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The boundary of a fractionalized topological phase can be gapped by condensing a proper set of
bosonic quasiparticles. Interestingly, in the presence of a global symmetry, such a boundary can
have different symmetry transformation properties. Here we present an explicit example of this
kind, in the double semion state with time reversal symmetry. We find two distinct cases where
the semionic excitations on the boundary can transform either as time reversal singlets or as time
reversal (Kramers) doublets, depending on the coherent phase factor of the Bose condensate. The
existence of these two possibilities are demonstrated using both field theory argument and exactly
solvable lattice models. Furthermore, we study the domain walls between these two types of gapped
boundaries and find that the application of time reversal symmetry tunnels a semion between them.

I. INTRODUCTION

The interplay of topology and symmetry can lead to
interesting phenomena in quantum many-body systems.
In particular, in the presence of global symmetries, one
topological phases can divide into several different phases
with the fractional excitations in the system transform-
ing under symmetry in different ways. Much recent ef-
fort has been devoted to the classification of such ‘Sym-
metry Enriched Topological’ (SET) phases by identify-
ing possible ways for the symmetry to act on the frac-
tional excitations1–11. One possibility is for the fractional
excitations to carry fractional quantum numbers of the
global symmetry. For example, in an electronic system
composed of charge e electrons, the fractional excitations
in the ν = 1/3 fractional quantum Hall state can carry
charge e/3. A systematic counting exists for this class of
SET phases3 (although it is not completely clear which
of these phases exist in pure two dimension and which
exist as the surface of a three dimensional system).

Another possibility in SET phases is for the symme-
try to map one type of fractional excitation to another.
For example, the double semion topological order, which
exists in for example a double layer fractional quantum
Hall system with ν = ±1/2, is time reversal invariant.
Time reversal symmetry maps between the semion (with
topological spin i) and the anti-semion (with topologi-
cal spin −i) while keeping their combination – a bosonic
quasiparticle – invariant.

Even though the semion / anti-semion are not individ-
ually invariant under time reversal symmetry, one might
wonder if we can still make sense of the ‘quantum num-
ber’ or local symmetry transformation on each of them.
This question becomes more concrete when we consider
the boundary of the topological state. The boundary
of the double semion state can be gapped, as shown in
Fig.1, by condensing the bosonic quasiparticle, which is
the combination of the semion and the anti-semion. Be-
cause both the semion and the anti-semion obtain non-
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FIG. 1. A double semion state whose boundary is gapped by
condensing the bosonic quasiparticle.

trivial phase factors (−1) when braiding around the bo-
son, they become confined in the condensate. Moreover,
because the bosonic quasiparticle is condensed, i.e. they
can appear and disappear freely, a semion becomes in-
distinguishable from an anti-semion. Now it becomes
reasonable to ask about the local time reversal symme-
try transformation of the semion (anti-semion) and there
could be two options: T 2 = 1 and T 2 = −1. Such a dis-
tinction leads to measurable physical effect in the system.
Imagine creating a pair of semions in the bulk, separating
them from each other and bringing them to the gapped
boundary. When the semion transforms as T 2 = −1, a
local Kramer degeneracy appears at the location of each
semion while with T 2 = 1 semion no local degeneracy is
expected.

So what does this ‘time reversal quantum number’
of the semion imply? Does it label different bulk SET
phases or does it correspond to different boundary con-
ditions for the same bulk phase? In this paper we show
that the latter is true. In particular, we use both field the-
ory arguments and exactly solvable models to show that
there are two types of Bose condensates in the double
semion state, with different coherent phase factors of the
condensed boson. In one of them the semion transforms
as T 2 = 1 while in the other it transforms as T 2 = −1.

The paper is organized as follows: In section II,



we present a simple field theory argument for the re-
sult, which is supported by exactly solvable models con-
structed in section III. In section IV, we consider the
situation where different segments of the boundary of
the double semion state is gapped in the two different
ways and ask what happens at the domain wall between
the segments. We find that the domain wall carries ex-
tra degeneracy protected by time reversal symmetry and
the symmetry action tunnels a semion between pairs of
domain walls. In section V, we discuss how this is all re-
lated to the symmetry protected topological phase with
Z2 and time reversal symmetry, which becomes the dou-
ble semion state under study by gauging the Z2 symme-
try. Finally, we conclude in section VI and compare this
example with similar models studied previously.

II. FIELD THEORY ANALYSIS

The double semion state contains an abelian topolog-
ical order with three types of fractional excitations: the
semion s, the anti-semion s′ and their combination – the
boson b = ss′. The topological spins of the three are
i, −i and 1 respectively and the mutual statistics be-
tween s and s′ is trivial. In field theory language, the
double semion topological order can be described as a
U(1)× U(1) Chern-Simons theory:

L =
2

4π
ελµνa1

λ∂µa
1
ν −

2

4π
ελµνa2

λ∂µa
2
ν (1)

whose edge state can described as

Le =
2

4π
∂xφ1∂tφ1 −

2

4π
∂xφ2∂tφ2 (2)

where only the topological term in the Lagrangian is
shown.

Time reversal symmetry action on the edge fields φ1

and φ2 can be written in two ways:

T1 : φ1 → φ2, φ2 → φ1 (3)

Or equivalently,

T2 : φ1 → φ2, φ2 → φ1 + π (4)

T1 and T2 differ by a gauge transformation12

g : φ1 → φ1 + π, φ2 → φ2 (5)

g acts as g = (−1)Ns where Ns is the number of semions
on the edge and the action is trivial on all local operators
of the form ei2nφ1+i2mφ2 with integer n and m.

