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Motivated by the issue of particle-hole symmetry for the composite fermion Fermi sea at the half
filled Landau level, Dam T. Son has made an intriguing proposal [Phys. Rev. X 5, 031027 (2015)]
that composite fermions are Dirac particles. We ask what features of the Dirac-composite fermion
theory and its various consequences may be reconciled with the well established microscopic theory
of the fractional quantum Hall effect and the 1/2 state, which is based on non-relativistic composite
fermions. Starting from the microscopic theory, we derive the assertion of Son that the particle-
hole transformation of electrons at filling factor ν = 1/2 corresponds to an effective time reversal
transformation (i.e. {k j}→{−k j}) for composite fermions, and discuss how this connects to the
absence of 2kF backscattering in the presence of a particle-hole symmetric disorder. By considering
bare holes in various composite-fermion Λ levels (analogs of electronic Landau levels) we determine
the Λ level spacing and find it to be very nearly independent of the Λ level index, consistent with a
parabolic dispersion for the underlying composite fermions. Finally, we address the compatibility of
the Chern-Simons theory with the lowest Landau level constraint, and find that the wave functions
of the mean-field Chern-Simons theory, as well as a class of topologically similar wave functions,
are surprisingly accurate when projected into the lowest Landau level. These considerations lead
us to introduce a “normal form” for the unprojected wave functions of the n/(2pn− 1) states that
correctly capture the topological properties even without lowest Landau level projection.

PACS numbers: 73.43.Cd, 71.10.Pm

I. INTRODUCTION

Ever since the discovery of the phenomenon of the frac-
tional quantum Hall effect (FQHE) [1], the system of
electrons confined to two dimensions and exposed to a
strong magnetic field has served a playground for the
study of complex yet elegant new structures emerging
as a result of interactions. The vast phenomenology
of the lowest Landau level (LLL) has been securely ex-
plained or predicted in terms of the emergence of topolog-
ical particles called composite fermions, which are bound
states of electrons and quantized vortices [2–5]. Com-
posite fermions experience a reduced effective magnetic
field and can be treated as non-interacting to a first ap-
proximation. Prominent among the successes of the com-
posite (CF) theory are the FQHE at the Jain fractions
ν = n/(2pn ± 1) (p is a positive integer), which are ex-
plained as ν∗ = n integer quantum Hall effect (IQHE) of
composite fermions; the compressible state at ν = 1/2,
which is understood as the Halperin-Lee-Read (HLR)[4]
Fermi sea of composite fermions in vanishing effective
magnetic field (also see Kalmeyer and Zhang [6]); the
spin polarization of the FQHE states [7–15]; the FQHE
at 5/2[16], believed to be described by the Moore-Read
Pfaffian wave function of the chiral p-wave paired state
of composite fermions[17, 18]; and various charged and
neutral excitations that are understood as excitations of
composite fermions across their Landau-like levels called
Λ levels (ΛLs) [19–33].

More recently, FQHE has also been observed for Dirac
electrons in graphene[13, 34–36]. Interestingly, to the
extent the finite width and Landau level (LL) mixing ef-
fects are negligible, the FQHE physics in the n = 0 LL

of non-relativistic electrons in GaAs and in the n = 0
LL of Dirac electrons in graphene are identical [37–39].
The nature of the emergent composite fermions thus does
not depend on whether the parent electrons are relativis-
tic Dirac electrons or non-relativistic electrons obeying a
parabolic dispersion. (The physics in the n 6= 0 LLs of
the Dirac and non-relativistic systems are different[37–
41], but that is not relevant to the issue at hand.)

Tremendous excitement has recently been generated by
an ingenious proposal of Son [42] wherein he models com-
posite fermions as Dirac particles, akin to those on the
surface of a three-dimensional topological insulator. His
motivation for introducing “Dirac composite fermions”
comes from the following observation. A widely employed
approach for incorporating the CF physics into a theo-
retical framework is through the Chern-Simons (CS) field
theory, developed by Lopez and Fradkin[3] and HLR[4],
in which one performs a singular gauge transformation to
map the electron system into that of composite fermions
at an effective magnetic field. One then calculates (in an
approximate scheme) quantities for composite fermions
at the effective magnetic field, and then uses a dictionary
for translating these quantities into those for electrons,
which are what the experiments measure. One of the
problems of the CS approach is that it does not impose
the LLL constraint, and thus does not satisfy particle-
hole (p-h) symmetry at half filling, which is an exact
symmetry of the Hamiltonian describing electrons inter-
acting via a two-body interaction while being confined to
the LLL.

