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We derive electronic structure models for weakly interacting bilayers such as graphene-graphene
and graphene-hexagonal boron nitride, based on density functional theory calculations followed by
Wannier transformation of electronic states. These transferable interlayer coupling models can be
applied to investigate the physics of bilayers with arbitrary translations and twists. The functional
form, in addition to the dependence on the distance, includes the angular dependence that results
from higher angular momentum components in the Wannier pz orbitals. We demonstrate the capa-
bilities of the method by applying it to a rotated graphene bilayer, which produces the analytically
predicted renormalization of the Fermi velocity, van Hove singularities in the density of states, and
Moiré pattern of the electronic localization at small twist angles. We further extend the theory to
obtain the effective couplings by integrating out neighboring layers. This approach is instrumental
for the design of van der Walls heterostructures with desirable electronic features and transport
properties and for the derivation of low-energy theories for graphene stacks, including proximity
effects from other layers.

PACS numbers: 71.15.-m, 73.22.-f, 74.78.Fk,

I. INTRODUCTION

Two-dimensional layered materials are becoming the
focus of experimental and theoretical investigations aim-
ing to realize the potential applications of these atom-
ically thin structures1–3. The library of these layered
materials is still expanding with properties that range
from metals and semi-metals to semiconductors and insu-
lators. Graphene, a semi-metallic atomically-thin sheet
of carbon atoms in the honeycomb lattice4,5, is an im-
portant member of the layered materials family. Flakes
of graphene can be obtained by the exfoliation method
from a graphite crystal6 or synthesized by methods such
as chemical vapor deposition7. In addition to its out-
standing electronic and mechanical properties, graphene
is also an interesting platform to investigate the quasi-
relativistic strongly-interacting many-body physics near
the charge-neutrality point (CNP) when screening be-
tween charges is reduced8. This electron-hole plasma,
known as the Dirac fluid, behaves differently from the
conventional Fermi liquid, when the Fermi level is far
from the CNP. The inclusion of graphene in the van der
Waals (vdW) heterostructures, that is, stacks of various
layered materials, can serve several purposes, for instance
as an active layer, a spacer or an electrode. The different
layered materials exhibit a wide variety of physical prop-
erties such as topological phases9, superconductivity10,
magnetism11 and charge density waves12. Different ways
of stacking, manipulating these materials and intercalat-
ing with foreign atoms in the vdW heterostructure open
even wider possibilities for interesting physics phenom-
ena and for novel nano-device applications2,13. Other
control knobs also include electrical gating, an external
magnetic field, various contacts and twist angles which
affect strongly the Brillouin zone (BZ) alignment and the

coupling between layers14.

To investigate the electronic properties of these fas-
cinating systems, large-scale density functional theory
(DFT)15,16, tight-binding models17–20, and low-energy k
· p expansions21–24 have been employed. The parameter-
free DFT approach is computationally demanding, while
the computationally efficient tight-binding methods and
low-energy k · p expansions are hampered by the ab-
sence of a universal form of the interlayer couplings. The
interlayer couplings employed by empirical methods are
often parametrized as functions of only the interatomic
distances or more elaborate forms that depend on the
local bonding environment20,25 with the values of pa-
rameters obtained by fitting the band structure of se-
lected crystal configurations. A set of such interlayer
hopping terms for graphene has been determined from
ab initio calculations, but they are extracted only from a
restricted subset of all possible bilayer orientations26,27.
The dependence of interlayer hopping on both the dis-
tance between pairs of atoms and the relative orientation
of bonds, as exemplified by the γ3 and γ4 terms in the
Slonczewski-Weiss-McClure model5, have not yet been
addressed properly. An accurate and transferable theory
of interlayer coupling would not only provide an efficient
way of evaluating electronic properties, but would also
shed light on transport properties across layers28 and on
the derivation of effective low-energy theories for arbi-
trary graphene stacking sequences.