It appears that a semion, generated by eiφ1 (or the
anti-semion generated by eiφ2) transforms as T 2 = 1 un-
der T1 and as T 2 = −1 under T2. So which time re-
versal transformation should we use? That depends on
the boundary condition we choose for the edge theory.
In particular, the edge state described by Eq.2 can be

gapped out by adding a Higgs term

∆L = −λ cos(2φ1 − 2φ2 + α) (6)

with λ > 0. When λ is large enough, the bosonic quasi-
particle, generated by ei(φ1−φ2), is condensed on the edge.
However, there are two types of condensates which pre-
serve time reversal symmetry, one with α = 0 and the
other with α = π.

When α = 0, the term ∆L has two classical minima:

φ1 − φ2 = 0, φ1 − φ2 = π (7)

The two minima are related by g and hence are physically
identical (no local observable distinguishes them). Each
minimum is invariant under T1. Therefore this is the form
of time reversal transformation that we should consider
and the semion eiφ1 (or the anti-semion eiφ2) transforms
as time reversal singlets T 2 = 1 on the boundary.

When α = π, the term ∆L has two classical minima
as well:

φ1 − φ2 = π/2, φ1 − φ2 = −π/2 (8)

The two minima are related by g again but neither of
them is invariant under T1. Instead they are preserved by
T2. Therefore, T2 is the manifest time reversal operation
on the edge when boson is condensed with α = π and the
semion eiφ1 (or the anti-semion eiφ2) transforms as time
reversal doublets T 2 = −1 on the boundary.

Let us look more carefully at how the time reversal
transformation of the semion / anti-semion depends on
the coherent phase factor of the Bose condensate. Note
that in the condensates, the process of creating or an-
nihilating a boson pair is associated with a phase factor
of

< ei(φ1(x)−φ2(x))ei(φ1(x′)−φ2(x′)) >= eiα = ±1 (9)

while the process of boson hopping always comes with a
phase factor of 1

< ei(φ1(x)−φ2(x))e−i(φ1(x′)−φ2(x′)) >= 1 (10)

Therefore, the total wave function of the condensate
reads

|ψbc〉 =
∑
N

(eiα)N
∑

x1,...,x2N

|x1, ..., x2N 〉 (11)

where the inner sum is over all possible position configu-
rations of 2N bosons and the outer sum is over all integer
N . Note that there are always an even number of bosons
because it is a quasiparticle (self) boson and can only be
created in pairs.

The relation between the condensed phase and the time
reversal transformation of the semions can be understood
as follows: when applying time reversal to a semion, it is
mapped to an anti-semion and hence a boson is created;
when applying time reversal again and mapping the anti-
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semion back to a semion, another boson is created. That
is, the process of applying T 2 to a semion is accompanied
by the creation of a boson pair and hence

T 2 = eiα (12)

on each semion.

III. EXACTLY SOLVABLE MODEL
CONSTRUCTION

Using the exactly solvable model of double semion in-
troduced by Ref.13 and 14, we can construct the two
types of condensates corresponding to α = 0 and α = π
and show explicitly that the semion excitations transform
respectively as T 2 = 1 and T 2 = −1 under time reversal.

A. α = 0 condensate and T 2 = 1 semion

Consider the double semion model on Honeycomb lat-
tice, with one spin 1/2 living on each link. To simplify
notation, we write spin operators σx, σy, σz as X, Y , Z.
The Hamiltonian in the topological bulk contains vertex
terms Av and plaquette terms Bp.

HT = −
∑
v

Av +
∑
p

Bp (13)

where

Av =
∏
i∈v Zi

Bp =
∏
i∈pXi

∏
j∈p(−)nj(1−nj+1) (14)

i ∈ v labels links attached to a vertex v and j ∈ p labels
links around a plaquette p. nj = 0 if Zj = 1 and nj = 1
if Zj = −1.

Time reversal T acts as complex conjugation in the
Z basis. Then the Hamiltonian is time reversal invariant
and so is the ground state. Note that the form of the pla-
quette term Bp used here is slightly different from that
used in Ref.14, but they are equivalent when all vertex
terms Av are satisfied. The form used here is simpler for
our purpose because it is explicitly time reversal invari-
ant.

It is easy to check that 1. all Av’s commute, all Av’s
commute with all Bp’s and Bp’s commute with each other
when the Av constrains are satisfied 2. (Bp)

2 = 1.
Now let’s condense the bosonic quasiparticle in the

double semion state and gap out the boundary. In the
simplest form, the boson condensation can be achieved
by enforcing a Zk term on the link variables. That is

HC0 = −
∑
k

Zk −
∑
v

Av (15)

Obviously the second term is redundant. We include it
here just for comparison with later cases. In the dou-

Av

Bp

Z

FIG. 2. Boundary (thick black line) of the double semion
state (lower half plane) gapped by α = 0 Bose condensate
(upper half plane) with the semion excitation transforming
as T 2 = 1 under time reversal.

ble semion state, the Zk term creates / annihilates boson
pairs and also hops bosons around. Therefore, when the
HC0 term dominates over the HT term, the boson is con-
densed. Here we consider the exactly solvable situation
as shown in Fig.2 where the Hamiltonian in the region
below the thick black boundary line is HT and that above
the boundary line is HC0. All Hamiltonian terms com-
mute with each other.

From simple counting, we see that the boundary be-
tween the condensate and the topological region is to-
tally gapped. Moreover, this condensate does not break
time reversal symmetry. A boson-boson pair is created
by string operator

W b
1 =

∏
k∈L′

Zk (16)

with L′ being a string in the dual lattice. W b
1 obviously

has eigenvalue 1 everywhere in the condensate. Boson
hopping is also generated with this term and also comes
with a phase factor of 1. Therefore, the condensate gen-
erated with HC0 is the α = 0 condensate discussed in the
previous section.

