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We propose a new general-purpose semi-local/non-local exchange-correlation functional approxi-
mation, named mBEEF-vdW. The exchange is a meta-generalized gradient approximation, and the
correlation is a semi-local and non-local mixture, with the Rutgers-Chalmers approximation for van
der Waals forces. The functional is fitted within the Bayesian error estimation functional frame-
work [J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T.
Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)], [J. Wellendorff, K. T. Lundgaard,
K. W. Jacobsen, and T. Bligaard JCP 140, 144107 (2014)]. We improve the previously used fitting
procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to
outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore
introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling
and geometric mean estimator over the training datasets. Using this estimator, we show that the
robust loss function leads to a 10% improvement in the estimated prediction error over the previ-
ously used least squares loss function. The mBEEF-vdW functional is benchmarked against popular
density functional approximations over a wide range of datasets relevant for heterogeneous catalysis,
including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a
higher general accuracy than competing popular functionals, and it’s one of the best performing
functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also
show the potential energy curve of graphene on the nickel(111) surface, where mBEEF-vdW match
the experimental binding length. mBEEF-vdW is currently available in GPAW and other DFT
codes through LIBXC version 3.0.0.

PACS numbers: 71.15.Mb, 31.15.eg, 68.43.−h, 02.50.Tt

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)1,2
has become a nearly ubiquitous tool in materials science.3
KS-DFT provides a framework for how to approximate
the many-body problem by introducing the exchange cor-
relation (XC) functional, for which the exact form is un-
known. The usefulness of KS-DFT therefore relies on
finding good XC functional approximations. This can be
accomplished by constraint satisfaction, using model sys-
tems, or empirically by fitting to experiments or higher-
accuracy computations.4 The XC functional is however
only useful if we can use it to accurately predict mate-
rial properties other than the systems used for the fit-
ting. For empirical functional development, it is there-
fore necessary to use fitting methods that ensure such
transferability.5,6

Fitting an empirical functional requires the following:
(1) choosing a proper model space; (2) gathering accurate
and descriptive training data; and (3) selecting the op-
timal model within the model space that neither under-
nor overfits the training data.7 An often ignored prob-
lem is how outliers in the training data can influence the
optimal model choice. In this work, we will introduce a
fitting procedure with robust regression that is resilient
to such outliers, and use it to produce a high-performing
XC functional for heterogeneous catalysis studies.

When we apply KS-DFT predictions, we need to ad-

dress the unavoidable inaccuracy due to an approxi-
mative XC functional. To this end, a framework for
Bayesian error estimating functionals (BEEFs) was de-
veloped, where a functional ensemble would allow for er-
ror estimation.8 Two BEEF family functionals were later
produced, named BEEF-vdW9 and mBEEF7. These
were both optimized as general-purpose functionals for
surface science studies by fitting highly parameterized
functional forms to training datasets including bulk prop-
erties, gas-phase molecular chemistry, and surface chem-
istry. The error estimating capabilities of these func-
tionals have since been utilized in several surface science
studies.10–13 We here refine the previously used fitting
procedure and fit a functional within an expanded ex-
change correlation functional model space.

The model space complexity of the XC functionals is
commonly classified through a functional ladder, with in-
creased complexity at higher rungs.14 At the lowest rung,
only local electron density is used in the XC functional;
next, one includes semi-local information, i.e. deriva-
tives of the electron density; and finally, fully non-local
information is included, first for the electron density and
then for the wave functions. Higher complexity leads
to higher computational cost, but allows for a more ac-
curate functional, which can overcome the otherwise in-
evitable compromises between describing different mate-
rial properties.7,15

In this work, we focus on fitting on the semilocal meta-
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GGA rung for exchange, which uses as ingredients the
density, the density gradient, and the Kohn-Sham ki-
netic energy density. For correlation we will also con-
sider the non-local density-density overlap. Higher rung
functionals that uses the non-local exact exchange are so
computationally demanding that they become unfeasible
for most heterogeneous catalysis studies.16 For recent ad-
vancements in the development of meta-GGA function-
als, both empirical and non-empirical, see Ref. 6, 17–26.

The BEEF-vdW9 functional was fitted within semi-
local generalized gradient approximation (GGA) for ex-
change, which depends on the electronic density and its
derivative. Its correlation was a fitted mixture of a Lo-
cal Density Approximation (LDA), semi-local GGA, and
non-local correlation of Rutgers-Chalmers approximation
for van der Waals forces.27,28 The mBEEF7 functional
was fitted within the meta generalized gradient approxi-
mation (MGGA) for its exchange, which includes the ki-
netic energy density such that the model can distinguish
between different types of electron orbital overlap,29 and
it uses a GGA type correlation.

A limited model space for the XC approximation
means that XC functional creator will make compro-
mises between the accuracy of predicting different mate-
rial properties.7 For the BEEF functionals, the compro-
mises can be summarized as follows. BEEF-vdW9 has
a high accuracy on chemisorption systems compared to
semi-local functionals, and reasonable accuracy on dis-
persion systems relative to other GGA-vdW function-
als. However, BEEF-vdW has a lower accuracy on lat-
tice constants and surface energies compared to the best
semi-local functionals, which is generally true for most
GGA-vdW functionals.9,30 The mBEEF7 functional has
a high accuracy on both chemisorption energies and lat-
tice constants relative to other semi-local functionals, and
thereby overcoming the limits of GGA type exchange
functionals. However, its accuracy is limited on binding
energies for systems where long range dispersion is impor-
tant compared to GGA-vdW functionals, which could be
attributed to a lack of a van der Waals correlation term.
A BEEF functional that combines the model spaces of
BEEF-vdW and mBEEF is therefore a logical step for-
ward as such a functional should be able to achieve a
high accuracy on chemisorption, dispersion, and lattice
constants simultaneously.

In this work, we parameterize the XC functional model
space of MGGA exchange and correlation with non-local
van der Waals correction. Within this model space, we
fit a functional using a robust fitting procedure with a
cost function using a product of robust loss functions
for the training datasets, and regularization with a non-
smoothness penalty on the fitting coefficients. For choos-
ing the regularization strength, we use a generalization of
the bootstrap 0.632 estimating prediction error with geo-
metric mean over datasets and hierarchical sampling. We
name the new functional mBEEF-vdW, and we propose
that it is a computationally efficient and generally appli-
cable exchange-correlation functional for heterogeneous

catalysis.
The structure of the paper is the following. In section

II, we present the methods used for fitting the mBEEF-
vdW functional including the parameter space, the train-
ing datasets, and the model selection procedure. In sec-
tion III, we present the optimization of the most impor-
tant variables in the fitting scheme. In section IV, we
present the mBEEF-vdW functional form. In section V,
we benchmark mBEEF-vdW against popular semi-local
and non-local density functionals. Lastly in section VI,
we summarize, discuss, and conclude.