Son begins by noting that the physics of the half filled
n = 0 LL in GaAs is identical to that of the half filled
n = 0 LL in a Dirac system. P-h symmetry arises differ-
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ently in the two models. In GaAs, p-h symmetry emerges
at ν = 1/2 only in the limit when admixture with higher
LLs is suppressed, whereas in the Dirac system, p-h sym-
metry at ν = 1/2 is valid even in the presence of LL mix-
ing, because the LLs are symmetrically located above
and below the Dirac point. Going to a system of Dirac
electrons thus decouples LLL projection and p-h symme-
try. Son then proposes that a p-h symmetric description
of the CF Fermi sea is obtained effectively in terms of a
Fermi sea of electrically neutral Dirac composite fermions
coupled to an emergent dynamical gauge field. He conjec-
tures that the p-h symmetry of electrons maps into time
reversal symmetry of the Dirac composite fermions. One
of the principal properties of the Dirac sea, as opposed
to the HLR Fermi sea, is that an adiabatic loop around
the Fermi circle produces a Berry phase of π. (A π Berry
phase for the ν = 1/2 CF Fermi sea can also be moti-
vated from the work of Haldane [43] who demonstrated
a connection between the intrinsic anomalous Hall effect
and the topological Berry phase around the Fermi circle.)

A hallmark of the CF theory is the deep connection it
reveals between the compressible state at ν = 1/2 and the
incompressible FQHE states at ν = n/(2n ± 1), demon-
strating that they all have the same physical origin. The
theory of the 1/2 Fermi sea must also explain the frac-
tions ν = n/(2n±1), and vice versa. Son of course appre-
ciates this and has addressed the issue of FQHE within
his Dirac CF approach. In his approach, when the filling
factor is varied away from half filling, the Dirac compos-
ite fermions experience the standard effective magnetic
field, and exhibit FQHE at the Jain fractions. A radical
step of the Dirac-CF viewpoint is to abandon the defini-
tion of the composite fermion as the bound state of an
electron and an even number of quantized vortices[44].
This is necessitated because the number of Dirac com-
posite fermions is, in general, not equal to the number
electrons but to half the number of flux quanta penetrat-
ing the sample. In particular, the fraction ν = n/(2n+1)
and its hole counterpart at ν = (n+1)/(2n+1) map into
ν∗ = n+1/2 “IQHE” of Dirac composite fermions in pos-
itive and negative effective magnetic fields, respectively.
(Here, “IQHE” refers to QHE of non-interacting fermions
filling an integer number of Landau levels, even though
the Hall resistance for Dirac fermions is half-integrally
quantized.) Thus, even though the issue of p-h symme-
try of the HLR Fermi sea served as the initial motivation
of the Dirac-CF view, it entails implications for the phys-
ical meaning of composite fermions as well as the general
structure of the CF theory.

Son’s proposal has stimulated much further work[44–
55]. Aiming to clarify its conceptual underpinnings,
Wang and Senthil [45, 47] and Metlitski and Vishwanath
[46] have argued, with further justification by Mross, Al-
icea and Motrunich [53], that the system of Dirac elec-
trons at the surface of a 3D topological insulator coupled
to the electromagnetic field is dual to a system of neutral
fermions coupled to an emergent gauge field whose flux is
proportional to the electron density, in the sense that the

two theories live in the same Hilbert space. In light of
this duality, the authors argue that it is natural to iden-
tify the Fermi sea state at the half filled n = 0 LL of the
former with the Dirac Fermi sea of the latter at zero mag-
netic field. Wang and Senthil also provide a picture for
how two-component nature of composite fermions may
emerge as a result of LLL projection [47]. Murthy and
Shankar have extended their Hamiltonian theory [56] to
Dirac composite fermions[50]. Geraedts et al.[48] provide
a convincing demonstration, in a DMRG calculation, of
an absence of 2kF backscattering for the CF Fermi sea at
ν = 1/2 in the presence of a particle-hole symmetric dis-
order. This has been taken as an evidence for the Dirac
nature of composite fermions. Interestingly, the issue of
transport at ν = 1/2 in a random flux disorder (which
simulates density variations of composite fermions) had
already been investigated by Kalmeyer and Zhang [6] and
by Kalmeyer et al. [57] in the early 1990s, who find an
absence of localization for disorder that preserves time
reversal symmetry.