Now let’s see what happens when we create a semion on
the boundary. A semion-semion pair is created, as shown
in Fig.2 along the red dotted line L. We have chosen a
particular direction for this string operator. The string
operator acts as14

W s =
∏
k∈L

Xk

∏
vl

αl
∏
vr

αr (17)

where αl and αr are phase factors in the Z basis at ver-
tices where the string turns left (vl) and right (vr) re-
spectively. αl = ±1 is always real. αr = (i)nr acts on
the leg to the left side of L at this vertex. Obviously in
the condensate, the string operator costs linear energy
and the semion is confined.

Under time reversal symmetry, this string operator
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changes. In particular, the αr phase factors change to
α−1
r and the difference is

W b
1 =

∏
k∈L′

Zk (18)

where L′ is the string in the dual lattice to the left side
of L, as shown in Eq.2 with the dotted blue line. This
is nothing but the string operator for creating a pair of
bosons on the boundary, which has eigenvalue 1. There-
fore, the state with a pair of semions on the boundary is
invariant under time reversal and each semion transforms
as a time reversal singlet with T 2 = 1.

B. α = π condensate and T 2 = −1 semion

Av

Bp

Z

FIG. 3. Boundary (thick black line) of the double semion
state (lower half plane) gapped by α = π Bose condensate
(upper half plane) with the semion excitation transforming
as T 2 = −1 under time reversal. The Hamiltonian terms in
the condensate BpaZabBpb are represented as two red dots
(Bpa and Bpb) connected by a grey dashed line via a yellow
triangle (Zab).

Now let’s define a second type of condensate and see
how the semion on the boundary can transform as a time
reversal doublet. The Hamiltonian realizing the second
type of condensate is

HCπ = −
∑
<ab>

BpaZabBpb −
∑
v

Av (19)

where Bpa and Bpb are neighboring plaquette operators
sharing a link ab and the sum is over all such pairs. In the
subspace where all vertex constraints Av are satisfied, it
is easy to see that all terms in HCπ commute with each
other (Zab anti-commutes with Bpa or Bpb). Moreover

(BpaZabBpb)
2 = 1 (20)

The relative signs in Eq.19 are fixed by the requirement
that the Hamiltonian is not frustrated. With our choice

of signs it is not, since

1 = Av = (Bp1Z12Bp2)(Bp2Z23Bp3)(Bp3Z31Bp1) (21)

when both BpaZabBpb = 1 and Av = 1.
The BpiZijBpj terms create boson pairs or hop bosons

around in this condensate. When this term acts on a pair
of plaquettes with either 2 or 0 bosons (BP 1BP 2 = 1),
there is an extra sign relative to its action on a pair of pla-
quettes with only one boson (BP 1BP 2 = −1). Counting
the phase factors at both ends, pair creation / annihila-
tion is accompanied by a phase factor of −1 while boson
hopping has a phase factor of +1. Note that this is true
even when we put the small pieces of boson string oper-
ators together and make longer strings.

(Bp1Z12Bp2)(Bp2Z23Bp3)...(Bpm−1
Z(m−1)mBpm)

= Bp1Z12...Z(m−1)mBpm
(22)

Hence in the ground state we have

Bp1Z12...Z(m−1)mBpm = 1 (23)

Therefore, the condensate generated with HCπ corre-
sponds to the α = π condensate discussed in section II.
Even though an extra phase factor is present in the wave
function of this condensate, the condensate is still time
reversal invariant.

Now let’s create a semion pair on the boundary along
the red dotted line in Fig.3 using the same string opera-
tor W s as in the previous section. Similar to the previous
case, the string operator W s violates the vertex Av terms
at its end points, but this has extra consequences in this
new type of condensate. In particular, when Av is vio-
lated, the plaquette operators Bp around this vertex no
longer commute with each other. To restore exact solv-
ability, certain terms need to be removed, introducing
local degeneracies into the low energy Hilbert space. As
we will show below, this local degeneracy indicates the
presence of a local Kramers pair with T 2 = −1 under
time reversal.

5 1 

2 3 

4 
s

t

FIG. 4. Semion excitation on the boundary with α = π con-
densate transforms as a Kramer doublet with T 2 = −1.

Let us zoom in on the semion as shown in Fig.4. To
expose the two fold Kramer degeneracy related to the
semion, we redefine the Hamiltonian locally as follows:
imagine breaking the link between plaquette 1 and 5 into
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two parts and adding a link s sticking into plaquette 5 as
shown in Fig.4. The state of the link s is initially set to
be ns = 0. We can choose the semion string operator as
going into the condensate and ending on link s. The state
of the link s is hence flipped to ns = 1. By doing so, we
have moved the vertex violation to the end of link s which
does not affect plaquette 1 and 2 but only plaquette 5.

Due to the existence of link s, Bp5 needs to be rede-
fined. According to the string-net rule given in Ref.14,
Bp5 can be obtained by merging a semion loop into pla-
quette 5. Now with the link s occupied by a semion
string, direct calculation shows that

Bp5 = i
∏
k∈p5

Xk

∏
j∈p5

(−)nj n̄j+1Zt (24)

where t is the lower half of the link between plaquette
1 and 5. We can explicitly check that Bp5 is Hermitian,
(Bp5)2 = I, it commutes with all other plaquette terms
already in the Hamiltonian (in the sector where all Av
constraints are satisfied), but is NOT time reversal in-
variant. Indeed, we find

T Bp5T −1 = −Bp5 (25)

To indicate the time reversal violation, we denote this
term with an empty circle in Fig.4.

To allow the semion string to end without violating
time-reversal symmetry, we are therefore forced to re-
move terms containing BP5 from the Hamiltonian. This
suggests that four terms need to be removed: BpiZi5Bp5 ,
i = 1, 2, 3, 4. In fact, we can recombine the Hamiltonian
terms and add some terms back (see Fig.4)∑

i=1,2,3

BpiZi5Z(i+1)5Bpi+1
(26)

These terms are time reversal symmetric, commute with
all other terms in the original Hamiltonian and take
eigenvalue 1 in the ground state. Now counting the num-
ber of terms we find that we are missing one term and
hence have a local two-fold degeneracy.

