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Abstract

We propose a design of a spherically symmetric nanostructure consisting of alternate concentric

semiconductor and dielectric layers. The exciton states in different semiconductor layers of such

a structure interact via the common electro-magnetic field of light. We show that, if the exciton

states in N semiconductor layers are in resonance with one another, then a superradiant state

emerges under optical excitation of such a structure. We discuss the conditions under which

superradiance can be observed and show that they strongly depend on the valence-band structure

of the semiconductor layers.
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I. INTRODUCTION

Superradiance is a phenomenon that occurs when a group of N dipole emitters interact

with a common light field. It was first described in the pioneering article by Dicke [1] for a

gas of atoms, confined within a volume with linear dimensions less than the wavelength of

the radiated light. Dicke showed that, due to the mutual coupling between atoms through

the electromagnetic field, the rate at which any one excited atom radiates is significantly

influenced by the presence of all the other atoms. This phenomenon has been extensively

discussed and experimentally observed for systems of free atoms [2–5], trapped ions [6],

excitons in disordered π-conjugated polymers [7], artificial atoms represented by supercon-

ducting qubits coupled to a microwave cavity [8], Mössbauer nuclei [9], and an ensemble of

individual quantum dots [10–13].

The superradiance phenomenon is usually considered in two different contexts, depend-

ing on its experimental realization. One realization [2–5, 8, 12] implies that the system,

considered as an ensemble of two-level emitters is initially prepared in the state with a total

population inversion. This totally inverted state is radiatively coupled to the completely

symmetric linear combination of the states with (N − 1) excited emitters. The latter state

is radiatively coupled to the completely symmetric linear combination of the states with

(N − 2) excited emitters, etc. Thus, the system evolution appears as a cascade emission

down a “ladder” of equidistant levels until it reaches the ground state [2–4]. As a result,

the energy of the system is radiatively damped in a short radiation burst, within a time

of the order of τ0/N , where τ0 is the radiative lifetime of a single emitter. We will call all

the states participating in the system evolution according to this scenario “superradiant”

although some authors [1, 3] reserve this term for the states with the population close to

N/2 which have the shortest radiative lifetimes. Note, however, that in the case of two

emitters the state which is a symmetric linear combination of the two states with one of the

emitters in its excited and the other one in its ground state is superradiant in both senses.

The other realization [9–11, 13] is the case of the linear spectroscopy when the system is

initially in its ground state and only the state with a single excited emitter is accessible in

the linear regime. Yet, this state is a completely symmetric one, and its radiative lifetime,

τ0/N , is N times shorter than the lifetime of an individual emitter, τ0.

Parascandolo and Savona [10] employed the semiclassical model with nonlocal linear
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response to describe interaction of the disc-shaped quantum dots with a common electro-

magnetic field. A complex geometry and low symmetry of the problem precluded them from

obtaining analytical results. In this paper we will consider similar problem for a spherically

symmetric system and will show that in this case the semiclassical model with nonlocal linear

response allows one to derive simple analytical expressions, at least in the long-wavelength

limit, and to gain some insight into the nature of the superradiant states and interaction of

confined excitons with the common longitudinal and transverse electric fields.
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FIG. 1: (Color online). Scheme and energy band diagram of the proposed nanostructure with

the two concentric spherical semiconductor layers labeled by the red numbers “1” (core) and “2”

(outer shell) separated by a dielectric layer. The dielectric layer is shown to have an infinitely large

band-gap to emphasize an absence of tunneling between the semiconductor layers.

To be more specific, we propose a design of a spherical layered onion-like nanostructure

where the concentric spherical semiconductor layers which serve as light emitters are in-
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terleaved with layers of another semiconductor or rather dielectric material having a wider

band-gap (see Fig. 1). We assume that the difference in band-gaps between the semicon-

ducting and dielectric layers is high enough to prevent tunneling between the exciton states

in the semiconductor layers which remain connected only via the common field. We will

show that, when the exciton energy levels in different semiconductor layers are in resonance

with one another, a superradiant state emerges under optical excitation of such a structure.

The total size of the structure should be small compared to the wavelength of light. To the

best of our knowledge, the situation where superradiant states are formed by emitters of

different geometry is being discussed here for the first time.

In recent years a great progress has been made in synthesizing multishell spherical semi-

conductor nanocrystals [14–19]. In particular, CdSe/ZnS/CdSe quantum-dot/quantum-shell

structures having a CdSe core with diameter from 42 Å to 64 Å, followed by 3 or 4 monolay-

ers of ZnS and several monolayers of CdSe and having wurtzite crystal structure have been

synthesized [15–17]. Though the ZnS shell layer in these structures was probably too thin

to completely prevent carriers from tunneling between the CdSe layers [16], the difference

in band-gaps between bulk CdSe (1.74 eV) and ZnS (3.7 eV) is significant and these nanos-

tructures have band diagrams very similar to the one shown in Fig. 1. However, this system

lacks a certain flexibility because of the large (about 13 %) lattice mismatch between CdSe

and ZnS which does not allow one to grow the ZnS shell of the CdSe/ZnS/CdSe nanocrystal

thicker than five monolayers [15]. One may expect appearance of more flexible multishell

nanostructures in the nearest future.

Exciton in a single quantum dot interacts not only with the transverse electro-magnetic

field of light but also with a polarization-induced longitudinal electric field. The former

interaction is responsible for the exciton radiative decay while the latter is equivalent to

the electron-hole long-range (non-analytic) exchange interaction and leads to the exciton

resonance frequency shift [20–25]. In the case of a spherical layered nanostructure, the

transverse part of the electric field is responsible for the superradiance. We will show that,

in the case of the semiconductor layers having a simple valence-band structure, the longi-

tudinal electric field does not contribute to the inter-layer interaction. Therefore, different

semiconductor layers serving as light emitters are coupled only radiatively while the system

size might remain smaller than the wavelength of light. These are the conditions for super-

radiant systems originally proposed by Dicke [1]. When the semiconductor layers have a
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complex valence-band structure then the inter-layer interaction is modified by the presence

of the longitudinal electric field causing the dipole-dipole coupling between the emitters in

addition to the radiative coupling.

Both synthesis of multishell semiconductor quantum dots [14–19] and spectroscopy of

single nanocrystals [26–28] have advanced enough to enable experimental observation of

superradiance in spherical layered nanostructures. However, to the best of our knowledge,

no single-dot spectroscopy of colloidal multishell nanocrystals at cryogenic temperatures has

been performed thus far. This paper seeks to inspire interest in studying superradiance in

spherical layered nanostructures and provides some necessary theoretical background.