We provide here a comprehensive and quantitive un-
derstanding of interlayer coupling in two prototypi-
cal bilayers, graphene-graphene (G-G) and graphene-
hexagonal born nitride (G-hBN). For the first time, this
type of ab initio modeling based on the Wannier trans-
formation is applied to derive a transferable potential
applicable to bilayer configurations with arbitrary trans-
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FIG. 1. (a) The generic graphene bilayer configuration with
arbitrary translations and twists. The constituent monolayer
crystal is described by the primitive vectors a1 and a2. For
an interlayer pair, the coupling dependence is characterized
by the projected distance r and the angles θ12 and θ21 be-
tween r and the nearest neighbor bonds. (b) Decomposition
of the Wannier function for monolayer graphene into the con-
stant (m = 0), cos(3θ) (m = ±3) and cos(6θ) (m = ±6)
components.

lations and twists between the two layers. In contrast
to similar analysis applied to transition metal dichalco-
genides, in which interlayer coupling was shown to have
a simple, orientation-independent scaling form that de-
pends only on the distance between pairs of atoms29, the
G-G and G-hBN interlayer couplings include a depen-
dence on both pair distances and relative orientations.
The ensuing angular dependence is related to the crystal
field distortions of the atomic pz Wannier orbitals. We
derive the form of effective coupling terms that is suit-
able in the general vdW heterostructure with arbitrary
twists and translations when some layers are integrated
out. This scheme is relevant for obtaining the proximity
effects on graphene due to other layered materials in the
vdW heterostructure. These interlayer coupling models
provide efficient ways for obtaining electronic properties
and effective low-energy theories, as well as for estimat-
ing proximity effects in vdW heterostructures, especially
when graphene layers are included in the stacks.

The paper is structured as follows: In Sec. II, we intro-
duce the numerical methods employed for the DFT calcu-
lations and the Wannier transformation. In Sec. III, we
investigate the hamiltonians for weakly interacting bilay-
ers, using G-G and G-hBN interfaces as the prototypical
examples. In Sec. IV we discuss the physics of twisted
bilayer graphene and in Sec. V we derive the effective
theory for proximity effects by integrating out the neigh-
boring layers. Our concluding Sec. VI gives a summary
of the main points, makes comparisons with similar ap-
proaches in the literature, and contains some remarks on
possible extensions and future applications.

TABLE I. Graphene intralayer (H0) and interlayer (H′ ) TBH
parameters with the on-site energy εC = 0.3504 eV. ti (for the
locations of these neighbors, see Ref.34) and λi are in eV with
a = 2.46 Å for r̄; ξi, xi, κi are dimensionless parameters.

H0 H′ V0(r) V3(r) V6(r)
t1 −2.8922 t5 0.0524 λi 0.3155 −0.0688 −0.0083
t2 0.2425 t6 −0.0209 ξi 1.7543 3.4692 2.8764
t3 −0.2656 t7 −0.0148 xi − 0.5212 1.5206
t4 0.0235 t8 −0.0211 κi 2.0010 − 1.5731

II. NUMERICAL METHODS

The approach we adopt here is to derive the ab initio
tight binding hamiltonian based on the Wannier trans-
formation of DFT calculations. Within DFT, we obtain
the Bloch wavefunctions and energies using VASP30,31

with pseudo-potentials of the Projector Augmented-
Wave (PAW) type, the exchange-correlation functional
of Perdew, Burke and Ernzerhof (PBE)32, a plane-wave
energy cutoff 500 eV and a 17 × 17 × 1 reciprocal space
grid. A 20 Å distance is used to eliminate the coupling
between periodic images of the layers in the direction
perpendicular to the atomic planes. The diagonal Kohn-
Sham hamiltonian in Bloch basis from the DFT calcu-
lations is then transformed into a basis of maximally-
localized Wannier functions (MLWF)33 implemented in
the Wannier90 code. In our modeling, only pz-like or-
bitals at each atomic site are projected out and retained
in the Wannier basis. The short-ranged ab initio tight-
binding hamiltonian we construct is an accurate and re-
liable way to obtain model parameters by preserving the
phase and the orbital information from the DFT calcu-
lations.