Is this the local Kramer degeneracy we are looking for?
Obviously this two fold degeneracy corresponds to eigen-
states of Bp5 (with eigenvalue ±1) which commutes with
all other terms in the Hamiltonian but is also indepen-
dent of them. Notice that Bp5 anti-commutes with T ,
hence T interchanges the two states with Bp5 = ±1.
Therefore, to determine the T 2 value on this local de-
generacy, we need to find a local operator Q which maps
between these two states and check its transformation
under time reversal2. That is, Q needs to commute with
all terms in the Hamiltonian but anti-commute with Bp5 .
One possible choice is

Q = Bp1Zt (27)

Because

(T QT −1)Q = Bp1ZtBp1Zt = −1 (28)

we see that the degenerate states form a local Kramer
pair under time reversal. Or in other words, on the
boundary with α = π condensate, semions transform as
Kramer doublets under time reversal symmetry.

IV. DOMAIN WALL BETWEEN TWO TYPES
OF BOUNDARIES

Although the two types of condensates, with α = 0 and
α = π, give rise to different boundaries with the double
semion state, they do not correspond to different phases.
Indeed, both α = 0 and α = π condensates are short
range entangled states with time reversal symmetry. As
we know that there is no nontrivial time reversal sym-
metry protected topological phase in 2D15, both conden-
sates belong to the same phase. Therefore, the interface
between these two types of condensates can be gapped
out without breaking time reversal.

Double semion state 

↵ = ⇡↵ = 0

FIG. 5. Domain wall (red dot) between the two types of
boundary between the double semion state and the α = 0
and α = π condensates respectively.

Now we can ask the question of what happens on the
domain wall between the two types of boundaries. Imag-
ine a situation as shown in Fig.5 where a 2D sphere is par-
titioned into three parts, occupied by the double semion
state, α = 0 condensate and α = π condensate respec-
tively. The interface between any two parts is gapped
with time reversal symmetry being preserved and now
we can investigate the property of the two domain walls
(red dots in Fig.5). In this section, we are going to see
whether there are degeneracies associated with the do-
main walls, and how they transform under time reversal
symmetry.

A. Field theory analysis

From the field theory analysis in section II, we see that
the boundary with the α = 0 condensate is in state |A〉 =
|φ1 − φ2 = 0〉 (or equivalently |Ā〉 = |φ1 − φ2 = π〉)
and the boundary with the α = π condensate is in state
|B〉 = |φ1 − φ2 = π/2〉 (or equivalently |B̄〉 = |φ1 − φ2 =
−π/2〉). The difference between |A〉 and |Ā〉 (or |B〉 and
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|B̄〉) is an artificial one as they are related by the gauge
transformation

g : φ1 → φ1 + π, φ2 → φ2 (29)

In reality, the gauge symmetry is not broken so we need to
restore the symmetry and write the two boundary states
as

|A〉+ |Ā〉 (30)

and

|B〉+ |B̄〉 (31)

When the boundary contains both parts, there are two
possible configurations,

|ψ1〉 = |AB〉+ |ĀB̄〉 (32)

and

|ψ2〉 = |AB̄〉+ |ĀB〉 (33)

which form a two fold degeneracy on the boundary as
long as time reversal symmetry is not broken. This can
be shown as follows. Suppose the two domain walls be-
tween type A and type B boundaries are at L and −L
respectively, then the local operator near L

O1 = iei(φ1(L−ε)−φ2(L−ε))e−i(φ1(L+ε)−φ2(L+ε)) (34)

(ε is small and finite) tunnels a boson across the domain
wall at L and takes ±1 eigenvalues in the two states.

O1|ψ1〉 = |ψ1〉, O1|ψ2〉 = −|ψ2〉 (35)

However, O1 cannot be added to the Hamiltonian be-
cause it breaks time reversal symmetry, either in the form
T1 or T2.

T −1
1 O1T1 = −O1, T −1

2 O1T2 = −O1 (36)

On the other hand, the operator O2 which tunnels a
semion from −L to L

O2 = e−iφ1(−L)eiφ1(L) (37)

maps between |ψ1〉 and |ψ2〉 and anti-commutes with O1.
O2 is a nonlocal operator and cannot be added to the
Hamiltonian to split the degeneracy. Moreover, as O1

and O2 generate the full operator algebra of the two di-
mensional space spanned by |ψ1〉 and |ψ2〉, we see that
|ψ1〉 and |ψ2〉 are necessarily degenerate if time reversal
symmetry is preserved.

We can take either form of the time reversal action, T1

or T2, and we find that their action on these two states
is the same as O2

T |ψ1〉 = |ψ2〉 (38)

Therefore, the domain walls between the two types of
boundaries carry a two fold degeneracy and time reversal
action in this degenerate subspace is equivalent to the
tunneling of semions between the two domain walls.

More generally, if the boundary is divided into 2N al-
ternating segments with 2N domain walls in between,
similar analysis shows that there is a 22N−1 fold degen-
eracy protected by time reversal symmetry.

We are going to confirm this conclusion with exactly
solvable models in the next section.

B. Interface between the two types of condensates

First we need to show that the interface between the
two types of condensates can be gapped. This is ex-
pected because the two condensates are both time rever-
sal invariant short range entangled states. Because there
are no nontrivial symmetry protected topological phases
with time reversal symmetry in two dimensions, the two
condensates are in the same phase and should be able to
connect to each other in a gapped way without breaking
the symmetry

Consider an interface between the two condensates as
shown in Fig.6

Av

Bp

k5 k4 k4 k3 k3 k2 k2 k1 

k1+k2 k2+k3 k3+k4 k4+k5 

Z

FIG. 6. Interface between condensate I and II.