II. NANOSTRUCTURE WITH LAYERS OF SEMICONDUCTORS WITH SIM-

PLE BAND STRUCTURE

In this section we will consider an optical transition associated with the exciton formed

by the electron and the hole from simple two-fold degenerate bands. One can consider the

Γ6 conduction band and the spin-orbitally split-off valence band Γ7 of a cubic semiconductor

of the crystal class Td as an example. We will first consider a structure with the two light-

emitting semiconductor layers and then generalize for an arbitrary number of layers. The

difference in the dielectric permittivities of the layers will be neglected. We assume the

strong confinement regime, so that the envelope of the exciton wave function is the product

of the electron and hole envelopes. The high symmetry of the present problem allows for

a fully analytic treatment. Taking into account the difference in dielectric permittivities of

different layers presents no principal difficulty and can be readily done using the approaches

outlined elsewhere [21] but would involve cumbersome expressions.

We will consider optical excitation on a frequency close to the exciton resonances. Then

incident light induces the macroscopic linear polarization density associated with the exci-

tonic resonances in the two semiconductor layers given by [20–22]

4πP(r) = εb π a
3
B ωLT

(

Φ1(r)Λ1

ω1 − ω − i 0
+

Φ2(r)Λ2

ω2 − ω − i 0

)

, (1)

where ωi is the frequency of the exciton resonance in the i-th semiconductor layer (neglect-

ing corrections due to the electron-hole long-range exchange interaction [20–25]), ω is the

frequency of light, εb is the background dielectric permittivity, aB and ωLT are the bulk exci-
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ton Bohr radius and longitudinal-transverse splitting, respectively, and Φi(r) is the exciton

envelope wave function in the i-th semiconductor layer taken at the coinciding coordinates of

the electron and the hole. If tunneling is completely suppressed then Φ1(r) is only different

from zero for 0 ≤ r < R1, where R1 is the radius of the first (core) semiconductor layer (see

Figure 1). In the same limit Φ2(r) is only different from zero for r2 < r < R2, where r2 and

R2 are, respectively, the inner and the outer radii of the second semiconductor layer. The

vector Λi is related to the amplitude of the full Maxwell electric field E(r) by

Λi =

∫

drΦi(r)E(r) . (2)

The Maxwell equations can be arranged in the form [21, 22]

(

△+ k2
)

E(r) = −k20 4πP(r)− ε−1
b grad [div (4πP(r))] , (3)

where k0 = ω/c, c is the speed of light, k =
√
εb k0. Using Green’s function of the Helmholtz

equation, Eq. (3) can be written in the form

E(r) = E(0) eikr −
∫

dr′
∑

α,β=x,y,z

4πPβ(r
′) ε−1

b V −1
∑

q

qα qβ − k2 δα,β
q2 − k2 − i0

eiq(r−r′) êα , (4)

where E(0) is the amplitude of the electric field in the incident light, V is the normalization

volume, and êα is the unit vector along the Cartesian axis α. Multiplying Eq. (4) by Φ1(r),

Φ2(r) and using Eq. (2) we obtain the following coupled algebraic equations

Λ1 = Λ
(0)
1 − Ξ1,1

ω1 − ω − i0
Λ1 −

Ξ1,2

ω2 − ω − i0
Λ2 , (5)

Λ2 = Λ
(0)
2 − Ξ2,1

ω1 − ω − i0
Λ1 −

Ξ2,2

ω2 − ω − i0
Λ2 . (6)

Here Λ
(0)
i = E(0) Φi(k), where Φi(k) is the Fourier transform of Φi(r),

Ξi,j =
a3B ωLT

2 π



v.p.

∞
∫

0

dq q2Φi(q) Φj(q)
q2/3− k2

q2 − k2
− i π

3
k3Φi(k) Φj(k)



 , (7)

“v.p.” means the principal value of an integral, and we took into account that Φi(k) is real.

Note that the matrix Ξi,j is symmetric but not Hermitian.

Resolving Eqs. (5), (6) for e.g. Λ1 we get the new, renormalized, values of the exciton

resonant frequencies

ωI,II =
ω1 + ω2 + Ξ1,1 + Ξ2,2

2
± 1

2

√

(ω1 + Ξ1,1 − ω2 − Ξ2,2)2 + 4Ξ1,2 Ξ2,1 . (8)
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The real parts of the diagonal elements Ξ1,1 and Ξ2,2 determine renormalization of the

exciton resonance frequencies due to the long-range electron-hole exchange interaction [20–

25]. Their imaginary parts determine exciton radiative lifetimes when the coupling between

semiconductor layers via the electro-magnetic field is neglected [21–23]:

(2 τi)
−1 = −ℑΞi,i =

a3B ωLT

6
k3 [Φi(k)]

2 ≈ a3B ωLT

6
k3 , (9)

where the last approximate equation corresponds to the long-wavelength limit. In this limit

one can replace Φi(k) by Φi(q = 0) and use the fact that, in the case of the simple valence

band structure, the electron and hole envelope wave functions coincide. Then Φi(q = 0) = 1

due to the normalization condition. As a result, one can write τ1 ≈ τ2 ≡ τ0. Indeed, if

Ξ1,2 = Ξ2,1 = 0 in Eq. (8) then this equation yields the resonant frequencies ωI = ω1 + Ξ1,1

and ωII = ω2 + Ξ2,2 so that

ℑωI,II = −(2 τ0)
−1 . (10)

To analyze the effect of the coupling between the two exciton resonances via the electro-

magnetic field of light it is enough to calculate the non-diagonal elements Ξ1,2 = Ξ2,1 in the

long-wavelength limit, when their real parts vanish:

Ξ1,2 = Ξ2,1 ≈ −ia
3
B ωLT

6
k3Φ1(k) Φ2(k) ≈ −ia

3
B ωLT

6
k3 = −i (2 τ0)−1 . (11)

Disappearance of the real part of Ξ1,2 can be seen from the fact that the Fourier transform

of the term qα qβ/q
2 [cf. Eq. (4) at k → 0] contains a term proportional to the coordinate

delta-function and a term with a spatial dependence of the field of a dipole [24, 25, 29].

The former term does not contribute to the real part of Ξ1,2 because Φ1(r) and Φ2(r) do

not overlap, and the latter term does not contribute to it because Φ1(r) and Φ2(r) are

independent of the angles. Note, however, that the imaginary parts of the diagonal and

non-diagonal elements Ξi,j coincide.