III. HAMILTONIAN FOR WEAKLY
INTERACTING BILAYERS

Before modeling the interlayer coupling, we first re-
construct the ab-initio tight-binding hamiltonian H0 for
a graphene monolayer34. The unit cell for monolayer
graphene is spanned by a1 = (

√
3x̂ − ŷ)a/2 and a2 =

(
√

3x̂ + ŷ)a/2 with the lattice constant a=2.46 Å. Two
basis atoms are situated at δA = 0 and δB = (a1 +a2)/3.
We extract the intralayer couplings up to the eighth near-
est neighbors, which shows good agreements with DFT
results. The numerical parameters for ti, the intralayer
hopping parameter to the i-th nearest neighbor, are listed
in the left block H0 of Table I.

The shape of the localized basis, also known as the
Wannier orbital provides intuition for the chemical bond-
ing, hybridization and the symmetry of the crystal. For
monolayer graphene, the constructed Wannier orbital has
a dominant pz character but the azimuthal symmetry is
broken by the crystal field distortion from the neighbor-
ing atoms. Locally, at the position of the carbon atom,
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the three-fold rotation symmetry is restored. Thus, the
angular momentum is defined up to modulo 3, which
means that there is hybridization within each sector of
angular momentum states. In Fig. 1(b), we decompose
the Wannier function for graphene into m = 0 (dom-
inant pz), m = ±3 and m = ±6 angular momentum
components. This decomposition shows the range and
the strength of each component, and the characteristic
radius gets larger for larger angular momentum compo-
nents.

When two or more monolayers are brought into con-
tact, the shape of the Wannier function has implications
for the interlayer coupling. These couplings are described
by the matrix elements: 〈ψ2|H|ψ1〉 with ψ1 (ψ2) the Wan-
nier orbital of the first (second) layer and H the total
hamiltonian. The angular momentum mixing as shown
in Fig. 1(b) for the Wannier orbital in graphene trans-
lates into the angular dependence of such interlayer cou-
plings, in addition to the usual dependence on the dis-
tance of the pair. Without loss of generality, we assume
the projected vector r from ψ1 to ψ2 on the plane is along
the positive x axis, and θ1 (θ2) is the angle relative to r
needed to determine the orientation of the crystal of the
layer to which the Wannier orbital ψ1 (ψ2) belongs. The
interlayer coupling can then be written as the function
t(r, θ1, θ2). If the underlying crystal and the embedded
Wannier orbital has N-fold rotation symmetry, then θ is
only defined up to modulo 2π/N . The above interlayer
coupling can be simplified to:

t(r, θ1, θ2) =

∞∑
m1,m2=−∞

fm1,m2
(r)eim1N1θ1+im2N2θ2 (1)

with integers mi. For real t, fm̄1,m̄2
(r) = f∗m1,m2

(r).
This decomposition can be viewed as the multi-channel
interlayer hopping process.

We next apply this general analysis to bilayers of
graphene (G-G) and of graphene/hexagonal boron ni-
tride (G-hBN). We consider two specific stackings, AA
and AB defined by the relative position of the basis A
or B atom of the top layer to that of the basis A atom
of the bottom layer. The bilayers are assumed to be flat
with the same constant separation c = 3.35 Å in the z
direction5. Since in these two specific cases the two layers
are not rotated with respect to each other, each primi-
tive unit cell contains four atoms. After carrying out the
DFT and Wannier transformation,, the ab initio tight
binding hamiltonian H = Ht0 +Hb0 +H′ can be decom-
posed into the intralayer Ht0, Hb0 and the interlayer H′
parts. The interlayer coupling of any atomic pair can be
obtained from elements of H′ in the Wannier basis. We
then apply a lateral translation ∆ = r cos(θ)x̂+r sin(θ)ŷ
to the top layer with the vertical separation c fixed. This
translation will affect both the distance and the relative
orientation of the interlayer bonds while keeping the un-
derlying crystal orientation untouched. The interlayer
hoppings are extracted between the basis A atom of the
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FIG. 2. Hoppings for the shifted graphene bilayer of (a) AA-
type and (b) AB-type pairs as functions of the pair distance
r; the spread of the hoppings at fixed r indicates angular
dependence. Decomposition into the constant m = 0 (solid
line), cos(3θ) (circle), and cos(6θ) (cross) components for the
(c) AA-type pairs and (d) AB-type pairs. These curves are
modeled by the Vi(r) in Eq. (3).