The upper half plane is in the α = π condensate with
Hamiltonian terms BpaZabBpb (red dot – yellow square
– red dot) and the lower half plane is in the α = 0 con-
densate with Hamiltonian terms Zk (yellow square). The
green squares label the degrees of freedom on the inter-
face and form the interface Hilbert space.

Let’s be more explicit about this. First, notice that
the α = π condensate can be mapped to the α = 0
condensate by unitary transformation

U =
∏
p∈Cπ

(I + iBp)

1 + i
(39)

where the product is over all placates in the condensate.
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We can see this explicitly from

(I+iBpa )
1+i

(I+iBpb )

1+i Zab
(I−iBpa )

1−i
(I−iBpb )

1−i
= BpaZabBpb

(40)

Therefore, after applying U , all links inside the two con-
densates (yellow squares) are in the state |ni = 0〉 and
U
∏
|0〉 is the ground state of these regions.

Next, we enforce the closed loop constraints

Av =
∏
i∈v

Zi (41)

along the interface (thick black line) as indicated by the
green triangles.

Now we are left with one 2 dimensional degree of free-
dom per plaquette, labelled by ks = 0, 1 as shown in
Fig.6. |ks = 0〉 and |ks = 1〉 are eigenvalue 1 and −1
eigenstates of Zs respectively. Each state in the interface
Hilbert space can be then be written as

|ψ{ks}〉 = U
∏
O

|ks〉|ks+1〉|ks + ks+1〉
∏
C

|0〉 (42)

where the first product is over all downward pointing ver-
tices on the interface and the second product is over all
the links inside the two condensates (the ones with the
yellow squares). Note that the links on the interface are
not all independent due to the Av constraints. There is
one free degree of freedom per plaquette on the interface.
As given in Eq.42, each state |ψ{ks}〉 is the eigenvalue

eiπks eigenstate of iZsBps , where s labels links along the
interface and ps labels the plaquette on the α = π con-
densate side of link s. Under time reversal, which acts
as complex conjugation, iZsBps is mapped to −iZsBps .
Therefore, each |ψ{ks}〉 is not time reversal invariant.

To find a time reversal symmetric interface, we must
add some terms to the boundary that mix the |ψks〉
states, respect T , and gap the interface out. While it
may be hard to directly find such an operator, we can ap-

ply the unitary transformation U =
∏
p∈Cπ

(I+iBp)
1+i and

map the interface Hilbert space to that spanned by

|ψ0
{ks}〉 =

∏
O

|ks〉|ks+1〉|ks + ks+1〉
∏
C

|0〉 (43)

The transformed interface Hilbert space now takes a sim-
ple direct product form of local degrees of freedom la-
beled by ks and allows simpler analysis of possible Hamil-
tonian terms. Even though the unitary U is not local, it
preserves the spectrum and hence a gapped edge in this
basis is also gapped in the original basis.

There is one complication though: The action of time
reversal is also transformed under U . Before we can write
down time reversal invariant Hamiltonians, we need to
find the correct time reversal transformation in this new

basis.

T̃ = U†T U =
∏
p∈Cπ

(
1 + iBp

1 + i

)2

=
∏
p∈Cπ

Bp (44)

Therefore, the effective time reversal action T̃ on the
interface Hilbert space is complex conjugation in the
|ψ0
{ks}〉 basis and∏

Xs

∏
(−)ns(1−ns+1) (45)

Although it looks complicated and non-onsite, we know
that it should have a short range entangled ground state.
Indeed we find that under local unitaries

V =
∏
s

(i)ns(1−ns+1) . (46)

The effective time reversal action is mapped to

V T̃ V † =
∏

XsK (47)

which has a gapped symmetric Hamiltonian
∑
sXs. Note

that in Fig.6 Xs acts on four links, the two links labeled
by ks and also the ones labeled by ks−1+ks and ks+ks+1.
This is illustrated in Fig.6 with red dotted lines.

Therefore, the transformed interface Hilbert space
spanned by |ψ0

{ks}〉 can be gapped in a time reversal in-

variant way by effective Hamiltonians∑
s

V †XsV (48)

In the original interface Hilbert space spanned by |ψ{ks}〉,
the Hamiltonian reads∑

s

UV †XsV U
† (49)

In appendix A, we explicitly confirm that the term
UV †XsV U

† is indeed real.

C. Tri-junction between α = 0, α = π condensates
and double semion

Now we have found a gapped interface between the
α = 0 and the α = π condensates, we can study the
domain wall between the two types of boundaries as the
tri-junction between the two condensates and the topo-
logical state (double semion).

As shown in Fig. 7, topological region is on the outside
and the two condensates are in the middle. Following pre-
vious discussion, Hamiltonian in the topological region is
given by (red dots and green triangles)

HT =
∑
v

Av +
∑
p

Bp (50)
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Av Bp

k1 k4 k4 k3 k3 k2 k2 k1 

k1+k2 k2+k3 k3+k4 k4+k1 

Z

FIG. 7. Tri-junction between α = 0, α = π condensates and
the double semion state.

Hamiltonian in the α = 0 condensate is given by (yellow
squares)

HC0
= −

∑
k

Zk −
∑
v

Av (51)

and that in the α = π condensate is given by (blue dot –
yellow square – blue dot)

HCπ = −
∑
<ab>

BpaZabBpb −
∑
v

Av (52)

Moreover, we enforce the closed loop constraints Av along
the interface between the two condensates (thick black
line).