II. METHODS:

A. Parameter space

For the parametrization of the exchange correlation
energy functional, we use the flexible exchange energy
parametrization introduced for mBEEF,7 while the
correlation is parameterized as a mixture of correlation
functionals from the litterature, similar to what was
done for fitting BEEF-vdW.9

Following the usual conventions,31 we write the ex-
change energy from the semi-local meta-generalized-
gradient-approximation (MGGA) as an integral over
the uniform electron gas exchange energy density εUEGx

scaled with an exchange enhancement factor Fx, hence

Ex =

ˆ
nεUEGx (n)Fx(n,∇n, τ)dr, (1)

where n = n(r) is the local electron density, ∇n is
the density gradient, and τ = 1

2

∑
i,σ |∇Ψi,σ|2 is the

semi-local kinetic energy density, which is summed over
spins σ and state labels i for the KS eigenstates Ψi,σ.
Atomic units are used throughout. The enhancement
factor’s parameters are made dimensionless by introduc-
ing the reduced density gradient s = |∇n|/(2kFn) with
kF = (3π2n)

1
3 , and the reduced kinetic energy den-

sity α = (τ − τW )/τUEG, where τW = |∇n|2/8n and
τUEG = (3/10)(3π2)

2
3n

5
3 . With these definitions, the

MGGA exchange enhancement factor can be expressed
as a function of s and α.

For our parametrization of the MGGA exchange en-
hancement factor, we introduce the transformations ts
and tα for s and α, and expand Fx(ts, tα) in products of
1-dimensional Legendre polynomials B of either ts or tα,
similar to what was done in Ref. 7:

ts(s) =
2s2

q + s2
− 1, (2)

tα(α) =
(1− α2)3

1 + α3 + α6
, (3)

Pmn = Bm(ts)Bn(tα), (4)
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Fx(s, α) =

Ms−1∑
ms=0

Mα−1∑
mα=0

aMa·ms+mα+1Pms,mα , (5)

where ak is the kth fitting coefficient that we wish to
find with Mx = Ms ·Mα, hence k ∈ {1, 2, ..,Mx}. With
the above transformations, ts and tα are confined to
the interval [−1,+1] on which the Legendre polynomi-
als form an orthogonal basis. For ts we chose q = κ/µ =
0.804/(10/81) = 6.5124, such that the s dependency in
principle could fulfill the slowly-varying electron gas limit
close to s = 0.32 We similarly choose the transformation
tα such that the second order gradient expansion can be
fulfilled according to Ref. 33.

For the correlation energy, we use a parametrization
given by

Ec [n,∇n] = aLDAE
LDA
c + aslE

sl
c + anlE

nl
c , (6)

where ELDAc is the local Perdew-Wang correlation,34 Eslc
is the semi-local (sl) correlation energy functional of ei-
ther PBE35, PBEsol36, vPBE33, or revTPSS37, and Enlc
is the non-local (nl) correlation energy from either vdW-
DF28 or vdW-DF227. The correlation coefficients takes
the indexesMx+{1, 2, 3} in the coefficient vector a. The
parameter space for the correlation has thereby been ex-
panded compared to BEEF-vdW by the inclusion of a
coefficient on the term for non-local correlation, and by
using independent fitting parameters on local and semi-
local correlation.38

B. Training datasets

We train the model on a subset of the datasets pre-
viously introduced and used in earlier BEEF functional
studies:7,9

RE42 42 reaction energies that represent gas-
phase chemistry.39

CE27 27 chemisorption energies.7

Sol54Ec Cohesive energies of 54 solids.7

Sol58LC-dEc The derivatives of 58 cohesive energies
with respect to the crystal volumes around
the experimental equilibrium lattice con-
stants, taken from the Sol58LC dataset.7

S22x5 Non-covalent interaction of the 22 inter-
molecular interaction energies, with the
interaction energies of the relative dis-
tances of 0.9, 1.0, 1.2, 1.5 and 2.0.40 The
reference values have been corrected as in
Ref. 9.

All DFT calculations were done in GPAW41,42, and the
computational details are the same as those of Ref. 7
and 9.

C. Model selection

We seek the coefficient vector that gives the best per-
forming functional, i.e. neither under- nor overfit the
training datasets. The starting point for our fitting pro-
cedure is the least sum of squares (LS), which we will
extend to resolve its shortcomings. With LS, we mini-
mize the cost function C = (Xa − y)2, where y is the
target vector of length N , a is the coefficient vector of
length P , and X is the design matrix of size N × P .
The LS cost function should in principle be minimized
by a = (XTX)−1XTy. However, XTX can have eigen-
values close to zero, and this can lead to an overfit of the
training data. The instability can be handled by adding
a second term to the cost function; a so-called regular-
ization term, which penalizes the Euclidean norm of the
coefficient vector. We can write the cost function with a
regularization as C = (Xa− y)2 + ω2a2, where ω ≥ 0 is
a constant that scales the regularization penalty.43 This
method is referred to as ridge regression, and we will re-
fer to it as RR-LS for ridge regression with a least sum
of squares loss function. We can write this cost function
in the form

C = L(a, D) +R(a, ω), (7)

where the loss term L provides a measure for how well
the model a performs on the training data D, and
the regularization term R is a measure for the model
complexity.44,45 The loss and regularization terms are
balanced through the regularization strength ω as we
saw with RR-LS. To choose the optimal regularization
strength, we can use cross-validation techniques to pro-
vide a measure for the transferable accuracy of the model
to systems that the model was not trained on, and opti-
mize for this measure.45

The RR-LS method with its regularization is superior
to the LS method, however there are a number of prob-
lems that RR-LS cannot handle well: Different scales of
the training data, weighing the penalty between differ-
ent basis functions, and outliers in the training data. To
handle these problems, we refine the RR-LS fitting pro-
cedure in the context of XC fitting similar to the previous
BEEF functional fitting studies, but with some further
advancements.7,9 First, we will introduce a cost function,
where we use the geometric mean to make compromises
between how well we fit each training datasets. Secondly,
we introduce a regularization term, which uses smooth-
ness for penalizing the coefficients of the exchange en-
hancement factor. Thirdly, we present a new estimate
for the transferable accuracy of the fit, which we use to
find the regularization strength with a generalization of
the 0.632 bootstrap estimator. Fourthly, we employ a
robust loss function instead of LS to make the fit robust
towards outliers in the dataset. Lastly, we adjust the
Bayesian error estimating ensemble creation to account
for the use of a robust loss function. We believe that
point 3 to 5 are unique to the present study, whereas
point 1 and 2 are from Ref. 7.
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1. Geometric mean loss function

The number of elements and the physical units in the
datasets vary. If we treat all data points equally and
use the sum of squared fitting errors over the train-
ing datasets, we will skew the solution compromise to-
wards the datasets with more systems and larger abso-
lute fitting errors unless we add a normalization. We
can however avoid the need for a normalization if we
use a geometric mean over the training datasets instead
of the arithmetic mean. Following the procedure from
mBEEF7, we create an objective function as a product
over the loss functions for the datasets multiplied by a
regularization term given as

Φ(a, ω,W) =
∏
i

Li(a)Wi · eR(a,ω), (8)

where the ith dataset has a loss function Li and a weight
Wi.46 Compared to the form in mBEEF, we include a
weighing of the datasets similar to the fitting procedure
for BEEF-vdW9, which allows us to tune the compromise
between the different datasets. The loss function term L
could be LS or a robust loss function as we will show
later.