bottom layer at the origin and the shifted A (B) basis
atom of the top layer in the translated AA (AB) struc-
ture.

The extracted interlayer hoppings as functions of the
projected interlayer bond distance r are plotted in Fig.
2(a), (b) for the graphene AA and AB bilayers, respec-
tively. At a given distance r, the spread of the interlayer
hopping indicates strong angular dependence. Notably,
hopping in the AA type bilayer is different from that in
the AB type bilayer. Due to the three-fold rotation sym-
metry of the underlying crystal, these interlayer hoppings
are invariant under θ → θ±2π/3. We further decompose
the angular dependence at fixed r into its Fourier com-
ponents of the constant term, cos(3θ) and cos(6θ) terms.
Higher order cos(3Nθ) terms do exist but are vanishingly
small.

The hopping is given by the superposition of the inter-
layer terms that involve the symmetric combination of
the following parameters

t(r) =V0(r) + V3(r)[cos(3θ12) + cos(3θ21)]

+ V6(r)[cos(6θ12) + cos(6θ21)]
(2)

where r the two-dimensional (projected) vector connect-
ing the two atoms, r = |r|, and θ12 and θ21 the angles
between the projected interlayer bond and the in-plane
nearest neighbor bond as defined in Fig. 1(a). The re-
sult does not depend on which nearest neighbor bond
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TABLE II. hBN intralayer and G-hBN interlayer tight-binding parameters. εB = 2.2021 eV, εN = −1.9124 eV with the
convention a = 2.46 Å for r̄ in the fitting expression Eq. (3).

HB0 (HN0 ) H′ V CB
0 (r) V CB

3,BC(r) V CB
3,CB(r) V CN

0 (r) V CN
3,NC(r) V CN

3,CN(r)
t1 −2.6490 t5 0.0344 (0.0301) λi 0.3905 −0.0588 −0.0651 0.2517 −0.0606 −0.0465
t2 0.0594 (0.2276) t6 −0.0374(−0.0240) ξi 1.5426 3.0827 3.7998 1.6061 3.3502 3.0464
t3 −0.2163 t7 −0.0053 xi − 0.6085 0.6341 − 0.5142 0.5264
t4 0.0502 t8 −0.0133 κi 1.8229 − − 2.1909 − −

is used. Compared with Eq. (1), these correspond to
non-zero values for the terms f0,0, f±1,0, f0,±1, f±2,0 and
f0,±2, with N1 = N2 = 3. We use the following fitting
functions for Vi(r) with r̄ = r/a

V0(r) = λ0e
−ξ0(r̄)2 cos(κ0r̄)

V3(r) = λ3r̄
2e−ξ3(r̄−x3)2

V6(r) = λ6e
−ξ6(r̄−x6)2 sin(κ6r̄)

(3)

These Fourier projected components are plotted in Fig.
2(c) and (d) for the AA and AB stackings respectively.
For the constant term, the AA/AB hoppings are very
similar to each other, and we define V0(r) to be the aver-
age of the two. Projection into cos(3θ) is significant for
the AB type but vanishes identically for the AA type,
and the curve in the AB case is defined as 2V3(r). The
two stackings have similar behavior for the much smaller
cos(6θ) term, and 2V6(r) is the average of the two. The
values of the fitting parameters are given in Table I from
the analysis of the translated AA/AB structures.

