ground states of subbands are shown by the black
thick horizontal lines. The surface potential well −eϕ(z) is
shown by the grey thin line (red), where ϕ(z) is given by
Eq. (2). The reference energy level ε = 0 is the conduction
band bottom. In a lightly n-doped bulk semiconductor the
electron Fermi level is close to zero. Most electrons are located
within z . L where L is the decay length of the electron
concentration given by Eq. (4).

In this paper we are focused on large E and n
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cases when the one-dimensional potential well created
by the electric field E along the z-axis normal to the
surface is so deep that it has several quantized levels
(see Fig. 2). Each of such levels forms a subband
with a two-dimensional (2D) Fermi gas moving freely
parallel to the surface. At large n all these 2D gases
with the same Fermi level form a three-dimensional
(3D) degenerate gas, which can be described in the
Thomas-Fermi approximation neglecting the discreteness
of subbands. The nonlinear screening of the electric field
E by such a gas was studied by Frenkel26 via solving the
Poisson-Thomas-Fermi equation for the self-consistent
potential ϕ(z) and the 3D electron density N(z). The
result is26,27

ϕ(z) = C1
e

κaB

(
aB
z + L

)4

, (2)

N(z) = C2
1

a3B

(
aB
z + L

)6

, (3)

where z is the distance from the interface, and the width
of the electron gas is

L = C3
aB

(na2B)1/5
. (4)

Here, n is the total 2D concentration of electrons inside
the accumulation layer, C1 = 225π2/8 ' 278, C2 =
1125π/8 ' 442, C3 = (225π/8)1/5 ' 2.4. This solution is
valid for na2B � 1. In this case N(0)a3B ∼ (na2B)6/5 � 1

and kFL ∼ (na2B)1/5 � 1 where N(0) = n/L and

kF = N(0)1/3. These inequalities confirm that we deal
with a 3D degenerate gas and that the Thomas-Fermi
approximation is valid and many subbands are filled. At
smaller concentrations when na2B < 1 only one subband
is filled and we go back to the 2D case studied for the
inversion layer or narrow quantum wells.

III. MODELS OF SURFACE ROUGHNESS

The surface roughness is a random shift of the interface
∆(~r) from z = 0 so that < ∆(~r) >= 0, where ~r = (x, y)
is the coordinate in z = 0 interface plane (see Fig. 3).
The roughness is described by the height correlator and
its Fourier transform

< ∆(~r)∆(~r′) >=W (~r − ~r′),
< |∆(q)|2 >=W (q).

(5)

Two main models of roughness are used in literature.
One is Gaussian

W (~r − ~r′) =∆2e−(~r−
~r′)2/d2 ,

W (q) =π∆2d2e−q
2d2/4,

(6)

where d, ∆ are the characteristic size and height of the
roughness, ∆ � d, L. This model was widely used in
earlier studies2–8.

(a)

(b)

FIG. 3. Two types of surface roughness. (a) The Gaussian
type of roughness. Here the lattice discreteness can be
ignored where ∆ � a and a is the lattice constant. (b) The
exponential kind of roughness. The size of the roughness
is d and the height fluctuates as ±∆ with respect to the
average interface (z = 0), where 2∆ = a. When the electron
wavelength k−1

F � d, the roughness is effectively averaged as

∆/
√

1/k2F d
2 = ∆kF d on a length scale of k−1

F for both types

of surface roughness. At k−1
F � d, the incident electron feels

only a single hill/valley or island. For Gaussian roughness,
the electron is scattered by the slope with the angle α ∼ ∆/d
shown in (a). For the exponential roughness, however, the
electron is scattered by the island edge which has a height
∆ and an effective length k−1

F , and thus the effective angle is
α ' kF ∆ as shown in (b).

However, later experimental observations found that
the spacial correlations are more likely to follow an
exponential behavior23,28

W (~r − ~r′) =∆2e−
√
2|~r−~r′|/d,

W (q) =π∆2d2(1 + q2d2/2)−3/2.
(7)

The important difference from the Gaussian case is that
here W (q) decays as q−3 at large q. This leads to a
stronger scattering at large n. One way to envision this
kind of roughness is to think about randomly distributed
flat islands of an additional lattice layer with typical
diameter d on the top of the last complete layer of
the crystal. Our calculations of the roughness-limited
mobility for accumulation layers are focused on this type
of surface roughness. However, to make a connection
with earlier studies2–8, we will also calculate the mobility
for the Gaussian model and compare the results of these
two models.