Now we can see what the low energy Hilbert space is
composed of. Apply again the unitary transformation

U =
∏
p∈Cπ

1+iBp
1+i . Note that U commutes with all the

terms in HT and the Av constraints on the interface,
maps the BpaZabBpb terms in HCπ to Zab and leaves HC0

untouched. Therefore, states in the low energy Hilbert
space can be written as

|φ{ki}〉 =
∏
p∈CII

I + iBp
1 + i

|φ0
{ki}〉 (53)

where

|φ0
{ki}〉 = |φDS〉

∏
O

|ki〉|ki+1〉|ki + ki+1〉
∏
C

|0〉 (54)

The first product is over all downward pointing triangles
on the interface between the two condensates and the
second product is over all links in the two condensates.
Note that the two k1’s near the two tri-junctions are the
same, due to the closed loop constraints over the whole
state. |φDS〉 is the wave function in the topological re-
gion (including all the links around red dots as shown

in Fig.7). The exact form of |φDS〉 depends on whether
k1 = 0 or k1 = 1. The two can be mapped into each
other by running a semion string operator from one tri-
junction to another along, for example, the orange line
shown in Fig.7.

Following a similar line of reasoning as discussed in the
previous section, we find that the interface can be gapped
with time reversal invariant terms

UV †XsV U
† (55)

where U is again a product over plaquettes in the α = π

condensate U =
∏
p∈Cπ

1+iBp
1+i and V =

∏
s(i)

ns(1−ns+1).
There is one major difference though from the situa-

tion discussed in the previous section. X1 is now a non-
local operator. Not only does X1 change k1 to 1 − k1,
it also changes the form of |φDS〉 by running a semion
string from one tri-junction to another. Therefore, if we
require time reversal symmetry and locality, we are left
with a two fold degeneracy with k1 = 0 or 1 respectively.
Time reversal symmetry maps k1 to 1 − k1 which can
be equivalently accomplished by X1 in this degenerate
Hilbert space. Therefore, time reversal symmetry acts
as semion tunneling in the low energy Hilbert space of
tri-junctions.

V. RELATION TO Z2 × ZT
2 SYMMETRY

PROTECTED TOPOLOGICAL PHASE

The discussions in the previous sections tell us that
there is one symmetry enriched topological phase for dou-
ble semion topological order with time reversal symme-
try. However, there can be two different gapped bound-
aries with time reversal symmetry. The double semion
topological order is a twisted Z2 gauge theory and by un-
gauging the Z2 symmetry we can get Z2×ZT2 symmetry
protected topological phases. So how is our conclusion
about double semion SET consistent with what we know
about Z2 × ZT2 SPT?

From the classification of SPT we know that there are
four phases with Z2 × ZT2 symmetry15. In particular,
there are two root phases: phase (1, 0) which has non-
trivial Z2 SPT order and trivial action of time reversal
and phase (0, 1) with trivial Z2 SPT order and projective
action of time reversal on Z2 twist defects16. Phase (1, 1)
is their combination with both nontrivial Z2 SPT order
and projective Z2 twist defects under time reversal.

After gauging the Z2 symmetry, we get SET phases.
Phase (0, 0) and (0, 1) lead to the usual non-twisted Z2

gauge theory (toric code order) and the resulting states
differ in the way Z2 fluxes transform under time reversal
(as singlet or doublet). Therefore, after gauging, phase
(0, 0) and (0, 1) results in two different SET phases.

On the other hand, phase (1, 0) and (1, 1) gauge into
the twisted Z2 gauge theory (double semion order). As
there is only one time reversal SET with double semion
order, the two SPT phases have to merge into one upon

8



gauging. To understand how this happens we notice that
phase (1, 0) and (1, 1) can be mapped into each other
by relabeling the group element. In particular, in the
symmetry group Z2 × ZT2 = {I, g, T , gT }, there are two
anti-unitary operators T and gT . If we exchange the
two, the group is still a Z2×ZT2 group and phase (1, 0) is
mapped into phase (1, 1) and vice verse. Therefore, upon
gauging the Z2 symmetry, phase (1, 0) and (1, 1) become
the same SET.

More explicitly, the edge state of the Z2 × ZT2 SPTs
can be described in general with

Le =
1

2π
∂xφ1∂tφ2 (56)

Different phases correspond to different ways symmetry
act on φ1 and φ2. In both phase (1, 0) and (1, 1), Z2 acts
as

g : φ1 → φ1 + π, φ2 → φ2 + π (57)

Time reversal acts respectively as

T1 : φ1 → φ1, φ2 → −φ2

T2 : φ1 → φ1 + π, φ2 → −φ2
(58)

ei(φ1+φ2)/2 (or ei(φ1−φ2)/2) creates a Z2 twist defect on
the edge and transforms as T 2

1 = 1 and T 2
2 = −1.

Combining g with T1 we get

gT1 : φ1 → φ1 + π, φ2 → −φ2 − π (59)

Redefine φ̃2 = φ2 + π/2, we find

gT1 : φ1 → φ1 + π, φ̃2 → −φ̃2 (60)

which is exactly the same as the action of T2. Hence after
gauging T1 and T2 are equivalent, and both correspond
to the same SET phase. However a memory of these
two distinct SPT phases is retained at the boundary of
our SET, where depending on boundary conditions the
semion can transform with either T 2 = 1 or −1.

VI. CONCLUSION AND DISCUSSION

To summarize, in this paper we have learned the fol-
lowing things about the double semion topological order:

1. There are two different ways to condense boson
and gap out the boundary while preserving time
reversal symmetry in the double semion state. One
corresponds to a Bose condensate with a coher-
ent phase factor 1 and the semion excitations on
the boundary transform as T 2 = 1. The other
corresponds to a Bose condensate with a coherent
phase factor of −1 and the semion excitations on
the boundary transform as T 2 = −1.