A proper analysis of the inherent symmetry of the
two-layer system provides the justification for the form
of the interlayer hoppings and enables us to generalize
the model to arbitrary configuration. Specifically, the
three-fold symmetry of the crystal field allows mixing
between pz and m = ±3N orbitals with N an integer.
Due to the crystal symmetry, these components acquire
a phase (−1)N when A and B basis atoms are inter-
changed, which are related by a yz mirror operation.
Wannier orbital viewed as composite objects of mixed
angular momentum, the hopping between two such ob-
jects is determined by the superposition of the individ-
ual hopping channels between each component, within
the two center approximation35. The dominant chan-

nel is between the two m = 0 components which gives
the constant part in the interlayer hopping. There is
a cos(3θ) term from the coupling between m = 0 and
m = ±3 channels. Due to the symmetry, the two terms
add up constructively (destructively) for the AB (AA)
type. This can also be seen from the additional minus
sign in exchanging A and B basis atoms. There are two
types of contribution to the cos(6θ) term, and they can be
generated from the coupling between m = 0 and m = ±6,
or between m = ±3 components of the two atoms. By
symmetry, the first (second) part of the contribution is
even (odd) in AA/AB. We can model the contribution
of the first type from the average cos(6θ) term of AA/AB
in Fig. 2(c), (d). The channel between two m = ±3 can
in general produce complicated angular dependence, but
it is only a small correction (a few meV) and hence we
ignore it in our model.

Following similar steps, we derive the tight-binding
hamiltonian for interlayer coupling in the case of a bilayer
G-hBN. In the G-hBN interlayer coupling compared to
the G-G coupling the symmetry is lower since the atoms
are not identical, and this affects the amplitude for each
angular momentum channel. From similar analysis for
the shifted AA/AB couplings in a G-hBN bilayer, we
can model the coupling as:

tCX(r) =V CX
0 (r) + V CX

3,XC(r) cos(3θXC)

+ V CX
3,CX(r) cos(3θCX)

(4)

where X=B,N atoms. V CX
0 (r), V CX

3,CX(r) and V CX
3,XC(r)

share the same functional form as the ones in the G-G
case, and the corresponding values of the parameters are
tabulated in Table II.

To validate our model with the intra- and inter-layer
couplings, in Fig. 3(a), (b) we compare the band struc-
ture obtained from DFT and from our tight-binding
hamiltonian in the conventional AB-stacking bilayer and
bulk graphite. The two band structures show good agree-
ment over a large energy region around the Fermi level.
The discrepancies away from the Fermi level are due to
the hybridization of pz orbitals and other orbitals such as
sp2 which are not included in our Wannier model. When

one monolayer is twisted relativ to the other, a super-
cell structure can be constructed in the commensurate
case15,36, labeled by (M ,N) with twist angle θ(M,N). The
two layers are separated by a constant height c = 3.35
Å. In Fig. 3(c), we compare the result from DFT and
tight-binding calculations for the (M ,N)=(6, 5) twisted
super-cell (θ ≈ 6.01◦); the model hamiltonian reproduces
the DFT band structure well. We also include in Fig.
3(c) a comparison with the band structure of the folded
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FIG. 3. Comparison between the tight binding hamilto-
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layer, (b) bulk; (c) (M,N)=(6,5) twisted super-structure

(θ(6,5) ≈ 6.01◦) and comparison to the folded monolayer band
structure (green crosses).

BZ for a single monolayer, which is quite different, show-
ing the importance of having an accurate description of
interlayer coupling.