Now let us consider the case of the exact resonance between the two exciton states:

ω1 + Ξ1,1 = ω2 + Ξ2,2. Then Eq. (8) yields

ℑωI,II = −(2 τ0)
−1 ∓ (2 τ0)

−1 . (12)

Therefore, we obtain one dark (subradiant, anti-superradiant) state and one superradiant

state with the radiative lifetime τ = τ0/2.
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One can see from Eq. (8) that, in order for the superradiant state to emerge, the frequency

detuning from the resonance condition should be no less than the spectral linewidth of the

exciton level. Indeed, as soon as the first term under the sign of the square root in Eq. (8)

becomes larger, by the absolute value, than the second one, the entire square root will have

no effect on the imaginary parts of the renormalized frequencies.

Now let us generalize these results for the case of N semiconductor layers. Then, instead

of Eqs. (5), (6), we will have

Λi = Λ
(0)
i −

∑

j

Ξi,j

ωj − ω − i0
Λj , (13)

where i, j = 1, . . . , N . If these equations are considered as a non-homogeneous system of

linear equations on
Λj

ωj − ω − i0

then one can formally resolve it using Cramer’s rule. This yields the following equation for

the resonant frequencies

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω1 + Ξ1,1 − ω Ξ1,2 · · · Ξ1,N

Ξ2,1 ω2 + Ξ2,2 − ω · · · Ξ2,N

...
...

. . .
...

ΞN,1 ΞN,2 · · · ωN + ΞN,N − ω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (14)

or, equivalently,

N
∏

i=1

(ωi − ω) +
∑

j

Ξj,j
∏

i 6=j

(ωi − ω) +
∑

j<k

det

∣

∣

∣

∣

∣

Ξj,j Ξj,k

Ξk,j Ξk,k

∣

∣

∣

∣

∣

∏

i 6=j,k

(ωi − ω)

+ · · ·+ det

∣

∣

∣

∣

∣

∣

∣

Ξ1,1 · · · Ξ1,N

...
. . .

...

ΞN,1 · · · ΞN,N

∣

∣

∣

∣

∣

∣

∣

= 0 . (15)

Indeed, for N = 1 one has ω1 − ω + Ξ1,1 = 0, for N = 2 we obtain

(ω1 − ω) (ω2 − ω) + Ξ1,1 (ω2 − ω) + Ξ2,2 (ω1 − ω) + Ξ1,1 Ξ2,2 − Ξ1,2 Ξ2,1 = 0

which leads to Eq. (8). In the general case, Eq. (15) results from regrouping terms in a

representation of the determinant, Eq. (14), in the form of a sum over all permutations of

the numbers 1, 2 . . .N .

8



In the case of an exact resonance between the exciton states in all the semiconductor

layers one has ωi + ℜΞi,i = ω0 and Ξi,j = ℜΞi,i δi,j − i (2τ0)
−1, where ℜΞi,i is the exciton

resonant frequency renormalization due to the long-range electron-hole exchange interaction

in the i-th semiconductor layer. However, since ωi and Ξi,i enter Eq. (14) only as a sum,

ωi + Ξi,i = ω0 − i (2τ0)
−1, one can redefine ωi = ω0 and Ξi,j = −i (2τ0)−1, and Eq. (15) will

still be valid. Then all the determinants in Eq. (15) vanish and it immediately follows that

(ω0 − ω)N−1
[

ω0 −N i (2τ0)
−1 − ω

]

= 0 , (16)

which corresponds to one superradiant state with the lifetime τ = τ0/N and N−1 dark (sub-

radiant, anti-superradiant) states. Note that an analogous situation occurs for a radiative

state of exciton polaritons in a resonant Bragg structure of multiple quantum wells [30].

III. NANOSTRUCTURE WITH LAYERS OF CUBIC SEMICONDUCTORS

WITH COMPLEX VALENCE BAND STRUCTURE

In Sec. II we considered a situation when the coupling between the semiconductor layers is

only due to the transverse part of the electric field. As a result, Ξ1,2 is purely imaginary and

has no real part. In this case the expression under the sign of square root in Eq. (8) is always

real, and the square root can only acquire an imaginary part as a result of this expression

being negative. This narrows the conditions under which the superradiance can be observed

to a very sharp resonance between the exciton energy levels in the two semiconductor layers.

The width of this resonance is determined by the exciton radiative lifetime. The situation

changes drastically if Ξ1,2 has an appreciable real part. In this case the square root in

Eq. (8) will always have some imaginary part, no matter how large is the detuning from the

resonant conditions. We will see that this is the case of the semiconductor layers made of

a material with the complex valence band structure. It happens because, for the valence

band described by the Luttinger effective Hamiltonian, the envelope of the ground state

wave function of the confined hole will contain an angular-dependent part characterized by

the orbital angular momentum L = 2, and the coupling between the semiconductor layers

via the longitudinal electric field will be no longer forbidden by the symmetry.

Indeed, the hole states near the extremum of the valence band Γ8 can be characterized by

the pseudo-spin angular momentum J = 3/2 (cf. Appendix B). The states of the confined
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hole in a spherically symmetric semiconductor layer can be labeled by the values, F , of the

total angular momentum which is the vector sum of the pseudo-spin and the orbital angular

momentum. As, in our problem, this hole is left in the valence band as a result of the

radiative transition, its wave function should contain an s-like part described by the orbital

angular momentum L = 0. From the rule for addition of angular momenta one concludes

that such state of the confined hole (in particular, its ground state) is characterized by the

total angular momentum F = 3/2. But the same rule dictates that the even state having

both J = 3/2 and F = 3/2 contains orbital contributions not only of L = 0, but also of

L = 2.

A. Resonant Frequency Renormalization in a Nanostructure with Two Semicon-

ductor Layers

We now turn our attention to details. We consider a layered spherical nanostructure with

semiconductor layers having a cubic crystalline structure of the class Td and a valence band

of the Γ8 symmetry described by the spherical Luttinger Hamiltonian [22], i.e., it is assumed

that the Luttinger parameters γ2 = γ3 ≡ γ.

Core/shell nanocrystals with a zinc-blende structure CdSe core can be synthesized using

the methods of colloidal chemistry [26, 31, 32], but, in fact, the theory developed in this

section can be applied to the exciton states in wurtzite structure nanocrystals polarized along

the C6 axis. Besides, the only experimental observation of superradiance for ensembles

of quantum dots we are aware of [11] was done for CdSe self-assembled quantum dots.

Therefore, we will stick to CdSe parameters (see Appendix C) for the semiconductor layers

in our numerical calculations.