IV. QUASI-CLASSICAL PICTURE

Inspired by Ref. 6, in this section we start from an
intuitive quasi-classical picture of the electron scattering
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by the surface roughness and get the scaling result shown
in Fig. 1. Electrons are scattered when they hit the rough
“hard wall” surface. The time between two consecutive
collisions of electrons with the surface is ∼ L/vF ∼
m∗L/~kF . For each bounce, the reflection is specular
with respect to the tangential plane of the hitting point
and therefore adds a random angle α to the direction of
the reflected momentum. Due to this angular diffusion,
the total relaxation of the momentum direction requires
α−2 times collisions. Thus the relaxation time is

τ =
m∗L

~kFα2
. (8)

Below we are going to investigate the deviation angle α
at different values of kF and thus find τ .

For the exponential surface roughness, one can imagine
the irregularities as islands going up or down. Each island
is flat on a scale d and drops or rises abruptly by a height
∆ on the edges. An electron can be regarded as a particle
only on length scales larger than the wavelength k−1F . At

d � k−1F , electrons can only feel an averaged roughness

of all islands within the region of size k−1F whose number

is (k−1F )2/d2 = 1/k2F d
2. Due to the randomness of

the distribution of these islands, the resulting height or
depth has a magnitude ∼ ∆/

√
1/k2F d

2 = kF d∆. Such

a height/depth on a length scale k−1F effectively results

in α = ∆kF d/k
−1
F = ∆dk2F . Using Eq. (8), we get for

kF d� 1

τ ∼ 1/(∆dk2F )2

~kF /m∗L
=

m∗L

~∆2d2k5F
. (9)

In the opposite case at k−1F � d, the electron hits a single
island each time it bounces off the surface. However,
when electrons hit the flat middle plane of the island,
there is no momentum relaxation. Only when electrons
happen to hit the sharp edges can they get a “scattering”
reflection. Since only on a scale k−1F can electrons be
seen as quasi-classical particles, the scattering edge is
then estimated to be of height ∆ and size k−1F which
gives rise to α = ∆kF (see Fig. 3b). The probability
to hit one such edge is proportional to its area fraction
k−1F d/d2 = 1/kF d. This gives

τ ∼ 1/(∆kF )2

1/kF d

m∗L

~kF
=

m∗Ld

~∆2k2F
. (10)

Since the mobility µ is eτ/m∗ and the conductivity is
neµ, we then get the expressions of µ and σ in terms
of kF , ∆, d and L. Since L ∼ aB/(na

2
B)1/5, kF ∼

(na2B)2/5/aB as we said in Sec. II, we then get the
mobility as

µ ∼ e

h

1

∆2
×


a
8/5
B

d2n11/5
, na2B � (aB/d)5/2,

aBd

n
, na2B � (aB/d)5/2,

(11)

and the 2D conductivity σ = neµ as shown in Fig. 1,
where kF d ∼ 1 at na2B ∼ (aB/d)5/2. When d > aB ,
in the 3D regime where na2B > 1 there is no range of
kF d � 1 and the mobility always decreases as ∝ 1/n.
One should note that the 2D conductivity saturation
σ/(2e2/h) ∼ daB/∆

2 at large concentration n is usually
much larger than unity as d, aB � ∆ and implies
that the accumulation layer remains metallic at large
concentrations.

V. SINGLE SUBBAND CASE

Let us turn to the more formal quantum-mechanical
approach now. The scattering rate 1/τ of an electron

at the Fermi level with the wave vector ~k′ can be found
according to Fermi’s golden rule:

1

τ
=

2π

~

∫
d3~k

(2π)3
|U(q)|2

ε(q)2
δ(ε− εF )(1− cos θ′) (12)

where ε = ~2k2/2m∗, εF = ~2k′2/2m∗ = ~2k2F /2m∗
are the final and initial (Fermi level) energies of an

electron, ~k is the final electron momentum, kF is the
Fermi wavenumber, θ′ is the angle between initial and
final electron momenta and q is the magnitude of the

projection of the transferred momentum ~q = ~k − ~k′ in
the x − y plane. Due to the electronic screening inside
a single subband, the Fourier transform of the scattering
potential U(q) is reduced by the dielectric function ε(q).