However, we would like to bring the optimization prob-
lem back to a linear form as this would allow for a simple
optimization strategy, and would make the error estima-
tion method more straightforward. To this end, we will
follow the derivation in Ref. 7. We can take the logarithm
of Φ without changing its minimum, and therefore, min-
imize K = ln(Φ) =

∑
iWi ln{Li(a)}+R(a, ω) instead of

Φ. Next, we use the zero-gradient condition to find the
minimum of K by solving

∂K

∂a
= 0 =

∑
i

Wi
∂ lnLi
∂a

+
∂R

∂a
=
∑
i

Wi
∂Li
Li∂a

+
∂R

∂a
,

(9)
where we have left out the dependencies of L and R on
a and ω. The zero-gradient condition of the RR-LS cost
function form in eq. (7) is given by ∂C

∂a = ∂L
∂a + ∂R

∂a . Ignor-
ing the dataset weights, we see that the only difference
between the solution to RR-LS and eq. (9) is the normal-
ization by L. We can therefore linearize our product cost
function of eq. (8) as

K̃(a;ω) =
∑
i

Wi
Li(a)

Li(a0)
+R(a;ω) (10)

= L̃(a,a0) +R(a;ω), (11)

where the optimal solution a0 is estimated iteratively by
minimizing K̃ given a starting guess of a0. We are aware
that minimizing K̃ can result in a suboptimal solution if
the cost function of eq. (8) has many local minima around
a0; however, this does not seem to be a practical problem
for fitting our functional as tests with different starting
points resulted in the same solution.

2. Regularization

We use a quadratic regularization term with a
Tikhonov transformation given as

R(a, ω) = [Γ(a− ap)]
2, (12)

where ap is the origo for the regularization, and Γ2 is the
Tikhonov matrix.44 The Tikhonov matrix is uncoupled
between the basis functions for exchange and correlation,
and it takes the form

Γ2 = Γ2
x + λc/xIc + λII, (13)

where Γ2
x is the Tikhonov matrix of the exchange basis

functions, Ic is a identity matrix over the correlation basis
functions with a scaling constant λc/x, and the identity
matrix I covers both correlation and exchange basis with
a scaling constant λI .

For the exchange part of the Tikhonov matrix Γ2
x, we

find the entries by calculating a two dimensional smooth-
ness measure, which is given as an integral over the Lapla-
cian ∇̃2 of the basis functions P (ts, tα), hence

∇̃2 =
∂2

∂t2s
+ λα/s

∂2

∂t2α
, (14)

Γ2
x,mnkl =

ˆ 1

−1

ˆ 1

−1
dts dtα∇̃2Pmn∇̃2Pkl, (15)

where λα/s scales the regularization penalty between
polynomials in ts and tα. Note that Γ2

x is zero for the
zeroth and first order terms, and the additional term λII
is therefore included in eq. (13) to prevent numerical in-
stabilities.

3. Hierarchical .632 bootstrap prediction error estimator

To determine the optimal regularization strength ω
and compare different loss functions, we introduce a gen-
eralization of Efron’s .632 bootstrap estimated prediction
error (EPE).47 We generalize the bootstrap sampling by
sampling the training datasets hierarchically, and by us-
ing the geometric mean over the training datasets in the
bootstrap estimators.

a. The sampling procedure. We create a hierarchical
bootstrap sample b in two steps: first, we sample the
training datasets internally by randomly drawing with
replacement; secondly, we randomly draw a collection of
datasets with replacement from the resampled training
datasets. A bootstrap sample b will therefore only have a
subset of the original training datasets, and each of these
datasets will only have a portion of their data points
present. We have the same number of training datasets
in each sample, but these datasets vary in size and the
total number of data points in each sample will therefore
also vary.
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b. The estimated prediction error. Following the
original bootstrap .632 procedure, we write the estimated
prediction error (EPE) as

EPE =
√

0.368 err + 0.632 ERR, (16)

where err is the training error, which is the variance
of the prediction error for all training data, and ERR
is the bootstrap error, which measures the transferabil-
ity through calculating the variance of bootstrap sample
predictions.45

We define the training error (err) as the weighted geo-
metric mean of the mean squared error for each dataset,
hence

err =

(∏
i

errWi
i

)1/
∑

i
Wi

, erri =
1

Ni
(Xia−yi)

2, (17)

where a is the optimal model for all data, and i in Xi

and yi means that we take the design matrix and target
vector associated with the i’th dataset.

We similarly generalize the leave-one-out bootstrap es-
timator ERR with the geometric mean over the training
datasets. For each data point j of dataset i, we cal-
culate the mean squared error of the predictions from
fitting to the bootstrap samples b where the data point
was not present; next, we calculate the mean of these
squared errors for each dataset; and finally, we calculate
the weighted geometric mean over the training datasets,
hence

ERR =

(∏
i

ERRWi
i

)1/
∑

i
Wi

, (18)

ERRi =
1

Ni

∑
j

1

|C−(i,j)|
∑

b∈C−(i,j)

(xi,jab − yi,j)2, (19)

where C−(i,j) is the subset of bootstrap samples b of size
|C−(i,j)| without data point (i, j), xi,j is the j’th row of
the design matrix for dataset i, yi,j is the j’th target value
of dataset i, and ab is the optimal solution for bootstrap
sample b.

For a single dataset, the sampling method, ERR, err,
and EPE all reduce to the original bootstrap .632 formu-
lation.

4. Robust loss function

Let’s revisit the least sum of squares (LS) optimization
criteria in the loss function. LS is the most popular loss
function mainly because of its computational simplicity,
rather than its optimal efficiency for regression problems
with a normal distributed noise.48 However, LS is also

very sensitive to outliers in the data. If we take a single
training data point and change it to an extreme value, the
optimal model of LS can become useless for reproducing
the rest of the training data. We might not even detect
such outliers in the training data because we evaluate
whether data points are outliers using a model influenced
by the outliers, which creates a masking effect.49

We could instead use a robust estimator such as the
least median of squared residuals (LMS), which min-
imizes the median of {r2j , j = 1, ..., N}, where rj =

xja − yj is residual for the j’th data point.48 Similar
to LS, we find the scale estimate of LMS by the square of
this criteria, which is called the median absolute devia-
tion about zero. For the LMS, we can arbitrarily change
almost 50% of the training data and the estimator will
still provide a good scale estimate to the rest of the data.
We therefore say that the LMS has a breakdown point
of 50%, which is as good as you can do.50 However, the
LMS loss function lacks a high normal efficient, meaning
that the estimate perform much worse than LS if we were
to fit data fully explained by our model space, but with
a normal distributed noise on the training data.

Other estimators have however been proven to achieve
both a high breakdown point and a high normal
efficiency.49 One example is the MM-estimator, which we
will use for our loss function.51 In the following, we will
present the MM-estimator and the S-estimator that is
used as the first step of the MM-estimator procedure,
starting with the S-estimator.52

a. S-estimators. Both the LS and LMS estimators
are scale invariant. The S-estimator of scale is a fam-
ily of estimators where this is not the case, hence
the name where S stands for scale.52 They were pro-
posed on the basis of the maximum likelihood estima-
tors (M-estimators).53 For the M-estimators, we mini-
mize

∑
j ρ(rj), where ρ(t) is a symmetric non-constant

function with a unique minimum at zero and is nonde-
creasing with respect to |t|. LS is an M-estimator with
ρ = r2. For the S-estimator, we additionally require that
ρ is continuously differentiable, ρ(0) = 0, and that there
exist a constant k > 0 such that ρ is strictly increasing
in [0, k] and constant in [k,∞[.