In this section we will need wave functions for the ground states of the electron and

the hole confined within a spherical layer with the inner radius r2 and the outer radius

R2. They are given in the Appendices. The following notations are used: α = r2/R2,

β = (γ1 − 2 γ)/(γ1 + 2 γ). Below we will also use the notations α2 ≡ α and α1 = 0.

It is convenient to consider the incident light to be circularly polarized or linearly polarized

along the z axis. In this case the optically excited exciton state can be characterized by

the projection, Fz, of the exciton total angular momentum onto the quantization axis, z.

For exciton states optically active in the dipole approximation one has F = 1. Therefore,
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the exciton wave function in the j-th layer can be written with the help of the Wigner

3jm-symbol [20]:

|exc,Fz, j〉 = (−1)1+Fz
√
3
∑

m,n

(

3
2

1
2 1

Fz −m m −Fz

)

φ(αj)(re/Rj , Rj) (17)

×R(αj )
n,Fz−m(rh, Rj) |Γ6, m〉 |Γ8, n〉 ,

where |Γ6, m〉 and |Γ8, n〉 are the Bloch functions in the conduction and the valence bands,

m = ±1/2, n = ±3/2,±1/2, and the functions φ(αj)(re/Rj , Rj), R(αj)
n,Fz−m(rh, Rj) are intro-

duced in the Appendices.

The complex conjugated covariant cyclic σ-component (σ = ±1, 0) of the dipole moment

density matrix element between the ground state of the j-th semiconductor layer and the

exciton can be written as [20]

〈

0
∣

∣

∣
d̂ ∗
σ (r)

∣

∣

∣
exc, 1Fz, j

〉

= −
∑

m,n

ie~

m0Eg
〈n̄|p∗σ|m〉Φj,1Fz

mn (r) , (18)

where e is the electron charge, m0 is the free-electron mass, Eg is the band gap energy,

〈n̄|p∗σ|m〉 is the matrix element of the complex conjugated covariant cyclic σ-component

(σ = ±1, 0) of the momentum operator calculated between the electron Bloch functions

|m,k = 0〉 and |n̄,k = 0〉 (the hole state n,k and the electron state n̄,−k are related

through time-reversal operation), and

Φj,1Fz

mn (r) = (−1)1+Fz
√
3 ϕ(αj )

(

r

Rj
, Rj

)

(

3
2

1
2 1

Fz −m m −Fz

)

R(αj)
n,Fz−m(r, Rj) . (19)

Note that

〈n̄|p∗σ|m〉 = 2 pcv (−1)1−σ

(

1
2

3
2 1

m n −σ

)

, (20)

where pcv = i〈S|p̂x|X〉 is the interband matrix element of the momentum operator.

The integral equation analogous to Eq. (4) can be written as

Eσ(r) = Eσ (0)(r)−
∫

dr′
∑

µ

Gσ
µ(r, r

′) 4πP µ(r′) (21)

with

Gσ
µ(r, r

′) = ε−1
b V −1

∑

q

(−1)σq−σ qµ − k2 δσ,µ
q2 − k2 − i0

eiq(r−r′) .

11



The amplitude of the contravariant cyclic µ-component of the polarization density in the

rotating wave approximation is given by [20]

P µ(r) =
~
−1Λ1

ω1 − ω

〈

0
∣

∣

∣
d̂ ∗
µ (r)

∣

∣

∣
exc, 1Fz, j = 1

〉

+
~
−1Λ2

ω2 − ω

〈

0
∣

∣

∣
d̂ ∗
µ (r)

∣

∣

∣
exc, 1Fz, j = 2

〉

, (22)

where

Λj =

∫

dr
∑

σ

〈

exc, 1Fz, j
∣

∣

∣
d̂σ(r)

∣

∣

∣
0
〉

Eσ(r) .

This leads to the equations

Λ1 = Λ
(0)
1 − Ξ1,1

ω1 − ω − i0
Λ1 −

Ξ1,2

ω2 − ω − i0
Λ2 , (23)

Λ2 = Λ
(0)
2 − Ξ2,1

ω1 − ω − i0
Λ1 −

Ξ2,2

ω2 − ω − i0
Λ2 (24)

with

Ξi,j =
4π

~

∑

σ

∑

µ

∫

dr

∫

dr′Gσ
µ(r, r

′)
〈

exc, 1Fz, i
∣

∣

∣
d̂σ(r)

∣

∣

∣
0
〉 〈

0
∣

∣

∣
d̂ ∗
µ (r

′)
∣

∣

∣
exc, 1Fz, j

〉

(25)

and

Λ
(0)
j =

∫

dr
∑

σ

〈

exc, 1Fz, j
∣

∣

∣
d̂σ(r)

∣

∣

∣
0
〉

E(0)σ(r) .

After a straightforward derivation (cf. Ref. [20]) one obtains the following expressions for

the real and the imaginary parts of Ξi,j, valid in the long-wavelength limit:

ℜΞi,j =
(1− δij)ωLT

18π2

(

aB
Rj

)3
∞
∫

0

dy y2
[

I
(αi)
0

(

y
Ri

Rj

)

I
(αj)
2 (y) + I

(αi)
2

(

y
Ri

Rj

)

I
(αj )
0 (y)

]

+ℜΞi,iδij ,

(26)

ℜΞi,i =
ωLT

18π2

(

aB
Ri

)3
∞
∫

0

dy y2
[

I
(αi)
0 (y) + I

(αi)
2 (y)

]2

. (27)

ℑΞi,j = −ωLTa
3
Bk

3

18 π
I
(αi)
0 (0) I

(αj)
0 (0) , (28)

where

ωLT =
4~

εba3B

(

epcv
m0Eg

)2

, (29)

I
(αj)
L (y) =

2
√
2π(−1)L/2
√

1− αj

cos
παj

1− αj

1
∫

αj

dx x f
(αj)
L (x) jL(xy)

×
[

sin
π x

1− αj
− tan

π αj

1− αj
cos

π x

1− αj

]

.
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The renormalized resonant frequencies are still given by Eq. (8).

Note that the signs of the real and imaginary parts of the non-diagonal matrix elements

ℜΞ1,2 = ℜΞ2,1, ℑΞ1,2 = ℑΞ2,1 depend on the choice of the phases of the wave func-

tions (A1), (B2). However, the sign of their product is defined unambiguously. In what

follows it is convenient to introduce positive quantities δωj, V12, and Γj , and, without loss

of generality, set

Ξj,j = δωj − iΓj/2 , (30)

Ξ1,2 = V12 − i
√

Γ1Γ2/2 (31)

[cf. Eqs. (26), (27), (28)].