2. A pair of domain walls between the two types of

boundaries carry a two fold degeneracy. Time re-
versal symmetry acts in this two dimensional space
by tunneling a semion from one domain wall to an-
other.

3. There is only one SET phase with time rever-
sal symmetry and double semion topological or-
der. The different transformation properties of the
semions under time reversal symmetry is a pure
boundary effect. In the bulk, semions are mapped
to anti-semions and it is not meaningful to talk
about the time reversal representation carried by
semion itself.

4. Different SPT phases can become the same SET
phase after partly gauging the unitary symmetry
of the system. Examples of this kind have been
pointed out in Ref.17.

These results can be generalized to other SET or SPT
phases. In appendix B, we present another example of
SPTs coalescing upon gauging with unitary symmetry.
We leave the study of more general cases to the future.

We want to comment briefly on the relation between
this double semion example and some previous studies of
gapped boundaries of topological states.

A simple yet very interesting case was the boundary
state of toric code topological order. Even in the ab-
sence of symmetry, there are two types of boundaries
corresponding to the two types of (self) bosons in the
toric code18. Each domain wall between the two types
of boundaries carry a Majorana mode, giving rise to a
2N fold degeneracy for N +1 pairs of domain walls (with
fixed fermion parity).

Similarly, degeneracies arise with domain walls in our
double semion example. With N pairs of domain walls,
there is a 22N−1 fold degeneracy. Of course, this degener-
acy requires the protection of time reversal symmetry and
can be completely removed by adding time reversal sym-
metry breaking local terms. If time reversal symmetry
is preserved, the degenerate states can only be mapped
to each other through non-local operators which tunnel
semionic excitations from one domain wall to another.

The existence of such domain wall degeneracy has
also been noticed in (fractional) topological insula-
tors where domain walls between ferromagnetic gapped
edges and superconducting gapped edges carry Majorana
(parafermion) zero modes19–23. Such models are differ-
ent from the double semion example studied here in that
symmetry is broken in order to gap out the edge.

Finally, Wang and Levin studied different ways to gap
out the edge of a ‘strong pairing insulator’24, either with
an interface with a topological insulator or with an in-
terface with a trivial insulator. Symmetry is preserved
in these two kinds of edges, but the interface between
the two condensates – the topological insulator and the
trivial insulator – is always gapless when symmetry is
preserved.

9



ACKNOWLEDGMENTS

We would like to thank Lukasz Fidkowski, Zhenghan
Wang, Meng Cheng, and T. Senthil for discussion. XC is
supported by the Miller Institute for Basic Research in

Science at UC Berkeley, the Caltech Institute for Quan-
tum Information and Matter and the Walter Burke In-
stitute for Theoretical Physics. AV is supported by the
Templeton Foundation. FJB is supported by NSF DMR-
1352271 and Sloan FG-2015- 65927.

1 X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
2 M. Levin and A. Stern, Phys. Rev. B 86, 115131 (2012).
3 A. M. Essin and M. Hermele, Phys. Rev. B 87, 104406

(2013).
4 A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013).
5 L.-Y. Hung and X.-G. Wen, Phys. Rev. B 87, 165107

(2013).
6 Y.-M. Lu and A. Vishwanath, ArXiv e-prints 1302.2634

(2013), 1302.2634.
7 C. Xu, Phys. Rev. B 88, 205137 (2013).
8 X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski,

ArXiv e-prints 1403.6491 (2014), 1208.4834.
9 Y. Gu, L.-Y. Hung, and Y. Wan, ArXiv e-prints 1402.3356

(2014), 1402.3356.
10 M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,

ArXiv e-prints 1410.4540 (2014), 1410.4540.
11 L. Fidkowski, N. H. Lindner, and A. Kitaev, private com-

munication (2014).
12 X.-G. Wen, Advances in Physics 44, 405 (1995), ISSN

0001-8732.
13 M. Freedman, C. Nayak, K. Shtengel, K. Walker,and Z.

Wang, Annals of Physcs 310, 428 (2004).
14 M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110

(2005).
15 X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev.

B 87, 155114 (2013).
16 X. Chen, Y.-M. Lu, and A. Vishwanath, Nat Commun 5

(2014).
17 M. Cheng and Z.-C. Gu, Phys. Rev. Lett. 112, 141602

(2014).
18 S. B. Bravyi and A. Y. Kitaev, arXiv:quant-ph/9811052

(1998).
19 L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
20 M. Cheng, Phys. Rev. B 86, 195126 (2012).
21 D. J. Clarke, J. Alicea, and K. Shtengel, Nat Commun 4,

1348 (2013).
22 N. H. Lindner, E. Berg, G. Refael, and A. Stern, Phys.

Rev. X 2, 041002 (2012).
23 A. Vaezi, Phys. Rev. B 87, 035132 (2013).
24 C. Wang and M. Levin, Phys. Rev. B 88, 245136 (2013).

Appendix A: Explicit calculation of T -invariance of
the gapping terms between the two condensates

In this section, we are going to explicitly verify that the
UV †XsV U

† term given in section IV B is indeed real.

First, let’s write the Xs term in full as σxγσ
x
ασ

x
βσ

x
δ , as

shown in Fig.8 Then

α β 

γ δ 

α-1 β+1 

p1 p2

FIG. 8. Each Xs term flips four links α, β, γ and δ.

V †XsV

= S†α−1S
†
βσ

x
γσ

x
ασ

x
βσ

x
δSα−1Sβ

= σxγσ
x
ασ

x
βσ

x
δ Vφ

(A1)

where

Sa = ina(1−na+1) (A2)

and

Vφ = inα−1+1−nβ+1(−)nα−1nα+(1−nβ)(1−nβ+1) (A3)

Complex conjugating UV †XsV U
† then gives

(UV †XsV U
†)∗

=
1−iBp1

1−i
1−iBp2

1−i σxγσ
x
ασ

x
βσ

x
δ V
∗
φ

1+iBp1
1+i

1+iBp2
1+i

= UBp1Bp2σ
x
γσ

x
ασ

x
βσ

x
δ V
∗
φBp1Bp2U

†
(A4)

where p1 and p2 are the plaquettes above link α − 1, α
and β, β + 1 respectively, as shown in Fig.8.