A commonly used ρ-function that fulfills the S-
estimator requirements is the TukeyBisquare,49 which is
defined as

ρbis(t) = min{1− (1− t2)3, 1}. (20)

The saturation with respect to t makes the estimator
robust if the residuals are properly scaled, which is done
by dividing with an estimate for the scale σ̂. The loss
function for an S-estimator can therefore be written as

L =
1

N

∑
j

ρ
(rj
σ̂

)
, (21)

for the scale estimate σ̂ that is found as the solution of
1

N

∑
j

ρ
(rj
σ̂

)
= δ, (22)
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where δ determines the breakdown point of σ̂. If there are
more than one σ̂ that solves this equation then we take
the smallest of them.52 A maximum breakdown point is
obtained with δ ≈ 0.5, with a correction that depends on
the number of fitting parameters compared to the size of
the training dataset.49

With S-estimators, it is possible to obtain either a high
breakdown point or a high efficiency, but not simultane-
ously both. The S-estimator however provides a good
starting point for the MM-estimator, which can.

b. The MM-estimator. To simultaneously achieve a
high break down point and a high normal efficiency, we
use the MM-estimator where two M-estimators are used
in serial.51 The first M-estimator ρ0 is chosen to have a
high breakdown point, and the second ρ1 is chosen to
have a high efficiency. However, we constrain the second
M-estimator ρ1 such that the breakdown point of ρ0 is re-
tained by using the scale of ρ0. The high efficiency of the
second M-estimator is obtained by introducing different
normalization constants for each M-estimator, given as
ρ0(r) = ρ( r

c0σ̂
) and ρ1(r) = ρ( r

c1σ̂
). To ensure a higher

efficiency of ρ1 compared to ρ0, we need ρ1 ≤ ρ0 and
therefore c1 ≥ c0.49 We will use the S-estimator Tukey-
Bisquare ρbis for ρ in the MM-estimator, and find the
shared robust scale by solving eq. (22).

c. Weighted normal equations. To solve the RR-
LS type cost function with an S-estimator ρ−function,
we can use the Iterative ReWeighting Least Squares
(IRWLS) method.49 We first note that the solution of
the RR-LS cost function can be found in a the closed
form, given as a =

(
XTX + Iω2

)−1
XTy.44 For the S-

estimator loss function, we can create a similar solution
by introducing a weight on each system in the training
data.49,54 These weights are calculated as

tj =
rj
σ̂
, wj(tj) =

ρ′(tj)
2tj

,

w = (w1, . . . , wN ) , W = diag(w), (23)

and are used to scale the design matrix and target vector
by X → WX and y → Wy. Differentiating the cost
after the transformations with respect to the coefficient
vector a and setting it equal to zero yields the solution

a =
(
XTWX + ω2I

)−1
XTWy, (24)

which is a weighted version of the solution to the RR-LS
cost function. Since ρ and W (t) are decreasing functions
of |t|, observations with large residuals relative to the
scale σ̂ will be weighted down through W.

The weighted normal equation is solved through an
iterative procedure. Step 0: We initialize with a guess
for a robust solution coefficient vector. Step 1: For the
coefficient vector, we determine the IRWLS weights ac-
cording to eq. (23). Step 2: We solve eq. (24) and find a
new coefficients vector. Step 3: We check for convergence
in the weights and terminate if the procedure fulfills our
convergence criteria, or if not, jump back to step 1.55 For
the S-estimator, we also determine the scale estimate by

solving eq. (22) in step 1, whereas the scale is fixed in ρ1
of the MM-estimator.

d. The Hessian. The Hessian for the cost function
with IRWLS weights is given as

Ĥ = X(XTWX + ω2I)−1XTW, (25)

and the corresponding number of effective parameters
is found as the trace of this Hessian, hence N̂eff =

Tr
(
Ĥ
)
.45,54

e. Calculation procedure. We base our implementa-
tion of the MM-estimator in our cost function on Ref. 54,
which provides a procedure with corrections for integrat-
ing the MM-estimator loss function in a ridge regression
type cost function. To conform with the fitting compro-
mise, we introduce a bias term µ for each dataset, which
we calculate the residuals about, such that rj = yj −xja
+ µ̂i for the i’th dataset. For each datasets, we esti-
mate the location parameter µ̂i and the scale estimate σ̂i
simultaneously, using Huber’s second method.56

As the first step for making the MM-estimator, we need
to find the S-estimator of scale for each dataset. The IR-
WLS procedure for solving the S-estimator loss function
however has to be initiated with a good robust guess
ainit for the coefficient vector, i.e. a guess with a high
breakdown point. To this end, we take Ninit = 200 regu-
lar random bootstrap samples with replacement from the
training data, and solve the regular RR-LS cost function
for each sample.57 The regularization strength has been
determined before we initiate the MM-estimator proce-
dure as we will describe later. If we have outliers in
the training data then some of the bootstrap samples
should omit a part of or all of these outliers, and result
in sensible models. These starting guesses might not be
robust enough if the datasets were to be highly contam-
inated with large outliers, but we do not expect that to
be the case for our fitting problem. For each guess, we
calculate the S-estimator scales σ̂ for the TukeyBisquare
ρ−function through eq. (22), where for the i’th training
dataset we use δi = 0.5(1−N̂eff/Tr(Wi)) and normalize
with ci,0 = 7.8464−34.6565·δi+75.2573·δ2i−62.5880·δ3i .58
This would for example yield c0 = 1.51 when δ = 0.5.
From theNinit solutions, we take theNkeep = 25 with the
lowest weighted geometric mean of the estimated scales
for the training datasets.

To find the scale estimate for the MM-estimator, we
introduce an S-estimator loss function, which we solve
using the IRWLS method for the Nkeep initial guesses.
We label the S-estimator loss function by SE, and it takes
the form

Li,SE(a) = σ̂2
i

∑
j

ρbis

(
rj(a)

ci,0σ̂i

)
, (26)

where the σ̂2
i in the front of the summation is a nor-

malization factor introduced to make the loss function
coincide with the LS loss function when ρ(t) = t2. We
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update σ̂i and ci,0 in each iteration of the IRWLS pro-
cedure according to the expressions in the above para-
graph. In the cost function, we scale ω to match RR-LS
with ω2

SE = ω2/3.43.59 We apply the same scaling when
using the MM-estimator loss functions. To achieve con-
sistent results, we to converge the IRWLS procedures to
a fairly low tolerance of 5h on the average change and
10% for the maximum change of the IRWLS weights.60

From the Nkeep converged IRWLS solutions, we pick
the solution with the lowest weighted geometric mean of
estimated scales, which we call âSE with σ̂SE . We use
âSE as the initial solution for the MM-estimator, while
the scales for the second step of the MM-estimator are
found with the correction to σ̂SE given as

σ̂i,MM =
σ̂i,SE

1− (k1 + k2/Tr(Wi,SE)) ·Neff/Tr(Wi,SE)
,

(27)
where k1 = 1.29, k2 = −6.02, and Wi,SE is the part
of the converged SE IRWLS weights WSE that belongs
to the i’th dataset.61 The MM-estimator loss function is
then given as

Li,MM (a) = σ̂2
i,MM

∑
j

ρbis

(
rj(a)

c1σ̂i,MM

)
, (28)

where we choose c1 = 3.44 as in Ref. 54 to provide a
nominal efficiency of 85% as a higher efficiency has been
found to introduce a bias. We solve the cost function
with the MM-estimator loss function using the IRWLS
method similar to for the SE loss function, but where
the scales are now kept fixed.