Let us fix the core radius, R1 = 20 Å and the outer radius of the second semiconductor

layer, R2 = 60 Å and change its inner radius, r2, and, therefore, the parameter α. The

energy difference of the exciton levels in the first, or core, and the second semiconductor

layers is plotted as a function of α in Fig. 2, c. While calculating this energy difference, or

detuning from the resonant conditions, we neglected a small contribution coming from the

difference in the exciton binding energies. The energy positions of the two levels as functions

of the detuning are shown in Fig. 2, d. The exciton level in the core layer almost does not

change with the detuning which is due to the change of the energy position of the exciton

state in the second semiconductor layer. However, close to the resonance one can see the

avoided crossing of the two levels (see Fig. 2, a). The imaginary parts of the renormalized

resonant frequencies are plotted in Fig. 2, b as functions of the detuning. The imaginary part

of one of the renormalized frequencies drops to zero at zero detuning while the imaginary

part of the second renormalized frequency increases, by the absolute value, as the sum of the

imaginary parts of the two transition frequencies far from the resonance. This corresponds

to the superradiance. Note the difference in the horizontal and vertical scales in Fig. 2, b.

The width of the resonance in Fig. 2, b is more than two orders of magnitude larger than

the imaginary parts of the resonant frequencies determining the exciton radiative linewidths.

This is in contrast with the situation that we had in Sec. II and indicates favorable conditions

for experimental observation of the superradiance in nanostructures of the proposed design

using the methods of the single quantum dot spectroscopy [26–28]. As we emphasized above,

the difference with the case of the nanostructure with semiconductor layers having a simple

valence band structure considered in Sec. II is due to the fact that ℜΞ1,2 is no longer zero.

13
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FIG. 2: (Color online). Emergence of superradiant state in a structure with two layers of cubic

semiconductor: (a) Real parts of the renormalized frequencies as functions of the detuning from

the resonance conditions. (b) Imaginary parts of the renormalized frequencies as functions of the

detuning. (c) The detuning as a function of the parameter α. The inset specifies the structure

sizes used in the calculation. (d) Same as (a) but scaled differently.

In Fig. 3 we plot the real and imaginary parts of Ξi,j as functions of α for the same set of

parameters that were used for Fig. 2. Their physical meaning is revealed in Sec. III B where

we use notations introduced in Eqs. (30), (31).

Fig. 3 demonstrates that the real parts of the matrix elements Ξij are two orders of

magnitude larger than their imaginary parts. This allows one to make the corresponding
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FIG. 3: (Color online). (a) Real parts of Ξ1,2 and Ξ2,2 as functions of the parameter α. The real

part of Ξ1,2 is shown by the absolute value. The value of the α-independent ℜΞ1,1 is shown in the

inset. (b) Absolute values of the imaginary parts of Ξ1,2 and Ξ2,2 as functions of the parameter α.

The value of the α-independent ℑΞ1,1 is shown in the inset.

expansion under the square root of Eq. (8). Using Eqs. (30), (31) and introducing ∆ω =

ω1 + δω1 − ω2 − δω2 we obtain

ωI,II =
ω1 + δω1 + ω2 + δω2

2
± 1

2

√

∆ω2 + 4 V 2
12

−i Γ1 + Γ2

4
∓ i

V12
√
Γ1 Γ2

√

∆ω2 + 4 V 2
12

∓ i
∆ω (Γ1 − Γ2)

4
√

∆ω2 + 4 V 2
12

. (32)

One can see that Eq. (32) describes the behavior of the renormalized frequencies with the

detuning shown in Figs. 2, a, b and shows explicitly that the width of the resonance in

Fig. 2, b is on the order of 2 V12. Also note that the difference between 2 (Γ1 + Γ2) and

(
√
Γ1 +

√
Γ2)

2 is of the second order in (Γ1 − Γ2).

B. Dynamics of the Superradiant State

In order to study dynamics of the superradiant state we will introduce the states

|1〉 ≡ |e1, g2〉, where the exciton in the first semiconductor layer is excited while the second

semiconductor layer is in its ground state, and its counterpart |2〉 ≡ |g1, e2〉, where the ex-

citon is in the second semiconductor layer. One can derive equations for the density matrix
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in the basis of these states as well as the ground state |0〉 ≡ |g1, g2〉 needed to preserve

normalization: ρ00 + ρ11 + ρ22 = 1. These equations are analogous to the Optical Bloch

Equations in the theory of two-level atoms [33, 34]. The field of the spontaneous radiation

can be treated as a reservoir while the system evolution under the dipole-dipole interaction

alone (which plays the role of the monochromatic incident radiation in the Optical Bloch

Equation) is governed by the Schrödinger equation [33]. The resulting equations take the

form
dρ11
dt

= −Γ1 ρ11 + i

(

V12 + i

√
Γ1Γ2

2

)

ρ12 − i

(

V12 − i

√
Γ1Γ2

2

)

ρ21 , (33)

dρ22
dt

= −Γ2 ρ22 − i

(

V12 − i

√
Γ1Γ2

2

)

ρ12 + i

(

V12 + i

√
Γ1Γ2

2

)

ρ21 , (34)

dρ12
dt

=

[

−i∆ω − Γ1 + Γ2

2

]

ρ12 + i

(

V12 + i

√
Γ1Γ2

2

)

ρ11 − i

(

V12 − i

√
Γ1Γ2

2

)

ρ22 , (35)

dρ21
dt

=

[

i∆ω − Γ1 + Γ2

2

]

ρ21 − i

(

V12 − i

√
Γ1Γ2

2

)

ρ11 + i

(

V12 + i

√
Γ1Γ2

2

)

ρ22 . (36)

These equations can be derived following the procedure outlined in Ref. [33]. Here they are

given for zero temperature. Comparison with the Optical Bloch Equations shows that 2 V12

is analogous to the Rabi frequency.

The system of Eqs. (33) – (36) can be solved analytically but we will restrict our consid-

eration to an analysis of some limiting cases of the corresponding eigenfrequencies.

When ∆ω = 0 and Γ1 = Γ2 the eigenfrequencies are 0 ,−2 iΓ1, and ±2 V12−iΓ1. The first

two eigenfrequencies correspond to the anti-superradiant and superradiant states, respec-

tively, while the other two eigenvalues describe the damped Rabi oscillations. The renormal-

ized frequencies of Eq. (8) are in this case ωII = ω1+δω1−V12 and ωI = ω1+δω1+V12− iΓ1.