The view that composite fermions are Dirac fermions
presents a paradox, however. To see this, we recall that
there also exists a microscopic theory of non-relativistic
composite fermions [2, 5], which proceeds by construct-
ing explicit wave functions for the ground and excited
states at arbitrary fillings by analogy to weakly interact-
ing non-relativistic fermions in an effective magnetic field.
The validity of the microscopic theory is beyond dispute.
In particular, Son’s criticisms of the Chern-Simons field
theoretical formulation that led him to introduce Dirac
composite fermions are not applicable to the microscopic
theory. This implies that the deficiencies of the CS theory
are not really an evidence against the non-relativistic na-
ture of composite fermions per se. From the perspective
of the microscopic theory, there is no reason to question
the non-relativistic nature of composite fermions.

Even though an effective theory aims to capture the
long-distance low-energy physics, one expects it to be
compatible with, and hopefully even derivable from, the
microscopic theory. This raises a number of questions.
What assertions of the Dirac-CF picture are consistent
with the microscopic theory? Can one derive, microscop-
ically, the absence of 2kF backscattering for composite
fermions for a p-h symmetric disorder? How is the π
Berry phase for the Fermi circle related to these issues,
and how, if at all, does it follow from the microscopic the-
ory? What is the dispersion of the composite fermion?
Are the deficiencies of the CS theory intrinsic, or are they
of a technical nature? Is the CS theory compatible with
LLL projection? If so, does it produce microscopically
accurate results and a p-h symmetric CF Fermi sea at
ν = 1/2? We address all of these issues in this article.
Our philosophy below will be always to frame the discus-
sion entirely in terms of the wave functions of electrons
confined to the LLL, and then ask what the results mean
in terms of composite fermions. We again stress that
the nature of the parent electrons, whether they are non-
relativistic or Dirac, plays no role in our considerations.
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The plan of the article is as follows. In Sec. II, we sum-
marize the microscopic theory of non-relativistic compos-
ite fermions and discuss how several criticisms of the CS
theory do not apply to the microscopic theory. In Sec.
III we provide a derivation, using the microscopic the-
ory, of Son’s insight that at ν = 1/2 p-h transformation
on electrons acts as a time reversal-like transformation
{k j}→{−k j} of composite fermions. We show that this
implies absence of 2kF backscattering of a single compos-
ite fermion in the presence of a p-h symmetric perturba-
tion. We also discuss the relation of this result to a π
Berry phase for the CF Fermi sea. In Sec. IV we ask
if the excitation spectrum can distinguish between the
non-relativistic and Dirac CF descriptions. We calcu-
late the spacing between the emergent ΛLs of composite
fermions by considering bare (undressed) CF holes in var-
ious Λ levels, and find that the ΛLs are equally spaced, as
expected for composite fermions with a parabolic disper-
sion. We investigate in Sec. V if the CS mean-field for-
mulation of composite fermions is compatible with LLL
projection and, if so, whether it provides a p-h symmet-
ric description at ν = 1/2. We define LLL projection
in an operational sense within the CS approach, and find
that it leads to a reasonably good p-h symmetric descrip-
tion. In Sec. VI we note that the CS mean field wave
functions are part of a more general class of topologi-
cally similar wave functions, which all produce reason-
ably good wave functions when projected into the LLL.
However, as noted in Sec. VII, these are not all sensible
wave functions without LLL projection. We consider the
issue of the topological local charge of the quasiparticle
excitations in the Chern-Simons mean field states, and
introduce a “normal” form for the unprojected compos-
ite fermions that has many nice features. The article is
concluded in Sec. VIII.