f. Convergence of the regularization strength. For
convergence of the IRWLS weights with respect to the
regularization strength, we use the following procedure.
Step 0: We initialize with W = I. Step 2: We find the
optimal regularization strength by minimizing the EPE,
where we have scaled all data points with W in eq.́(10)
with the LS loss function. Step 3: For the optimal regu-
larization strength, we solve with the MM-estimator loss
function, which gives us the IRWLS weights that will
make the LS loss function solve as the MM-estimator. If
the procedure has not converged then we go back to step
1, and use the new weights to find the optimal regulariza-
tion strength again. We used a convergence tolerance of
10% on the maximum residual change and 1% on average
residual change between the iterations. The procedure
converged to fixed final solution vector âMM and scales
σ̂MM in 5-10 iterations.62

D. Bayesian Error Estimation ensemble

As with previous BEEF functionals,7,9,63 we propose
an ensemble of functionals to be used for error estimation
of DFT predictions. We use a probability distribution P
to generate the ensemble of fluctuations δa around a0,
defined as P ∝ exp

(
−K̃(a)/τ

)
, where we have to set

a "temperature" τ . Practically, we choose τ such that
the ensemble reproduce the weighted geometric mean of
the observed error for the fitted datasets. To do this,
we note that the unscaled, i.e. τ = 1, average ensemble
error for all fitted data points can be found by yBEE =√
Tr(XĤXT ). We label the root mean squared error for

the observed error by RMSEobserved and for the Bayesian
error estimation by RMSEBEE . The temperature is then
given as

τ =


(∏

iRMSEWi

observed,i

)1/∑Wi

(∏
iRMSEWi

BEE,i

)1/∑Wi


2

, (29)

where the index i is for the i’th datasets. We define a
scaled inverse hessian Ω that we use to create the ensem-
ble functions as

Ω = τĤ−1, (30)

which has the eigenvalue decomposition ΩV =
diag(u)V, with the eigenvalues u on the diagonal of a
square matrix with zero non-diagonal elements and eigen-
vectors in the rows of the matrix V. The ensemble func-
tionals can then be generated as

δak = V · diag(
√

u) · rk, (31)

where rk is a Np long random vector of normal dis-
tributed numbers (variance 1 and mean 0). For a single
DFT energy, we can also find the average error estimate
directly as

√
xΩ−1xT , where x is a vector with the basis

function energies for the converged calculation.

III. OPTIMIZING FUNCTIONAL
APPROXIMATION

In the following, we show the performance sensitivity
to the most important parameters in the fitting method-
ology. We set the weights Wi for the datasets to the
following: 2 for CE27 and RE42, 1 for Sol54Ec and
Sol58LC, and 1

5 for each S22x5 subset. The weights on
S22x5 hence add up to 1, which puts the full dataset on
the level with Sol54Ec and Sol58LC. The choices follows
those made for BEEF-vdW in Ref. 9, but with a higher
weight on S22x5 because we want to use the enlarged
model space to improve prediction power on dispersion
dominated systems.

For the regularization, we use λα/s = 10 and λc/x =

λI = 10−4 as those values seem to produce the lowest
EPE. For origo of the coefficients ap, we use Fx(s, α) =
1, αLDA = 0.5, αsl = 0.5, and αnl = 1. We generate
500 hierarchical bootstrap samples, and reuse them for
all regularization strengths, so that the EPE at different
regularization strengths are comparable.64
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A. Convergence of geometries and electronic
densities

The XC functional can be optimized through a linear
fit because the total energy depends linearly on the fitting
parameters. However, this only holds if selfconsistency of
the electronic density can be neglected. To address this
issue, we make two iterations of optimizing the geome-
tries and densities with subsequent functional fittings. In
the first iteration, we create the basis function energies
for the fit using geometries and densities from converged
calculations with PBEsol36. We refer to the fit made on
the PBEsol densities as release candidate 1 (RC1).65 We
then re-optimize all systems in the training datasets with
the RC1 functional, and calculated new energies for each
basis function at the converged RC1 geometries and den-
sities. For the final fit, we use the converged densities to
RC1. We refer to this fit as release candidate 2 (RC2) or
mBEEF-vdW. We re-optimize all systems in the training
datasets again to the RC2 functional for the benchmark
of mBEEF-vdW. To assess selfconsistency, we compare
the root mean square difference for each dataset between
the prediction on RC1 densities and the selfconsistent re-
sult: ∼ 10% for Sol54Ec, < 1% for the geometric mean
of S22×5, virtually zero for CE27, and 3% for RE42. We
do not have non-selfconsistent predictions for the lattice
parameters for RC2 to compare with unfortunately.

B. Regularization strength

The effect of the regularization strength on the EPE
is shown in Fig. 1, where we find a minimum EPE at
9.8 effective parameters. The err doesn’t change much
from around 8 effective parameters, indicating that over-
fitting will not improve performance much. The ERR
increases slightly around the minimum and sharply up-
wards at around 13 effective parameters, indicating over-
fitting if we were to use that many effective parameters.
The high EPE, ERR, and err at few effective parameters
shows that the performance is drastically improved from
the origo solution vector ap.

C. Correlation functions

In table I, we show how different semi-local and non-
local correlation functionals affect the EPE, ERR, and
err. The best result was found with PBEsol and vdW-
DF2, which has the lowest err, ERR, and EPE, and also
the lowest number of effective parameters. We observe
a spread in the EPE of about 20% between the differ-
ent choices of correlation terms, and vdW-DF2 non-local
correlation performs better than vdW-DF in all pairings.
For vdW-DF2, one might propose that PBEsol correla-
tion is favorable due to the PBEsol starting geometries
and densities. We cannot exclude that the starting ge-
ometries and densities can play a role in what correla-
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FIG. 1. (Color online) Prediction error as a function of regu-
larization strength. We plot the Estimated Prediction Error
(EPE), the bootstrap error estimation (ERR), and the train-
ing error (err) of the hierarchical .632 bootstrap method with
weighted geometric mean. We display the square root of the
ERR and err to make them of same units as the EPE.

Table I. Optimal EPE, ERR, and err when using different
semi-local and non-local correlation functionals.

Neff ERR err EPE
vdW-DF2+vpbe 10.0 256 144 222
vdW-DF2+revTPSS 12.5 272 149 235
vdW-DF2+pbesol 9.7 249 139 215
vdW-DF2+pbe 10.1 258 146 223
vdW-DF+vpbe 11.7 298 156 255
vdW-DF+revTPSS 12.7 315 151 266
vdW-DF+pbesol 11.9 316 152 268
vdW-DF+pbe 11.8 300 156 257

tion performs the best, but the geometries and densities
of RC1 are significantly different from those made with-
PBEsol. The starting choice has therefore a negligible
effect.

It is noticed that the following pattern shows for EPE:
PBE > vPBE > PBEsol. These correlation functionals
only differ by the value of the parameter β: βPBE =
0.0667 > βvPBE >βPBEsol = 0.046. Therefore, it seems
that a smaller value of β might be able to increase the
accuracy of the functional further. It might even be fruit-
ful to go all the way to the low density limit, β = 0.038,
which has been used in the correlation term of the func-
tional SG4.66

D. Exchange basis size

Figure 2 shows how the number of basis functions for
the exchange expansion affect the EPE. The optimum
number of exchange parameters for the robust MM loss
function is Ms,Mα = 5 , while for regular LS loss func-
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FIG. 2. EPE as a function of the number of basis functions in
the expansion of the exchange enhancement function for the
robust MM and the LS loss functions. The optimal number
of basis functions are Ms,Mα = 5 for the MM loss function,
with a 10% improvement over the least squares loss function
minimum at Ms,Mα = 3. Only small variations between
training error for the two loss functions, but with the MM
loss function slightly lower.

tion it is Ms,Mα = 3. Comparing the lowest EPE of the
MM and the LS loss functions, we observe that using the
MM estimator leads to a reduction in EPE of 10%.