Therefore, UV †XsV U
† is real if

Bp1Bp2σ
x
γσ

x
ασ

x
βσ

x
δ V
∗
φBp1Bp2 = σxγσ

x
ασ

x
βσ

x
δ Vφ (A5)

This can be explicitly checked as

Bp1Bp2
∏
σx =

∏
σx(−)nα−1+nβ+1+1

(−)nα−1+nβ+1+1V ∗φ = Vφ
(A6)

and Bp1Bp2 commutes with Vφ. Therefore,

(UV †XsV U
†)∗ = UV †XsV U

† (A7)

Appendix B: Example of SPTs coalescing upon
gauging with unitary symmetry

Consider SPTs with Z
(1)
2 ×Z

(2)
2 (unitary) group in 2d.

The classification is Z3
2 . The root phases have the edge
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structure,

L =
i

2π
∂xφ∂τθ (B1)

and transformation properties:

Phase (1, 0, 0) :Z
(1)
2 : φ→ φ+ π, θ → θ + π,

Z
(2)
2 : trivial

Phase (0, 1, 0) :Z
(1)
2 : trivial

Z
(2)
2 : φ→ φ+ π, θ → θ + π

Phase (0, 0, 1) :Z
(1)
2 : φ→ φ+ π, θ → θ

Z
(2)
2 : φ→ φ, θ → θ + π

Combining phases (0, 0, 1) and (0, 1, 0) we obtain

Phase (0, 1, 1) :Z
(1)
2 : φ→ φ+ π, θ → θ

Z
(2)
2 : φ→ φ+ π, θ → θ + π(B2)

Indeed, denote the edge modes of (0, 0, 1) as φ1, θ1 and
edge-modes of (0, 1, 0) as φ2, θ2. Then the combined edge
is described by,

L =
i

2π
∂xφ1∂τθ1 +

i

2π
∂xφ2∂τθ2 (B3)

Let’s define φ′1 = φ1, θ
′
1 = θ1−θ2, φ

′
2 = φ1 +φ2, θ

′
2 = θ2.

The action has the same form in the primed variables as
in the unprimed. The transformation properties of the
primed variables are,

Z
(1)
2 : φ′1 → φ′1 + π, θ′1 → θ′1

φ′2 → φ′2 + π, θ′2 → θ′2

Z
(2)
2 : φ′1 → φ′1, θ′1 → θ′1

φ′2 → φ′2 + π, θ′2 → θ′2 + π

(B4)

Adding a term −λ cos(θ′1) we gap out the φ′1, θ′1 modes.
The transformation properties of φ′2, θ

′
2 are then exactly

the same as in Eq. (B2).]

Let us denote the generator of Z
(1)
2 as g1, the generator

of Z
(2)
2 as g2 and g3 = g1g2. Then, in phase (0, 1, 1) under

g3 we have

g3 : φ→ φ, θ → θ + π (B5)

So the phase (0, 1, 1) is like the phase (0, 0, 1) but with the
actions of g2 and g3 interchanged. Now imagine gauging

the Z
(1)
2 group in the two phases (0, 0, 1) and (0, 1, 1).

The action of g1 in both cases is identical and the twist

defect is given by eiθ̃ = eiθ/2. In terms of θ̃ the edge
theory is,

L =
2i

2π
∂xφ∂τ θ̃ (B6)

i.e. after gauging we get a toric code topological order.

Now, Z
(2)
2 remains a global symmetry in the resulting

SET,

(0, 0, 1) with Z
(1)
2 gauged; Z

(2)
2 : φ→ φ, θ̃ → θ̃ + π/2

(0, 1, 1) withZ
(1)
2 gauged; Z

(2)
2 : φ→ φ+ π, θ̃ → θ̃ + π/2

(B7)

Clearly, as SETs the two phases are the same since all
local degrees of freedom transform in the same way (the
transformation properties differ by a pure “gauge” trans-
formation φ→ φ+ π).

We can also think about gauging the remaining Z
(2)
2

symmetry. In the case of (0, 0, 1) the twist defect of g2 is

eiφ̃ = eiφ/2. Thus, we get an overall Z4 topological order,

L =
4i

2π
∂xφ̃∂τ θ̃ (B8)

where eiφ̃ is the twist defect of Z
(2)
2 and eiθ̃ is the twist

defect of Z
(1)
2 .

Now, in the case of (0, 1, 1) the twist defect of g2 is

eiφ/2eiθ/2 = eiφ̃eiθ̃. If we are interested in the “overall”
topological order, we can still use the eiφ̃, eiθ̃ basis, ob-
taining a Z4 topological order. However, the way that
the twist defect of g2 is “embedded” within this topo-

logical order is different. In (0, 0, 1) it is just eiφ̃ (which

is a boson), whereas in (0, 1, 1) it is eiφ̃eiθ̃ (which is a
semion). If we are treating the two phases as SET phases

(with Z
(1)
2 “fully gauged”), then the difference of an ex-

tra factor of eiθ̃ is irrelevant, since the twist defect of the

global symmetry Z
(2)
2 can always trap an extra anyon

(vison) of the SET, eiθ̃. Thus, we cannot distinguish the
two SET phases. However, if we are working with SPT
phases and putting the twist defects in “by hand”, then
we know whether the twist defect of g1 is present or not,
so can distinguish the two SPT phases.
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