Let us start from the single subband case where the
scattering occurs within the same subband and q =
2kF sin(θ′/2). The dielectric function is5

ε(q) ' 1 + 2/aBq. (13)

Let us first derive the scattering potential resulting from
the surface roughness. We know that electrons are
confined near the interface and thus have a quantization
kinetic energy Ez = ~2k2z/2m∗ where kz is a multiple
of π/L (for the first subband, kz = π/L). Due to the
surface roughness, the confinement width L fluctuates
by ∆(~r) at position r. The kinetic energy then varies by
(dEz/dL)∆(~r) ∼ Ez∆(~r)/L. These fluctuations of the
quantization kinetic energy act as a fluctuating potential
U(~r) for the 2-dimensional motion of confined electrons.
Its scattering matrix element for 2D Bloch states U(q)
within a given subband then satisfies

|U(q)|2 =

(
Ez
L

)2

W (q)δ(kz − π/L), (14)

As a result we get for the scattering rate the following
expression:

1

τ
∼ ~
m∗

k4z
L2

∫
dθ′

W (q)

ε(q)2
(1− cos θ′). (15)

At kF d� 1, according to Eqs. (6) and (7), two models
of roughness give the same W (q) ∼ ∆2d2. For the one
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subband case, kFaB ' 1 and we get the scattering rate
as

1

τ
∼ 1

~
m∗

~2

(
Ez
L

)2

∆2d2 ∼ ~
m∗

k4z∆2d2

L2
. (16)

Since kz ∼ 1/L, the mobility is then

µ ∼ e

~
L6

∆2d2
. (17)

Since in the single subband case rs & 1 or na2B . 1,
the condition of validity of Eq. (17) kF d � 1 is fulfilled
for the roughness with d < aB . The case d < aB was
studied for silicon inversion layers in Ref. 3 and discussed
in Introduction above. For the 2D inversion layers, the
width L is determined by the applied electric field as
L ∝ E−1/3 and one gets2,3,6 µ ∝ 1/E2. As the electron
concentration increases, the interfacial electric field E ∝
n and mobility µ ∝ 1/n2. Such a dependence was
obtained in Ref. 3 and used in Ref. 24 for extrapolation
to the multisubband case as shown in Fig. 1. Note that
for the 2D quantum wells, the width L of the electron
gas is the same as the well width so that Eq. (17) agrees
with the well known result of Ref. 7.

However, if d > aB , for the single subband case, there
is also a range of concentrations that satisfies kF d � 1.
The results of two roughness models are different. For
the Gaussian case, the typical q is ∼ 1/d and the typical
θ′ is ∼ q/kF ∼ 1/kF d, W (q) ∼ ∆2d2, ε(q) ∼ d/aB . The
scattering rate is then

1

τ
∼ ~
m∗

k4z∆2a2B
L2k3F d

3
. (18)

Putting kz ∼ 1/L for the single subband case, we get the
mobility as

µ ∼ e

~
L6d3k3F
∆2a2B

, (19)

which can also be obtained from results in Refs. 6 and 8.
For the exponential case, W (q) decays in a much milder

way as ∝ 1/q3 at large q. This leads to the large angle
scattering. Indeed, let us consider the contribution to the
integral in Eq. (15) from the small angles θ′ ∼ (kF d)−1

and large angles θ′ ∼ 1. In the first case, W (q ∼ 1/d) ∼
∆2d2, ε(q) ∼ d/aB and∫ (kF d)

−1

0

dθ′(1− cos θ′) ' θ′3 ' 1

(kF d)3
.

As a result the contribution from the small angles
to the scattering rate is the same as Eq. (18).
For the large-angle scattering W (q ∼ kF ) '
∆2d2 [kF d sin(θ′/2)]

−3
is (kF d)3 times smaller than that

of the small-angle scattering, ε(q) ' 1 and the integral
over the angle is

π∫
(kF d)−1

dθ′(1− cos θ′)
1

[sin(θ′/2)]
3 ∼ ln(kF d).