In Fig. 3, we show the training error, and find that the
spread is smaller between the MM and LS loss functions,
where MM yields the lowest training error, but only by
a small amount.67

We note that we used the full fitting procedure to de-
termine the optimal fits and the EPE for each basis size,
and that the EPE of MM and LS are directly compara-
ble as only the coefficient vectors are different in their
respective estimations.

The MM method generally result in more effective pa-
rameters than LS, and this could explain why it has a
lower err. With the LS loss function, the regulariza-
tion strength is increased to avoid overfitting as the only
defense against outliers. The MM estimator will weigh
these outliers down and will therefore not be affected by
them. However, the difference between the LS and MM
loss functions is much larger for the EPE, where we test
the transferability of the fit to data outside the training
data. We reason that this is because the outliers in the
bootstrap sample do not provide a description of the un-
derlying model, which would be transferable to the train-
ing data systems excluded in the sample. We therefore
select more transferable models by weighing down these
outliers.
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FIG. 3. Training error (err) as a function of the number of
exchange enhancement basis functions for the robust MM and
the least squares (LS) loss functions. The MM loss function
performs better for all choices of basis sizes, but only by a
small amount.

1. Outliers in the datasets

The IRWLS weight vector w tells us which systems the
MM loss function identifies as outliers. We can therefore
compare how affected each dataset is by their normalized
sum of w.68 There are almost no outliers in the CE27 and
RE42 datasets with

∑
w/Ni ' 0.95 for both. For the two

solids datasets Sol54Ec and Sol58LC, we identify a larger
number of outliers with

∑
w/Ni equal to 0.69 and 0.65

respectively. The S22x5 sub datasets also have a similar
proportion of outliers with

∑
w/Ni ranging from 0.62 to

0.70. The outliers in the S22x5 sub datasets are shared
to a large extend between the different binding lengths.

We can generally divide the cause of an outlier in three
categories: (1) Bad reference data, due to inaccurate or
error prone experiments or reference computations. (2)
Unfit model systems for experiments, due to for example
not taking into account dislocations, defects, or impu-
rities in crystal structure. (3) Model space deficiencies,
due to for example self-interaction error, lack of Spin-
orbit coupling, convergence issues, or too crude atomic
core descriptions.

For the solids and chemisorption datasets, the outliers
could be caused by all three effects. However, for the S22
and RE42 datasets, the reference values are high quality
CCSD(T) data, which we expect are much more accurate
than our DFT model. The outliers for these are therefore
primarily due to a limiting DFT model. For the latter,
we would need to compare to more sophisticated methods
to determine what is the primary cause of the outliers.
Such an investigation is however beyond the scope of this
study.
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IV. THE MBEEF-VDW FUNCTIONAL

For fitting the mBEEF-vdW functional, we usedMs =
Mα = 5, hence 25 exchange enhancement basis functions.
We therefore have a total of 28 fitting coefficients when
we include the 3 correlation coefficients. The correlation
basis functions are LDA, PBEsol, and the non-local part
of vdW-DF2. The parameters of the mBEEF-vdW func-
tional can be found in the supporting material, but with
illustrations following here.

Figure 4 shows the exchange enhancement factor of
the mBEEF-vdW functional with a representative BEE
ensemble along common representative planes in the s, α
space. The functional parametrization cannot be defined
as a composition of a function of α and s independently,
unlike MGGA functionals such as MS0 and MS2. In Fig.
5, we therefore include a 3D visualization, and observe
that the functional varies smoothly with s and α, which
was expected due to the restricted basis of the exchange
enhancement factor.

To complement the visual inspection, we here provide
some relevant limits of the exchange enhancement factor:
Fx(s = 0, α = 1) = 1.035, Fx(s = 0, α = 0) = 1.149,
Fx(s → ∞, α = 1) = 1.194, and Fx(s → ∞, α = 0) =
1.286 (maximum value). We observe that mBEEF-vdW
breaks the LDA limit (s = 0 and α = 1), but is close to
MS0 in the limits α = 0 and α→∞ for s = 0 and for s→
∞, α = 1. We note that the MS0 functional form was
used to define the basis functions transformation of the
alpha space, which could affect these limits. The recent
MGGA functional SCAN21 deviates from mBEEF-vdW
in all the previous discussed limits.

For the correlation parameters of mBEEF-vdW, we
find the optimal coefficient: 0.41± 0.38 for LDA, 0.36±
0.40 for PBEsol, and 0.89± 0.31 for vdW-DF2 non-local
correlation, where the ± intervals are the standard devi-
ations of the BEE ensemble for each coefficient. We note
that the mBEEF-vdW functional therefore doesn’t fulfill
the LDA limit of the correlation functional, in contrast
to the BEEF-vdW functional.9 The non-local coefficient
on vdW-DF2 is about 90% of the full value, which also
is a departure from what is theoretically justified for the
LDA limit. The vdW-DF2 functional is however also
acting as a short-range functional, and if the non-local
coefficient had been 1, the mBEEF-vdW would have too
much semi-local correlation as it also includes short-range
correlation from PBEsol.

Figure 6 shows the enhancement factors of mBEEF-
vdW and the previous two BEEF functionals: BEEF-
vdW and mBEEF. We observe that all three functionals
break the LDA limit for the exchange enhancement (α =
1 and s = 0) by a nearly identical amount, even when
they are the results of somewhat different fitting proce-
dures, different training data, and different model com-
plexities. We also note that mBEEF-vdW rises slower
from the homogeneous electron gas limit than mBEEF
and BEEF-vdW, and mBEEF-vdW is also smoother than
mBEEF and BEEF-vdW.
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FIG. 4. (Color online) The exchange enhancement factor of
mBEEF-vdW and 50 representative mBEEF-vdW ensemble
functionals with reference to a couple of popular semi-local
exchange correlation functionals. We present cuts in the two-
dimensional space of the reduced density gradient, s, and the
reduced kinetic energy density, α. The cross section between
the two cuts for namely α = 1 and s = 0 correspond to the
homogeneous electron gas. SCAN is found in 21.

Table II. Comparing RMSE of mBEEF-vdW to its BEE error
estimate.

RMSE BEE RMSE/BEE
CE27a (eV) 0.25 0.42 0.59
RE42 (eV) 0.45 0.38 1.2
S22x5a (meV) 14.5 17.6 0.82
Sol54Ecoh (eV) 0.40 0.26 1.6
Sol58LC-dEc (eV/Å) 23.2 16.6 1.4

a Geometric mean over subsets.

a. BEE estimates. In table II, we compare the
root mean squared error (RMSE) of mBEEF-vdW with
the Bayesian error ensemble estimate for each training
datasets. The BEE estimate is found as the root mean
squared sum of the BEE estimates for each system in the
dataset. For CE27a, RE42 and S22x5, we base this evalu-
ation on the selfconsistent mBEEF-vdW results and BEE
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FIG. 5. (Color online) The exchange enhancement factor of
mBEEF-vdW as a function of s and α.
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FIG. 6. (Color online) The exchange enhancement factors of
mBEEF-vdW, mBEEF and BEEF-vdW. We present cuts in
the two-dimensional space of the reduced density gradient, s,
and the reduced kinetic energy density, α.

predictions, whereas for the two solids datasets Sol54Ec
and Sol58LC the results are non-selfconsistent predic-
tions. The difference between selfconsistent and non-
selfconsistent RMSE and BEE estimate is less than 10%
for CE27a, S22x5 and RE42, and non-selfconsistent eval-
uation for the solids datasets should therefore suffice.69

The estimated error is within a factor of two of the real
error for all datasets. For S22x5, we find that the error

estimation for mBEEF-vdW is much more accurate than
with BEEF-vdW, where a threefold difference was found
between its BEE estimates and the actual error.70

V. RESULTS

We benchmark mBEEF-vdW against popular lower
rung XC functionals on the training datasets and two
relevant surface science test datasets. For the bench-
marked datasets, we illustrate the performance com-
promises with bivariate analyses of several interesting
dataset pairs. Lastly, we present the test case of graphene
on nickel 111 surface to learn how mBEEF-vdW deals
with the interplay between chemisorption and physisorp-
tion. This problem also provides an illustration of how to
use mBEEF-vdW’s Bayesian error estimating ensemble.