IV. TWISTED BILAYER GRAPHENE
PHYSICS

The coupling between layers is weak for θ ≈ 30◦, and
gets stronger when the twist approaches angles near 0◦

or 60◦.17 When two layers are twisted, the bands are
formed from the hybridization of monolayer bands19 as
in the schematic diagram of Fig. 4(a) inset. The charac-
teristic kinetic energy scale is defined by ~vF∆K, with
vF = 8.22× 105 m/s the Fermi velocity of the monolayer
graphene, and ∆K = |K − Kθ| = 8π

3a sin(θ/2) the dis-

tance between displaced K points of two layers (K = 4π
3a ŷ,

Kθ = 4π
3a (cos(θ)ŷ − sin(θ)x̂)). Under the hybridization

at large twist angles, the bilayer bands retain the linear
Dirac dispersion, but with a different slope around the
Dirac point compared to the folded bands of the mono-
layer graphene as in Fig. 3(c) and 4(b). The Fermi
velocity is renormalized by the interlayer coupling as
can be seen from the effective low-energy theory around
the Dirac points. A pair of states around the Dirac
point with near zero energy are coupled to three pairs
of states of energy ±~vF∆K. The effective theory from
a Schrieffer-Wolff transformation for the near zero energy
doublet states has corrections to linear order in k which
renormalize the velocity21. We constructed a series of

twisted supercell structures with decreasing angles from
30◦, and the renormalized Fermi velocity calculated from
the bands along Γ-K indeed follows the theoretical predic-
tion ṽF /vF = 1−C/ sin2(θ/2) with C = 1.953× 10−4.21

Another feature for the band structure of the twisted
superstructure is the van Hove singularities (VHS) in
the density of states (DOS) near the Fermi level19,
which often leads to electronic instabilities such as
superconductivity37 and magnetism38 in the many-body
system. In Fig. 4(c), the DOS of a (M,N)=(6,5) super-
cell with θ ≈ 6.01◦ is compared to a monolayer graphene
with the singular points corresponding to the energy ex-
trema in Fig. 4(b). This VHS is due to gap opening from
hybridization between states in the overlap between the
Dirac cones of the two layers19. The advantage of twisted
bilayers is that the location of VHS can be controlled by
varying the twist angle39, and are roughly centered at
E = ± 1

2~vF∆K.
When the twist angle is even smaller, such as with

a (M,N)=(31,30) supercell structure (θ ≈ 1.08◦), the
Fermi velocity is close to zero, and nearly flat bands are
observed at the Fermi level18 in Fig. 4(d). The elec-
tronic states in these nearly dispersionless bands show
highly localized charge density at the AA-sites17 as in
Fig. 4(e), referred to as Moiré pattern. In experiments,
the VHS and the localization of electrons in twisted
graphene layers have been measured by scanning tun-
neling spectroscopy39–41.

In the discussion so far we have assumed the layers to
be flat and focused only on their electronic properties.
Structural relaxations such as rippling or more drastic
commensurate-incommensurate transitions with domain-
line formation, as in the G-hBN bilayer42, could be rele-
vant for small twist angles. They are driven by the differ-
ent local mechanical energy for AA and AB stackings43.
Though the prediction of mechanical deformations is be-
yond the scope of the current work, we comment that
more general forms of interlayer couplings can be mod-
eled by incorporating variable height or strain by modify-
ing the initial AA/AB sliding bilayers, which will allow
proper description of the effects of structural deforma-
tions.

V. EFFECTIVE THEORY FROM PROXIMITY
EFFECTS

As a final comment on how our model can be applied,
we discuss how to construct effective theories with lim-
ited degrees of freedom instead of having to solve the
hamiltonian in the full Hilbert space of the combined lay-
ers. In graphene bilayers, the low-energy hamiltonian has
the form of non-abelian gauge theory44. To define and
formulate the problem, we consider a vdW bilayer het-
erostructure with layer 1 as the main component where
the low-energy degrees of freedom at the Fermi level EF
reside. Layer 2 is brought close to layer 1 to introduce
the desired proximity effects. In general, the presence of
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layer 2 will affect the electronic properties of layer 1 in
two ways: (1) by introducing a direct additional potential
generated by the neighboring atoms; (2) by introducing
virtual interlayer hopping processes through hybridiza-
tion to the states of the neighboring layer. The general
vdW heterostructure hamiltonian takes the form