If we ignore the logarithmic factor, the angle integral is
(kF d)3 times larger than that from the small angles, and
the scattering rate is then

1

τ
∼ ~
m∗

k4z∆2

L2k3F d
, (20)

which due to the absence of screening is (d/aB)2 times
larger than that from the small-angle scattering, so that

µ ∼ e

~
L6dk3F

∆2
. (21)

The dominance of the large-angle scattering is a unique
feature of the exponential roughness.

VI. INTERSUBBAND SCATTERING IN
MULTISUBBAND ACCUMULATION LAYERS

In Sec. V we have calculated the mobility limited by
the surface roughness scattering of a single subband. We
not only have recovered the results for the Gaussian type
of roughness obtained by previous studies but also have
got the results for the relatively unexplored exponential
roughness. For multisubband accumulation layers, the
situation is different from the single subband case. First,
kz is not ∼ 1/L but typically is ∼ kF , where kF =
(n/L)1/3 is the 3D Fermi wavenumber of the electron
gas. Second, in addition to the intrasubband scattering,
there is also intersubband scattering.

Typically, the intersubband scattering rate scales in
the same way as the intrasubband scattering. Therefore,
as shown in Appendix A, the final scattering rate is
approximately the intrasubband scattering rate times the
number of subbands which the initial electron can be
scattered into. The typical transferred momentum in
the z-direction is of the order of the typical transferred
momentum q in the x − y plane. At 1/d � kF where
q ∼ kF , all subbands “communicate” with each other
and the total number is kFL. Multiplying by kFL the
intrasubband result Eq. (16) with kz ∼ kF , we arrive
at the final scattering rate given by Eq. (9)29. This
is a universal result for both Gaussian and exponential
models. At 1/d � kF , for the exponential roughness,
the typical transferred momentum is q ∼ 1/d for the
small-angle scattering and q ∼ kF for the large-angle
one. So for the former, the number of subbands
involved in the scattering process is ∼ L/d, much smaller
than the number kFL for the latter. Therefore, the
large-angle scattering mechanism dominates. Using the
intrasubband scattering rate as given by Eq. (20) and
kz ∼ kF , we arrive at the total scattering rate at
kF d� 1 for the exponential roughness given by Eq. (10).
Thereby, we get the same expressions for the mobility
as in Eq. (11). The corresponding 2D conductivity at
large n saturates as σ/(2e2/h) ∼ daB/∆

2 (see Fig. 1),
which means that there is no re-entrant metal-insulator
transition. More careful check of this statement requires
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TABLE I. Mobility µ in units of (e/~∆2) as a function
of the 2D electron concentration n at different values of d
for two types of surface roughness, the Gaussian model (G)
and the exponential one (E). Since the Fermi wavenumber

kF ' (n/L)1/3, and the width of the 2D electron gas L ∼
aB/(na

2
B)1/5, we get k−1

F = d at na2B ∼ (aB/d)5/2 and L = d
at na2B ∼ (aB/d)5.

d < k−1
F k−1

F < d < L L < d < aB aB < d

G a
8/5
B /n11/5d2 a

4/5
B d2/n3/5 a

7/5
B d/n4/5 d3/a

3/5
B n4/5

E a
8/5
B /n11/5d2 aBd/n aBd/n aBd/n

accurate evaluations of the numerical coefficients which
are done in Appendix A and confirm our argument that
the saturation value of the conductivity is much larger
than the critical value 2e2/h.