In the supplementary material, we additionally provide
the results for finding the correct binding site for CO on
late transition metals, similarly to what was presented in
Ref. 7.

A. Benchmark of mBEEF-vdW

Figure 7 shows a benchmark of the mBEEF-vdW func-
tional with popular or recent GGA, MGGA, and vdW-
DF density functionals on the mBEEF-vdW training
datasets. The functionals are following listed with ci-
tations. GGA type: PBEsol36, PBE35, RPBE71; MGGA
type: TPSS31, revTPSS37, oTPSS72, MS033, MS229;
GGA-vdW type: vdW-DF28, vdW-DF227, optB88-
vdW73, optPBE-vdW73, C09-vdW74. The first panel
ranks the functionals according to the geometric mean
(GM) of the root mean squared error (RMSE) for the
5 datasets statistics relative to mBEEF-vdW. The other
panels show the RMSE for the considered functionals on
each training dataset. For S22x5, we show the geometric
mean of RMSE over its 5 subsets.

The mBEEF-vdW functional is the highest ranked
functional, as we expected because it is trained on
these datasets and has the most advanced model space.
The other highly ranked functionals are the two previ-
ous BEEF family functionals mBEEF and BEEF-vdW,
the optimized vdW-DF functionals optB88-vdW and
optPBE-vdW, and the MS family functionals MS2 and
MS0.

mBEEF-vdW’s RMSE for CE27a, Sol58LC, and S22x5
are among the lowest for all functionals tested, while it
has a relative modest accuracy on Sol54Ec and RE42
compared to the other functionals. For the absorption
energies of CE27a, mBEEF-vdW has a matching perfor-
mance to the BEEF family functionals and RPBE. For
the lattice constants of Sol58LC, mBEEF-vdW has the
lowest prediction error of all functionals tested, even sur-
passing PBEsol and the MS functionals. For the disper-
sion systems in S22x5 the performance of mBEEF-vdW
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FIG. 7. (Color online) Benchmark of mBEEF-vdW against popular or recent GGA (blue), MGGA (green) and vdW-DF (red)
density functionals in terms of root mean squared error (RMSE) on the training datasets. The first panel ranks the tested
density functionals according to the geometric mean of the 5 datasets. All results have been obtained selfconsistently.
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FIG. 8. (Color online) Benchmark on the datasets SE30 with
30 surface energies and BM32 with bulk modulus of 32 sys-
tems. For both datasets, we show the root mean square error.
The functionals are ranked by the performance on SE30.

is at a level compared to the optimized vdW functionals
of optB88-vdW and optPBE-vdW.

Figure 8 shows a benchmark on the SE30 datasets for
surface energies of 30 systems and BM32 for bulk mod-
uli of 32 systems as described in Ref. 7. We note that
optB88-vdW is not present for SE30 because we were
not able to converge its electronic density. We observe
that mBEEF-vdW has the lowest RMSE on the SE30
dataset of all the functionals tested, and performs mod-
erately well on the BM32 dataset. The results on these
datasets indicate that the performance of mBEEF-vdW
is transferable to systems that it was not trained on.
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FIG. 9. (Color online) Bivariate analysis of chemisorption
and surface energies, given by the datasets CE27a and SE30.
The lines are linear first order fits to the functional of the
same color.

1. Bivariate analysis

Figure 9 shows chemisorption energies (CE27a) versus
surface energies (SE30), and we observe that mBEEF-
vdW is able to achieve a high accuracy of both proper-
ties simultaneously unlike most other tested functionals.
The functional rungs clearly stands out as reported in
Ref. 7, and the expanded model space of mBEEF-vdW
is therefore a likely explanation for its higher accuracy.

Figure 10 shows chemisorption energies (CE27a) ver-
sus dispersion energies (S22x5), and we observe that the
mBEEF-vdW is able to achieve a high relative accuracy
on both. The GGA-vdW density functionals generally
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FIG. 10. (Color online) Bivariate analysis of chemisorption
and dispersion, given by the datasets CE27a and S22x5.
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FIG. 11. (Color online) Bivariate analysis of Lattice constants
and surface energies, given by the datasets Sol58LC and SE30.

improves over the GGA functionals along the dispersion
axis, but still makes a trade-off between the accuracy on
these two datasets. vdW-DF2 performs reasonably well
on both properties, but with a lower accuracy on both
compared to mBEEF-vdW.

Figure 11 shows lattice constants (Sol58LC) versus sur-
face energies (SE30), and we can clearly see that there is
a high correlation between the two properties. In Fig. 12,
we can similarly observe a high correlation between lat-
tice constants (Sol58LC) and bulk moduli (BM32). The
high correlation between the Sol58LC and SE30 datasets
suggests that mBEEF-vdW has a high accuracy on the
surface energies dataset because it has a high accuracy
on lattice constants.

In the supplementary material, we additionally show
the following bivariate plots: BM32 & RE42; S22x5
& RE42; Sol58LC & RE42; S22x5 & SE30, CE27a &
Sol54Ec, and CE27a & RE42. With the last two bivari-
ate plots, we can attribute mBEEF-vdW’s modest de-
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FIG. 12. (Color online) Bivariate analysis of Lattice constants
and bulk moduli, given by the datasets Sol58LC and BM32.

scription of cohesive energies and reaction energies to the
model compromise. The benchmarked functionals form
a frontier on these properties, but with a few functionals
that are inferior on both properties including mBEEF-
vdW. We attribute the compromises the fit has to do to
the other material properties in the training datasets.

B. Graphene adsorption on Ni(111)

Figure 13 show the potential-energy curve for graphene
on the nickel (111) surface, which we can use to qual-
ify how well the mBEEF-vdW balances covalent and
vdW forces. This system has been investigated in nu-
merous computational studies,76–84 and it is experimen-
tally known that graphene forms a (1× 1) overlay on
the Ni(111) surface with a graphene–metal distance of
d = 2.1Å.85

We find a graphene–metal distance for mBEEF-vdW
of 2.10Å in agreement with the experimental results. A
number of other functionals reproduce the experimental
binding length as well, including the MGGA functionals
TPSS and revTPSS, and the vdW-DF functional C09-
vdW.