HvdW =

[
Ĥ1 + ∆Ĥ12 T̂

T̂ † Ĥ2 + ∆Ĥ21

]
(5)

∆Ĥ12 and ∆Ĥ21 are the direct corrections of the first
type, and T̂ is the interlayer coupling in the heterostruc-
ture. Integrating out the second layer gives a perturba-
tion term for the first layer

∆V12(E) = T̂
1

E − (Ĥ2 + ∆Ĥ21)
T̂ † (6)

where, since T̂ is already small, and ∆Ĥ21 is a higher or-
der correction that disrupts the lattice translation sym-
metry in Ĥ2, this term can be ignored. The effective
potential takes the following form in the spatial repre-
sentation, evaluated at E = EF

∆V12(r2, r1, EF ) =
∑
s2,s1

tr2,s2〈s2|
1

EF − Ĥ2

|s1〉t†s1,r1

=
∑
s2,s1

tr2,s2t
†
s1,r1

Ωk

∫
BZ

d2k〈ψk,δ2 |
eik·(s2−s1)

EF − Ĥ2(k)
|ψk,δ1〉

(7)

with Ωk the BZ area, ri (si) the localized orbitals of
layer 1 (2), which include both the position vector ri
(si) and the orbital index δi, and ti,j are the interlayer
coupling from j to i orbitals between the layers. In the
usual perturbation framework, this expression describes
hopping across the layers from r1 to s1, allowing for all
paths s1 to s2 within layer 2, and hopping back to layer
1, from s2 to r2. When applied to the G-hBN bilayer, the
sub-lattice symmetry breaking mass terms of ∆V12 from
hBN to carbon sites have opposite sign from the direct
term ∆H12: the carbon site above a BN layer experiences
the same sub-lattice potential as the BN layer itself in the
direct contribution ∆Ĥ12 while ∆V12 is opposite due to
level repulsion in the framework of perturbation theory.
The use of this effective potential will enable application
to very large systems without loss of accuracy.

VI. CONCLUSION

In summary, we derived the ab initio G-G and G-hBN
interlayer couplings based on the maximally localized
Wannier function transformation of DFT calculations.
We show that these interlayer couplings have both pair-
distance and angular-orientation dependence. In con-
trast, the conventional way of modeling such couplings
by fitting band structure calculations leads to ambigu-
ities in the functional form and its dependence on im-
portant structural variables17–20,25,45. The success of the
latter, simpler approach is due to the small number of
parameters needed in effective low-energy theories near
the Dirac energy21–24 implying that only one set of dom-
inant Fourier components for interlayer coupling is rel-
evant; this set of components, however, is not enough
to constrain its functional form and its dependence on
key variables. In the work by Jeil Jung et al.26,27, such
interlayer couplings were extracted with the use of the
Wannier transformation but the crystal configuration of
the bilayer was held at fixed orientation which means
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that it can only be applied to layered stacks that involve
only translations and small relative twist angles.

In our work, we elucidate the physics from the
extracted couplings by analyzing the multi-angular-
momentum channel contributions. This enabled us to
generalize the interlayer coupling model to arbitrary
stacking orientations with that involve any possible rel-
ative translation or rotation of the layers. Our model
can also be generalized to incorporate local variations
of in-plane strain and interlayer distance by varying
the reference configurations in a systematic way. We
expect our model to be relevant in investigating the
derivation of low-energy theories appropriate for layer
stackings21–24,44, the band gap introduced by the pres-
ence of hBN46, optical absorption47, vertical transport
across layers28, phenomena like the quantum Hall effects
and Hofstadter’s butterfly from the competition between

magnetic field and supercell length scales48–50. The sys-
tematic Wannier approach also allows for further gener-
alization to other two-dimensional layered materials.
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