Compared to the simple and neat result in the
exponential case, the mobility for the Gaussian type of
roughness is more complicated. At kF d � 1, since for
accumulation layers na2B > 1, d < aB is possible in this
range. At this value of d, the intrasubband scattering is
unscreened for the Gaussian case and the rate becomes
the same as the unscreened result of the exponential
roughness given by Eq. (20). The typical momentum
transfer is q ∼ 1/d, so only a few subbands whose
number is ∼ q/L−1 = L/d out of all participate in the
intersubband scattering. The total scattering rate is then
the scattering rate in Eq. (20) times L/d. At even larger
d � L � k−1F , the typical momentum transferred 1/d
is smaller than the z-direction momentum quantization
1/L. No intersubband scattering is possible and the total
scattering rate is given by Eq. (20). This situation
resembles the single subband case and is natural since
when L � d we actually are dealing with a 2D system.
When d exceeds the 2D screening radius aB � L, not
only the scattering is restricted within the same subband
but also the potential is screened. One should then use
Eq. (18) for the total (intrasubband) scattering. The
result is summarized as follows

1

τ
∼



~kF∆2

m∗Ld2
, k−1F � d� L , (22a)

~kF∆2

m∗L2d
, L� d� aB , (22b)

~kF∆2a2B
m∗L2d3

, aB � d. (22c)

k−1F = d is reached at na2B ∼ (aB/d)5/2 and d = L is
achieved at na2B ∼ (aB/d)5. By expressing kF and L in
terms of n, one can then get the mobility as a function of
the 2D electron concentration. The corresponding results
together with that for the exponential case are listed in
Table. I.

At d � aB , the obtained µ(n) dependence is
presented in Fig. 4. For the exponential roughness, the
corresponding scaling behavior of the 2D conductivity σ
is shown in Fig. 1. At d � aB , both (aB/d)5/2 and
(aB/d)5 is much smaller than 1. Throughout the 3D
metallic range where na2B > 1, there is only one result
for the Gaussian and exponential models respectively
as given by the last column in Table. I. The smallest
conductivity for the exponential case is larger than 2e2/h
as mentioned above. For the Gaussian model, at d� aB ,
the smallest σ/(2e2/h) is also∼ daB/∆2. Since in reality,
d > ∆, we get σ/(2e2/h)� 1. At d� aB , σ/(2e2/h) ≥
d3/aB∆2 � 1. So, the smallest conductivity for the
Gaussian roughness is also always above the critical value
and no re-entrant metal-insulator transition will happen
in realistic situations.

FIG. 4. The scaling behavior of the mobility µ in units of
e2/~∆2 as a function of the electron concentration n in units
of a−2

B at d < aB in a double logarithmic scale. The thick
solid line (black) denotes the mobility of the accumulation
layer for the exponential roughness. The thin solid line (black)
represents the mobility for the Gaussian roughness which also
decreases. Here only powers of the n dependence are shown
while the complete scaling formulae are presented in Table.
I. The thin dashed line (red) represents the 1/n2 dependence
derived for a single subband3.

In Sec. IV, we gave a quasi-classical explanation of the
mobility limited by the exponential surface roughness.
Inspired by Ref. 6, we can interpret the Gaussian
roughness results quasi-classically as well. Below we
again start from Eq. (8) and find α for the Gaussian
roughness in different situations. At kF d � 1, the
roughness relief is averaged over the electron wavelength
and the resulting relaxation time is the same as in the
exponential case given by Eq. (9). At k−1F � d� L, the

wavelength k−1F is smaller than the size of the roughness
hill. The electron then collides with a single hill (valley)
each time it hits the surface and the deviation angle α
is the slope of each single hill (valley) ∼ ∆/d (see Fig.
3a). The relaxation time is given by Eq. (22a). At
L � d � aB , the size of each single hill is so large
that the electron can hit the same hill consecutively
for several times during which it has traveled back and
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forth for ∼ d/L times within the accumulation layer.
Since these consecutive hits are on the same slope, the
scattered angle is the same and α accumulates, different
from uncorrelated random collisions on different hills
(valleys). After the electron finishes colliding with the
same slope, the accumulated angle is (∆/d)(d/L) =
(∆/L) � 1 and the time of such a series of collisions is
∼ (L/kF )(d/L) = d/kF . One then gets the relaxation
time as in Eq. (22b). At d � aB , the electronic
screening changes the scattering potential by a factor
aB/d, which can effectively be regarded as reducing
the roughness height from ∆ to ∆aB/d. The resulting
relaxation time grows and is given by Eq. (22c). Thus
we obtained quasi-classically the same scaling behavior
of the mobility limited by the Gaussian roughness as by
the quantum-mechanical approach.