II. MICROSCOPIC THEORY

The fundamental principle of the CF theory[2–5]
is that interacting electrons at a filling factor ν =
ν∗/(2pν∗ ± 1) transform into weakly interacting (non-
relativistic) composite fermions at ν∗. One consequence
of this is that the low energy spectrum of the for-
mer, which results entirely from interelectron interac-
tions, resembles the known low energy spectrum of non-
interacting fermions at ν∗. In particular, at ν∗ = n,
the latter produces an unique incompressible IQHE state,
which implies FQHE at ν = n/(2pn ± 1). The CF the-
ory goes beyond a qualitative explanation of the phe-
nomenology by constructing explicit wave functions[2, 5]
for interacting electrons in the LLL in terms of the known
wave functions of non-relativistic fermions Φγν∗ :

ΨCF,γ

ν= ν∗
2pν∗±1

= PLLL

∏
j<k

(zj − zk)2pΦγ±ν∗ (1)

Here γ labels the different eigenstates, Φγ−ν∗ = [Φγν∗ ]∗,
PLLL denotes the LLL projection, and zj = xj − iyj

denotes the position of the jth electron as a complex
number. This single equation gives wave functions, and
thus energies, for all low energy eigenstates at arbitrary
filling ν in the LLL, and thereby subjects itself to rigor-
ous and non-trivial qualitative and quantitative tests. In
this wave function, the factor Φγ±ν∗ contains the Gaus-

sian factor exp[−
∑
j |zj |2/4`2] where ` =

√
~c/eB is the

magnetic length at the external magnetic field B. In the
limit of n → ∞, for p = 1, the above wave functions
reduce to the CF Fermi liquid state at ν = 1/2. Here the
wave function is given by[58]

ΨCF
ν=1/2 = PLLL

∏
j<k

(zj − zk)2ΦFS(B∗ = 0)e−
∑
j |zj |

2/4`2

(2)
where ΦFS(B∗ = 0) is the wave function of the Fermi
sea of non-relativistic fermions and the Gaussian factor
is displayed explicitly.

In the microscopic theory, even though one uses inspi-
ration from the CF physics, the final wave functions are
written for electrons, which allows calculations of vari-
ous quantities directly for electrons in the actual mag-
netic field. The above wave functions have been tested
in painstaking detail in the entire filling factor range in
the LLL where FQHE is seen and shown to be essen-
tially exact representations of the Coulomb solutions for
the ground as well as excited states [5, 19, 33, 58, 59].
These studies establish a direct relation between the in-
compressible FQHE states at ν = n/(2pn ± 1) and the
compressible state at ν = 1/2 with IQHE and Fermi sea
of non-relativistic fermions.

It is worth noting that several deficiencies of the CS
field theory, including the ones that served as a motiva-
tion for the introduction of Dirac composite fermions, do
not apply to the microscopic theory of non-relativistic
composite fermions.

(i) Energy scale: In the CS theory the energy scale at
the mean field level is set by the cyclotron energy, and not
by the Coulomb energy as expected for a theory confined
to the LLL. On the other hand, Jain’s wave functions
of Eq. 1 reside, by construction, in the LLL, and thus
produce various energies in the Coulomb units.

(ii) Nature of composite fermions: In the CS theory,
composite fermions are modeled as bound states of elec-
trons and point flux quanta. These are actually strongly
interacting due to the gauge interaction between them,
and not the final quasiparticles.

In the microscopic theory, composite fermions are
viewed as the bound states of electrons and an even num-
ber of quantized vortices. These are not identical to the
composite fermions of the CS theory, but the two are
topologically similar, in the sense that they produce the
same winding phases. The binding of quantized vortices
to electrons is most evident in the “unprojected” wave
functions ΨCF−un

ν= n
2pn±1

=
∏
j<k(zj − zk)2pΦ±n. The act of

projecting these wave functions into the LLL turns the
composite fermions into more complicated objects, but it
can be argued that the LLL projected composite fermions
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are adiabatically connected to the unprojected compos-
ite fermions, thus providing an adiabatic justification for
the definition of composite fermions as bound states of
electrons and vortices even within the LLL. (This is fur-
ther discussed in Sec. VII.) A strong evidence for an
adiabatic connectivity between the unprojected and the
projected composite fermions is that, as seen in exact
spectra evaluated in the LLL, the lowest band at ν has
a one-to-one correspondence with that at ν∗, suggesting
that the low energy structure does not change upon LLL
projection. Furthermore, for the 2/5 state, it is possible
to construct an adiabatic scheme [60] that interpolates
between the unprojected and the projected Jain wave
functions, starting from a model that produces the un-
projected wave function as the exact ground state[61],
confirming that the gap does not close during the adia-
batic process [60]. We note that the almost perfect agree-
ment with the exact Coulomb eigenstates demonstrates
that the LLL projected composite fermions are essentially
the true composite fermions that occur in nature.