When ∆ω = 0 and V12 = 0 the eigenfrequencies are 0 ,−iΓ1 − iΓ2, and a two-fold

degenerate value −i (Γ1 + Γ2)/2. Clearly, the first two eigenvalues correspond to the anti-

supperradiant and superradiant states, respectively. The renormalized frequencies of Eq. (8)

are in this case ωII = ω1 + δω1 and ωI = ω1 + δω1 − i (Γ1 + Γ2)/2.

When V12 = 0 and Γ1 = Γ2 the eigenfrequencies are −iΓ1 ±
√

∆ω2 − Γ2
1, and a two-fold

degenerate value −iΓ1. The renormalized frequencies of Eq. (8) are in this case ωI,II =

(ω1 + δω1 + ω2 + δω2)/2− iΓ1/2±
√

∆ω2 − Γ2
1/2.

Finally, when Γ1 = Γ2 = 0, we obtain a well-known set of the eigenfrequencies of

the Optical Bloch Equations without damping [34]: a two-fold degenerate zero value
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FIG. 4: (Color online). Dynamics of the superradiant state: (a),(b) Same as Fig. 2, a, b but

scaled differently. The vertical lines marked as “(c)” and “(d)” indicate frequency detunings used

as parameters for panels (c) and (d), respectively. (c),(d) The time dependences of ρ11 and ρ22 for

the initial conditions of ρ11(0) = ρ22(0) = ρ12(0) = ρ21(0) = 0.5 and frequency detunings indicated

in panels (a) and (b). Also shown is the time dependence of 0.5 exp [−(Γ1 + Γ2)t].

and ±
√

∆ω2 + 4 V 2
12. The renormalized frequencies of Eq. (8) are in this case ωI,II =

(ω1 + δω1 + ω2 + δω2)/2±
√

∆ω2 + 4 V 2
12/2.

Note that Eqs. (33) – (36), complemented by the phenomenological terms describing the

decay of the “coherences” ρ12, ρ21 with the transverse relaxation time, can be used to describe

the Förster resonant energy transfer between semiconductor layers [35]. Such processes were
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discussed in Ref. [15] for the CdSe/ZnS/CdSe multishell structures. While superradiance

is a coherent phenomenon, the Förster resonant energy transfer is characterized by a short

transverse relaxation time and is strictly incoherent [35].

In Fig. 4 we study time evolution of the system which can be initially found in both

semiconductor layers with equal probability [ρ11(0) = ρ22(0) = ρ12(0) = ρ21(0) = 0.5] for

two different energy differences between the excitons in the two layers. In both cases we

see strong Rabi oscillations of the populations while the overall population decay is close

to the “superradiant” exponent exp [−(Γ1 + Γ2)t], in agreement with Fig. 4, b. According

to Fig. 4, a, the “superradiant” state corresponding to Fig. 4, c has energy closer to the

level in the first semiconductor layer, as compared to the state corresponding to Fig. 4, d.

This is consistent with the fact that the mean probability to find the system in the first

semiconductor layer is higher than the mean probability to find the system in the second

semiconductor layer for Fig. 4, c and lower for Fig. 4, d.

C. Nanostructure with Three Semiconductor Layers

Next we consider superradiance in a structure with three semiconductor layers. We take

the structure with the two layers tuned to the conditions where one can observe super-

radiance (we take R1 = 20 Å, R2 = 60 Å, α2 = 0.6835575, cf. Fig. 2), and add an extra

semiconductor layer with the outer radius R3 = 90 Å. Then we change the ratio α3 = r3/R3,

where r3 is the inner radius of the third layer, and tune up the exciton level in the third

layer into resonance with these in the first two semiconductor layers.

The renormalized resonant frequencies are given by the roots of Eq. (14) with N = 3

while the matrix elements Ξi,j are determined by Eqs. (26), (27), and (28). The frequency

detunung is defined as ∆ω = ω1 + ℜΞ1,1 − ω3 − ℜΞ3,3.

The results are shown in Fig. 5. The resonance with the two-emitter anti-superradiant

state has no effect on either the real or the imaginary part of the renormalized frequencies

while the resonance with the two-emitter superradiant state clearly leads to an emergence

of the three-emitter superradiant state.

If the first and the second semiconductor layers were off the resonant conditions for

superradiance then we would also obtain an avoided crossing of levels I and II in Fig. 5, d.

These conditions are not affected by the presence of the third semiconductor layer, as the
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FIG. 5: (Color online). Emergence of superradiant state in a structure with three layers of cubic

semiconductor: (a) Real parts of the renormalized frequencies as functions of the detuning from

the resonance conditions. (b) Imaginary parts of the renormalized frequencies as functions of the

detuning. (c) The detuning as a function of the parameter α3. The inset specifies the structure

sizes used in the calculation. (d) Same as (a) but scaled differently.

dipole-dipole interaction between the first and the third semiconductor layers is negligible

as compared to the dipole-dipole interactions between the first two and between the second

two semiconductor layers. At the same time the radiative coupling between all the layers

remains long-range on this scale.
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IV. NANOSTRUCTURE WITH LAYERS OF WURTZITE SEMICONDUCTORS

In this section we will discuss nanostructures with the two semiconductor layers having

wurtzite crystal lattice. This is the crystal lattice of bulk CdSe. CdSe nanocrystals with

wurtzite crystal structure are more common than these with zinc-blende structure, and

CdSe/ZnS/CdSe multishell nanocrystals studied in Refs. [15–17] also had wurtzite crystal

structure. We will assume that the directions of the C6 axes in both semiconductor layers

coincide and consider circularly polarized light exciting the exciton states with the total

angular momentum projection onto the wurtzite axis equal to +1.

The valence-band subbands of the light and heavy holes are split at the Γ-point of the

Brillouin zone of a bulk semiconductor with wurtzite crystal lattice. Such valence-band

structure is usually described by the spherical Luttinger Hamiltonian perturbed by the

crystal field accounting for the splitting. For excitons in nanocrystals this splitting results

in appearance of two exciton levels characterized by the total angular momentum projection

onto the wurtzite axis equal to +1. We will distinguish the states in the j-th layer by

the superscript: +1Uj and +1Lj . The splitting between the two levels is further modified

by the short-range (analytic) electron-hole exchange interaction [36]. The long-range (non-

analytic) electron-hole exchange interaction also contributes to this splitting [20, 23–25], and

this correction will result from our calculation (cf. Ref. [20]).