Results from the more computationally expensive Ran-
dom phase approximation (RPA) method have indicated
the presence of a minimum in the potential-energy curve
due to physisorption at d = 3.0 − 3.5Å. This is also ob-
served with the optimized vdW-DF functionals optB88-
vdW and optPBE-vdW, as well as the MGGA functional
M06L.75,83,84 The potential energy curve for mBEEF-
vdW does not include a physisorption minimum, but we
can use the BEE ensemble to estimate the likelihood for
such a minima for the functionals in the Bayesian er-
ror estimating ensemble of mBEEF-vdW. In the insert
of Fig. 13, we present the result of such an investiga-
tion. Most of the ensemble functionals predict a binding
distance around 2.1Å, but with a heavy tail of about
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FIG. 13. (Color online) Potential-energy curves for graphene
adsorption on Ni(111) surface. The gray area indicates the re-
gion spanned by the estimated standard deviations along the
mBEEF-vdW’s potential-energy curve. Insert shows distri-
bution of predicted binding length for 10.000 mBEEF-vdW
BEE ensemble functionals. Random phase approximation
data from Ref. 75.

10% of the ensemble functionals that predicts binding
distances longer than 2.5Å. These longer binding lengths
are mostly between 3.2Å and 3.8Å, which match the ph-
ysisorption minimum mentioned earlier.

VI. SUMMARY, DISCUSSION AND
CONCLUSION

We presented the new exchange correlation functional
mBEEF-vdW, a Bayesian error estimating functional for
applications in particular in heterogeneous catalysis stud-
ies. We achieved improvements over previous BEEF
functionals by fitting mBEEF-vdW with a parametriza-
tion of the MGGA-vdW type functional space, and by
improving the fitting procedure. To improve the fit-
ting procedure, we introduced a robust regression loss
function, which makes the fit resilient to outliers in the
training datasets. We used this loss function in a cost
function with weighted geometric mean over loss func-
tions for multiple datasets to make an explicit compro-
mise between different material properties. The model
complexity was controlled by a regularization with a non-
smoothness penalty of the exchange enhancement basis
functions. To better find the optimal model complex-
ity, we furthermore introduced a generalized bootstrap
0.632 error prediction estimator. The generalization uses
a hierarchical bootstrap sampling of the training datasets

and the geometric mean over these datasets in its error
prediction estimator, thereby making the cross valida-
tion more resilient to correlations in the training datasets.
The robust MM-estimator loss function resulted in a 10%
improvement of the estimated prediction error over the
standard least sum of squares loss function.

The mBEEF-vdW functional was trained and bench-
marked on datasets of relevance to heterogeneous cataly-
sis. This benchmark showed that the mBEEF-vdW func-
tional is simultaneously one of the most accurate func-
tionals for chemisorption on surfaces, dispersion energies,
and lattice constants for the popular density function-
als tested in this study. The benchmark included two
validation datasets for surface energies and bulk mod-
uli. For surface energies, the mBEEF-vdW was the best
performing of all tested functionals, and it also had a
good performance on the bulk moduli dataset. We lastly
tested mBEEF-vdW on the case of graphene adsorbed on
the nickel(111) surface, where it correctly predicted the
experimental binding length, unlike the previous BEEF
functionals and most of the tested XC functionals.

Following the methodology from previous BEE func-
tionals, we provide a functional ensemble to estimate
calculation uncertainty due to the exchange correla-
tion functional approximation. The ensemble for the
mBEEF-vdW functional was scaled to reproduce the ob-
served training set errors, with a scaling that takes the
robust loss function into account. We found that the
RMS sum of the error estimates for the training datasets
are all within a multiple of two of the real RMSE. To
illustrate the use of the ensemble, we applied it to the
graphene on nickel case. Here the BEEF ensemble es-
timates the likelihood of the existence of a physisorbed
binding state to about 10%, which is interesting as sev-
eral other functionals including RPA found the existence
of such a physisorption minimum in the potential energy
curve.

The optimized exchange enhancement factor of
mBEEF-vdW was found to slightly break the LDA limit,
similar to what was found for previous BEEF family func-
tionals. The exchange enhancement factor of mBEEF-
vdW fulfills the tight Lieb-Oxford bound, and it is close
to MS033 for the limit of single electron orbitals.

The computational cost of the mBEEF-vdW is higher
than GGA functionals because of its use of MGGA ex-
change and the vdW-DF2 correlation term. However, the
computational increase due to the vdW non-local corre-
lation part is usually small due to the efficient imple-
mentation scheme of Ref. 86, and MGGA exchange sim-
ilarly doesn’t add much additional computational cost.
We have not experienced any additional computational
difficulties, including convergence issues, for mBEEF-
vdW compared to MGGA functionals and GGA-vdW
functionals. We therefore suggest that, with proper im-
plementation, the small added computational cost of
mBEEF-vdW is outweighed by its increased accuracy for
most purposes.

Our benchmark was restricted to only a subset of
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available XC functionals. We therefore urge to mention
that there are a number other good functionals available
to the DFT users. Further benchmarks will determine
how mBEEF-vdW compare to these. We also do not
benchmark on a number of structural properties, such as
bonding lengths and vibration frequencies, which should
be taken into account in future studies. The training
datasets could be expanded such that these and other
material properties are better accounted for. We

It has been postulated that the non-locallity of MG-
GAs makes it possible to describe excitonic effects in
semiconductors.87 However, for this it is required that
|∂Fx/∂α| is large in the relevant region for solids (α ≈ 1
and s < 3). In Ref. 87, they found that VS98 was able
to do this, while TPSS, which has a much smaller α de-
pendence was not. In Figure 4, we see that |∂Fx/∂α|
of mBEEF-vdW is much larger than that of TPSS.
One would therefore expect mBEEF-vdW to behave bet-
ter than TPSS for describing excitonic effects in semi-
conductors. However, further studies are required in or-
der to know how mBEEF-vdW compares to VS98 with
respect to this property.

For semi-local functionals the XC energy can be evalu-
ated exactly as a sum of the XC functional evaluated on
the pseudo density plus PAW corrections for each atom.
However, for a non-local functional as mBEEF-vdW, the
PAW correction has not been implemented in GPAW and
the results may therefore be sensitive to the details of the
PAW dataset such as cutoff radius and choice of pseudo
core density — with a PAW correction, this would not
be the case. Had a full implementation of non-local vdW
been used for this work, the resulting mBEEF-vdW func-
tional might have been slightly different.

mBEEF-vdW is available for GPAW and other DFT

codes through the LIBXC88 library in its version 3.0.0 re-
lease. We are in the process implementing the functional
in VASP89–92 and Quantum Espresso93, and we plan to
report any differences between the codes.

For training and validation of mBEEF-vdW, we only
included a limited number datasets of high relevance to
heterogeneous catalysis, and as such there are a number
of material properties that were not covered, which could
be of interest to potential users; for example, molecular
bond lengths, vibration frequencies, and barrier heights.
We suggest that future benchmark should include these.
In addition, for future studies, we think it would be ben-
eficial to expand and improve the current training and
validation datasets; by for example, using the disper-
sion dataset S66x8 instead of S22x5,94 including more
solid state systems,95 and reevaluate the chemisorption
dataset.96 For developing more accurate BEEF function-
als, we also need to address the self-interaction error.
This could be done by either introducing (screened) exact
exchange or by using a self-interaction correction scheme,
such as Hubbard +U or SIC.97,98

We propose the mBEEF-vdW functional as a well
suited lower rung XC functional for heterogeneous catal-
ysis studies. Furthermore, we propose that the machine
learning procedure introduced here could lead to more
accurate empirical XC functionals in the future.
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