(iii) Electron-based composite fermions vs. hole-based
composite fermions: In the CS theory the flux quanta
are attached to electrons. It is not possible to attach flux
quanta to the holes of the LLL. The CS theory thus ex-
plicitly breaks p-h symmetry, as also indicated by the ab-
sence of LLL projection in this theory. Within the micro-
scopic theory, however, vortices may be attached to either
electrons or holes. When vortices are attached to holes,
the unprojected wave function is not meaningful, but its
LLL projection yields a physical wave function. A pri-
ori, the relation between the two constructions is unclear.
Consider, for example, the CF Fermi sea wave function
of Eq. 2. One can construct two Fermi sea wave func-
tions here, one obtained by attaching vortices to electrons
and the other to holes. Are they two distinct CF Fermi
seas? Explicit calculations by Rezayi and Haldane[62] in
the torus geometry have demonstrated that the two wave
functions are essentially identical. More specifically, for
N = 16 particles, the wave function constructed above
has an overlap of 0.9994 with its hole partner (which is
essentially the Fermi sea wave function constructed from
the holes in the LLL). This shows that the two descrip-
tions are equivalent.

In an analogous fashion, at each fraction of the form
n/(2n±1) wave functions can be constructed using either
electron-based composite fermions or hole-based compos-
ite fermions. As discussed in more detail in Section III,
there is good evidence that these actually represent the
same state.

(iv) Particle-hole symmetry of the CF Fermi sea: The
CF Fermi sea in the HLR theory is not p-h symmetric,
as it is not constrained to the LLL. However, the micro-
scopic wave function of the ν = 1/2 CF Fermi sea has
been found to satisfy the p-h symmetry to a high accu-
racy in computer calculations [62], as mentioned above.
The DMRG calculations of Zaletel et al.[63] also suggest
that the p-h symmetry is not spontaneously broken at
ν = 1/2.

We stress, parenthetically, that it is impossible to rule
out a spontaneous braking of particle-hole symmetry at
ν = 1/2. One way this could happen would be if, eventu-
ally, the CF Fermi sea becomes unstable to a pairing that
is too subtle to be captured by the finite systems being
studied. Should such pairing be of the Moore-Read kind
[17], then that would suggest a spontaneous breaking of
p-h symmetry[63–70]. In this case, one can imagine two
distinct CF Fermi seas which are the normal states of
the Pfaffian and the anti-Pfaffian paired CF states. We
refer the reader to the article by Barkeshli, Mulligan and
Fisher [71] for the experimental consequences of a spon-
taneously broken particle-hole symmetry at ν = 1/2. In
what follows, we will assume that the state at ν = 1/2 is
particle-hole symmetric. We note that the Dirac-CF pos-
tulates also assumes a unique p-h symmetric CF Fermi
sea.

(v) The paradox of CF Hall conductivity: Kivelson et
al. [72] considered the 1/2 state and noted that in the
presence of a nonzero p-h symmetric disorder (σxx 6= 0),
the correct electronic Hall conductivity is σxy = e2/2h,
which requires that the CF Hall conductivity must be
equal to σCF

xy = −(1/2)e2/h, according to the standard
formulae of the CS theory relating the CF and the elec-
tronic quantities. However, at the mean field level, com-
posite fermions do not experience any effective magnetic
field at ν = 1/2, which produces σCF

xy = 0, and it is
not known what corrections to the mean field theory
would produce σCF

xy = −(1/2)e2/h within the CS ap-
proach. This paradox has to do with translating between
the CF and electron transport coefficients, and, as a mat-
ter of principle, does not present itself in the microscopic
formulation that deals directly with electronic states (al-
though an actual calculation of the corrections to the
ideal transport coefficients due to the presence of disor-
der and LL mixing would be highly nontrivial within the
microscopic theory).