VII. CONCLUSION

In this paper, we have studied the surface-roughness
limited mobility in inversion and multisubband
accumulation layers as a function of the 2D electron
concentration n for two models of the surface roughness
both quantum-mechanically and quasi-classically. For
the more realistic exponential roughness, the mobility
decreases as ∝ 1/n at large n and results in a 2D
conductivity saturation as σ/(2e2/h) ' 1.2daB/∆

2 � 1
since the characteristic roughness size d and the effective
Bohr radius aB are larger than the characteristic
roughness height ∆ ' a/2 where a is the lattice constant.
For the Gaussian roughness which was widely used in
earlier studies, the minimum conductivity is found to be
larger than the critical value as well. So there is no reason
to expect the re-entrant metal-insulator transition24

at large concentrations. Indeed, decent conductivities
were observed in large concentration accumulation
layers in Refs. 10, 14, 15, and 25. By measuring the
conductivity saturation value σ/(2e2/h) ' 1.2daB/∆

2 of
the exponential roughness, one can probe the geometry
of the roughness obtaining values of d, similarly to
what was done for the Gaussian roughness in previous
works3,7.

Acknowledgments.

We are grateful to S. A. Campbell, A. V. Chaplik,
M. V. Entin, B. Jalan, M. J. Manfra, M. Sammon,
M. Shur, and R. A. Suris for helpful discussions. This
work was supported primarily by the National Science
Foundation through the University of Minnesota MRSEC
under Award No. DMR-1420013.

Appendix A: Numerical coefficients in σ(n)
dependence in the exponential model

In Eq. (3), it shows that about 90% of electrons are
located within a distance L/2 from the interface. So it is
a good approximation to assume that electrons inside the
accumulation layer are more accurately confined within
a width of D = L/2. Then, the wave function of each
subband can be approximated as

ξ(r, z) '
√

2

D
exp(i ~kr · ~r) sin(kzz) (A1)

where ~kr, kz = mπ/D with m being a positive integer
are respectively the x−y plane and z-direction momenta
of electrons in this subband and different subbands
correspond to different values of kz. Therefore, similar
to that in Ref. 3, the matrix element U(q) satisfies

< |U |2 >=
8

D
ε2F

(
k
′

zkz
k2F

)2

W (q) (A2)

where an isotropic mass spectrum is assumed, k
′

z, kz
are the initial and final z-components of the electron
wavevector.

At kF d � 1, for both models of roughness, W (q) =
π∆2d2. So the scattering rate in Eq. (12) can be
rewritten as

1

τ
=

2

π~
ε2F∆2d2

D

∫
krdkrdφdkz

(
k
′

zkz
k2F

)2

(
1− k

′

zkz + k
′

rkr cosφ

k2F

)
δ

[
~2k2F
2m∗

− ~2(k2z + k2r)

2m∗

]
=

2εF∆2d2k3F
~D

∫
d(cos θ) (cos θ cos θ0)

2
(1− cos θ cos θ0)

(A3)

where cos θ = kz/kF , cos θ0 = k
′

z/kF , k′r is the x − y

component magnitude of the initial momentum ~k′. One
should note that this scattering rate is for one specific
direction of the initial momentum k′. To get the averaged
result, one should average over all θ0 and get

1

τ
' 0.1εF∆2d2k3F

~D
. (A4)

At kF d � 1, for the exponential case, using Eq. (7),
we have

1

τ
=

2

π~
ε2F∆2d2

D

∫
krdkrdφdkzd(k

′

z/kF )

(
k
′

zkz
k2F

)2

{
1 +

[
k2r + (k

′

r)
2 − 2krk

′

r cosφ
]
d2/2

}−3/2
(

1− k
′

zkz + k
′

rkr cosφ

k2F

)
δ

[
~2k2F
2m∗

− ~2(k2z + k2r)

2m∗

]
' 0.73εF∆2

~Dd
,

(A5)
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which matches Eq. (A4) at kF d ' 2. Substituting
kF = (3π2n/D)1/3 into Eqs. (A4) and (A5), where

D = L/2 and L is given by Eq. (4), we obtain numerical
coefficients for σ(n) mentioned in Introduction and the
corresponding saturation point na2B ' 0.4(aB/d)5/2.
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