As our starting point we will take Eq. (17) and modify it to account for the wurtzite

crystal structure as follows [20]:

|exc,+1Hj , j〉 =
∑

m,n

CHj

m φ(αj)(re/Rj, Rj)R(αj)
n,Fz−m(rh, Rj) |Γ6, m〉 |Γ8, n〉 , (37)

where we keep the notations pertinent to the irreducible representations of the group Td for

the Bloch functions at the band extrema, and Hj = Uj , Lj . The coefficients C
Hj

m are given

by [20, 36]

C
Uj ,Lj

1/2 = ∓

√

√

√

√

√

√

f 2
j + dj ± fj

2
√

f 2
j + dj

,

C
Uj ,Lj

−1/2 =

√

√

√

√

√

√

f 2
j + dj ∓ fj

2
√

f 2
j + dj

,
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where fj = −ηj +∆j/2, dj = 3 η2j ,

ηj =

(

aB
Rj

)2

χ(αj)(β) ~ωTF ,

~ωTF =
2

π

(

a0
aB

)3

εexch ,

a0 is the lattice constant, εexch is the exchange constant,

χ(α)(β) =
1

6

1

1− α
cos2

πα

1− α

×
1
∫

α

dx

[

sin
πx

1− α
− tan

πα

1− α
cos

πx

1− α

]2 [

f
(α) 2
0 (x) +

1

5
f
(α) 2
2 (x)

]

,

∆j = ∆cr v
(αj)(β), ∆cr is the bulk crystal field splitting,

v(α)(β) =

1
∫

α

dx x2
[

f
(α) 2
0 (x)− 3

5
f
(α) 2
2 (x)

]

.

For β = 0.275, α = 0.68, v(α)(β) ≈ 0.26, χ(α)(β) ≈ 0.35.

The short-range (analytic) electron-hole exchange interaction and the crystal field lead

to the following modifications of the exciton resonant frequencies:

δωUj ,Lj
= 2ηj ±

√

4 η2j +∆2
j/4− ηj ∆j .

Further renormalization of the exciton resonant frequencies occurs due to the ex-

citon interaction with the longitudinal and transverse components of the Maxwell

electric field. The resulting frequencies can be found from Eq. (14) with i, j =

1,+1U1; 1,+1L1; 2,+1U2; 2,+1L2. Below we will omit “+1” and label the states by j,Hj

with j = 1, 2 being the number of the semiconductor layer, and Hj = Uj , Lj . The matrix

elements entering Eq. (14) can be expressed with the help of the Wigner 3jm-symbols:

Ξi,Hi;j,Hj = 3Ξi,j
∑

m,m′

CHi

m C
Hj

m′

(

1
2

3
2 1

m 1−m −1

) (

1
2

3
2 1

m′ 1−m′ −1

)

, (38)

where Ξi,j is determined by Eqs. (26), (27), and (28).

In Fig. 6 are shown real and imaginary parts of the renormalized exciton resonant frequen-

cies as functions of the detuning defined as ∆ω = ωU1
+ℜΞ1,U1;1,U1 − ωU2

−ℜΞ2,U2;2,U2. The

structure parameters are the same with these used for Fig. 2 except that the semiconductor
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FIG. 6: (Color online). Emergence of superradiant state in a structure with two layers of wurtzite

semiconductor: (a) Real parts of the renormalized frequencies as functions of the detuning from the

resonance conditions between the upper energy levels in two semiconducting layers with wurtzite

crystal structure. (b) Imaginary parts of the renormalized frequencies as functions of the detuning.

(c),(d) Same as (a) but scaled differently.

layers have wurtzite crystal lattice. The energy positions of the exciton levels in the core

layer almost do not change with the detuning (Fig. 6,a) except for the regions where they

become resonant with the exciton levels in the second semiconductor layer, where avoided

crossings of the exciton levels result from the inter-layer coupling via the Maxwell electric
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field (Figs. 6,c,d). From Fig. 6,b one can see that, far from the resonances, the upper exciton

level in the core semiconductor layer has stronger oscillator strength than the lower level

while for the second semiconductor layer, one has the opposite situation. Therefore, for the

resonance between the upper exciton level in the core layer and the lower exciton level in

the second semiconductor layer the superradiance behavior is most pronounced. Yet, one

can see a clear manifestation of the superradiance for all the four resonances. The widths

of the resonances are of the same order of magnitude as in Fig. 2.

V. CONCLUDING REMARKS

When considering superradiance for atoms or molecules, one often imagines a system of

identical dipole moments emitting light on the same frequency. For an ensemble of quantum

dots, however, one has to account for the inhomogeneous broadening, as quantum dots are

not perfect. So, if one wants to study a phenomenon occurring at resonant conditions, the

width of this resonance becomes an important factor. The situation is similar if, instead of

quantum dots, one has concentric spherical semiconductor layers.

In fact, an atomic or molecular system is also not free from the inhomogeneous broad-

ening. This broadening stems from the dipole-dipole, or Van der Waals interaction which

makes observation of the superradiance in systems with linear dimensions smaller than the

wavelength of light and number of emitters N > 2, envisioned by Dicke [1], impossible, un-

less the dipoles are spatially arranged in some special ways [2] which leave the dipole-dipole

interactions invariant under dipole permutations.

In Sec. II we proposed a system of dipole emitters in the form of concentric spherical

layers of semiconductor with a simple band structure. These layers interact only via the

common electro-magnetic field of light, as their dipole-dipole interaction is forbidden by the

symmetry. Although the layers have different geometry, the exciton state in each individual

layer has the same radiative lifetime. This allowed us to derive a simple equation, Eq. (16),

showing that a symmetric state of N such distributed dipoles, one of which is excited, has a

radiative lifetime N times shorter than the lifetime of an individual dipole, while the size of

the system remains less than the wavelength of light. In other words, this system provides an

ideal realization of the superradiance as it was proposed by Dicke [1]. However, in practice,

it is extremely difficult to meet the resonance conditions necessary for observation of the
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superradiance even for two layers of semiconductor with a simple band structure, as the

width of the resonance is of the order of the exciton radiative linewidth, which is typically

of the order of 1 µeV.

In our formalism, the interaction between the layers of semiconductor with a simple band

structure via the common electro-magnetic field of light is described by a purely imaginary

matrix element. We saw in Sec. III that, if this matrix element acquires an appreciable

real part, the width of the resonance can be made substantially broader. To this end, in

Sec. III we considered a nanostructure with two layers of cubic semiconductor with a com-

plex valence-band structure, for which the dipole-dipole interaction between the layers is

no longer forbidden by the symmetry. It is interesting to note that essentially the same

dipole-dipole interaction, that destroys superradiance in atomic and molecular systems, can

facilitate its observation for semiconductor nanostructures. We demonstrated that, for real-

istic parameters, the width of the resonance can be made broader than the exciton radiative

linewidth by more than two orders of magnitude. As a prototype semiconductor we chose

CdSe with zinc-blende crystal lattice. This is the polytype of CdSe not found in bulk but

possible in nanostructures.

To further emphasize the difference in the nature of inhomogeneous broadening and the

role of the dipole-dipole interaction for superradiance in atomic and semiconductor systems,

we concluded Sec. III by considering a structure with three semiconductor layers. At first

glance, this structure appears to be analogous to the system of three atoms forming a

triangle with a base smaller than the other sizes which was used in Ref. [2] as the simplest

example of a system, where the dipole-dipole interaction destroys superradiance. However,

for a structure with three concentric spherical semiconductor layers, the superradiant state

of three emitters can be readily achieved, as we demonstrated in Sec. III.

In Sec. IV we considered nanostructures with two wurtzite semiconductor layers, where

exciton levels excited in a given circular polarization are split by the crystal field and the

electron-hole exchange interaction. We showed that observation of superradiance is possible

when the resulting exciton sublevel in one semiconductor layer is brought in resonance with

any of its counterparts in the other layer.
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Appendix A: Electron wave function

The envelope wave function for the ground state of an electron confined in the spherical

layer with infinitely high potential barriers, the outer radius R2 and the inner radius r2 =

αR2 (see Fig. 1) has the form

ϕ(α)(x,R2) =
1

√
2π R

3/2
2

1√
1− α

cos
π α

1− α

[

sin π x
1−α

x
− tan

π α

1− α

cos π x
1−α

x

]

θ(1−x) θ(x−α) ,

(A1)

where x = r/R2 and the boundary conditions of the vanishing wave function have been

applied. The confinement energy is

E(α)
e (R2) =

~
2 π2

2meR2
2 (1− α)2

, (A2)

where me is the electron effective mass.

The envelope wave function and energy of an electron confined within a sphere of radius

R1 (see Fig. 1) are given by ϕ(0)(r/R1, R1) and E
(0)
e (R1), respectively. Thus, at first approx-

imation, the resonance conditions for the structure with two semiconductor layers in the

context of Sec. II are reached when R1 = R2(1− α). For example, if R2 = 80 Å, α = 0.75,

we obtain R1 = 20 Å, r2 = 60 Å.

Appendix B: Hole wave function

The ground state of a hole from the Γ8 band of a cubic semiconductor confined in the

spherical layer with infinitely high potential barriers, the outer radius R2 and the inner

radius r2 = αR2 (see Fig. 1) can be characterized by the hole total angular momentum

F = 3/2 and its projection, Fz, onto the z axis. The wave function of this state is given by

ψ
(α)
Fz

(r, R2) =
∑

n

R(α)
n,Fz

(r, R2) |Γ8, n〉, (B1)
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where the components of the matrix R̂(α)(r, R2) can be expressed through Wigner 3jm

symbols [20]

R(α)
n,Fz

(r, R2) = R
−3/2
2

∑

L=0,2

f
(α)
L

(

r

R2

)

(−1)3/2−L/2+Fz 2
∑

M

(

3
2 L 3

2

n M −Fz

)

YLM

(r

r

)

(B2)

and YLM are the spherical harmonics with phases chosen as in Ref. [37]. The radial wave

function, f
(α)
L (x), for α ≤ x ≤ 1 has the form

f
(α)
L (x) = C jL(φα x)+DnL(φα x)+(−1)L/2AjL(

√

β φα x)+(−1)L/2B nL(
√

β φα x) , (B3)

where jL(x) and nL(x) are the spherical Bessel functions, β is the light to heavy hole effective

mass ratio, the coefficients A, B, C, and D satisfy the following system of equations

Aj0(α
√

β φα) +B n0(α
√

β φα) + C j0(αφα) +Dn0(α φα) = 0 , (B4)

Aj2(α
√

β φα) +B n2(α
√

β φα)− C j2(αφα)−Dn2(αφα) = 0 , (B5)

Aj0(
√

β φα) +B n0(
√

β φα) + C j0(φα) +Dn0(φα) = 0 , (B6)

Aj2(
√

β φα) +B n2(
√

β φα)− C j2(φα)−Dn2(φα) = 0 , (B7)

and φα is obtained from the condition that the corresponding determinant vanishes. The

functions f
(α)
L (x) are normalized by the condition

1
∫

α

{

[

f
(α)
0 (x)

]2

+
[

f
(α)
2 (x)

]2
}

x2 dx = 1 .

The confined hole energy is

E
(α)
h (R2) =

~
2 φ2

α (γ1 − 2 γ)

2m0R2
2

, (B8)

where m0 is the free electron mass.

When β → 1 the light and heavy hole subbands of the valence band become degenerate.

In this case, for the hole ground state, Eqs. (B4) – (B7) yield

j0(αφα)n0(φα)− n0(αφα) j0(φα) = 0

or

tanφα = tan (α φα) ,
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FIG. 7: (Color online). Dependence of φα on α for β = 0.275 (red line, top curve) and for β = 1

(blue line, bottom curve).

A = C, and B = D. Therefore, in this limit φα = π/(1 − α), f
(α)
2 (x) = 0, and f

(α)
0 (x) =

R
3/2
2 ϕ(α)(x,R2) [cf. Eqs. (A1), (A2)].

When α = 0 then B = D = 0 and Eqs. (B6), (B7) yield

j0(
√

β φ0) j2(φ0) + j2(
√

β φ0) j0(φ0) = 0 .

This is the case of the hole confined in a sphere. However, one should be careful with this

limiting case, as, for the hole confined in a sphere, f
(0)
0 (x = 0) 6= 0.

In Fig. 7 φα is plotted as a function of α for β = 0.275 and β = 1. The value of

β = 0.275 gives the ratio of the light- to heavy-hole effective masses for CdSe while the

value of β = 1 corresponds to degenerate light and heavy hole subbands when analytic

results of Appendix A become applicable and φα = π/(1− α).

Appendix C: Values of CdSe material parameters used in the calculations

We chose CdSe as a prototype semiconductor for illustrative purposes. In Table I we list

parameters used in our numerical calculations.
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TABLE I: Values of CdSe material parameters used in the calculations [25, 36]

parameter value units parameter value units

Eg 1.74 eV εb 5.7 –

me 0.11 m0 ~ωLT 0.95 meV

γ1 2.04 m0 aB 56 Å

γ 0.58 m0 ~ωTF 124 µeV

β 0.275 – ∆cr 25 meV
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[9] R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer, Collective Lamb Shift in
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