(vi) CF Fermi wave vector: Within the mean field CS
approach, it would appear that the Fermi wave vector of
the CF Fermi sea slightly away from ν = 1/2 would nom-
inally be given by k∗F =

√
4πρe, where ρe is the electron

density. Beautiful experiments from Kamburov et al.[73]
have found that the CF Fermi wave vector is given by
k∗F =

√
4πρe for ν < 1/2 but by k∗F =

√
4πρh for ν > 1/2,

where ρh is the density of holes in the LLL. Ref. [74]
showed that no such paradox appears if the CF Fermi
wave vector is evaluated using the microscopic theory.
First of all, it can be shown that for two states at ν and
1−ν related by p-h symmetry, k∗F` is the same (where k∗F
is defined through the Friedel oscillations in the pair cor-
relation function). Second, because Jain’s wave functions
at n/(2n+ 1) and 1− n/(2n+ 1) = (n+ 1)/(2n+ 1) are
related by p-h symmetry to an excellent approximation,
they produce the same k∗F`. An explicit calculation [74]
shows that the Fermi wave vector is close to the nominal
value k∗F =

√
4πρ with the density ρ taken equal to that

of the minority carriers, consistent with the experimental
observation [73].
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Motivated by the Princeton experiments[73],
Barkeshli, Mulligan and Fisher [71] have put forth
the postulate that the electron-based CF Fermi sea
and the hole-based CF Fermi sea are distinct phases of
matter at ν = 1/2, and a spontaneous breakdown of p-h
symmetry selects one of them. Building on this work
Mulligan, Raghu and Fisher [55] show how p-h symmetry
can emerge in the half-filled Landau level by considering
a system of alternating quasi-one-dimensional strips of
electron-based CF Fermi sea and hole-based CF Fermi
sea.

III. PARTICLE-HOLE SYMMETRY AND THE
1/2 CF FERMI SEA

As noted above, one of the predictions of the Dirac CF
description is that a closed loop around the CF Fermi
sea produces a π Berry phase, which has measurable
experimental consequences [42, 49]. Numerical DMRG
studies[48] have nicely confirmed absence of backscatter-
ing at ν = 1/2 in the presence of a particle-hole sym-
metric disorder. In view of the earlier numerical results
[62], there is hardly any doubt that the DMRG studies

are generating, in the absence of disorder, a 1/2 wave
function that is very close to the wave function of Eq. 2,
and thus exploring its properties.

Our approach will be to frame the discussion entirely
in terms of the electron wave functions, and interpret the
results in terms of composite fermions. We first identify
what p-h transformation for electrons means in terms of
composite fermions. We show that at ν = 1/2 it corre-
sponds to the time reversal transformation {k j}→{−k j}
of composite fermions, consistent with Son[42]. We then
discuss what it implies for backscattering of composite
fermions and also for the Berry phase for an adiabatic
loop around the Fermi circle.

A. Particle hole transformation in CF theory

We first consider the issue of p-h transformation in the
LLL. Let us consider N electrons in M LLL orbitals. (We
have in mind a compact geometry, such as the spherical
geometry, so the LLL has a finite number of orbitals.) A
wave function Ψν of electrons at filling factor ν, in second
quantized form, is given by

|Ψν〉 =

∫
d2r1 · · · d2rNΨν(r1, · · · , rN )ψ̂†(r1) · · · ψ̂†(rN )|0〉 (3)

where Ψν(r1, · · · , rN ) is the real space wave function, ψ̂†(r) and ψ̂(r) are the standard LLL-projected creation and
annihilation field operators[75], and the state |0〉 refers to the empty state with no electrons. We use either zj = xj−iyj
or r j = (xj , yj) to denote the position of the jth particle.

The p-h transformation, denoted by Θ, is defined as:

Θ Ψ(r1, · · · , rN )Θ−1 = [Ψ(r1, · · · , rN )]∗ (4)

Θ ψ̂†(r)Θ−1 = ψ̂(r) (5)

Θ ψ̂(r)Θ−1 = ψ̂†(r) (6)

Θ |0〉 = |Φ1〉 (7)

where |Φ1〉 denotes the state where the LLL is fully occupied:

|Φ1〉 =

∫
d2r1 · · · d2rMΦ1(r1, · · · , rM )ψ̂†(r1) · · · ψ̂†(rM )|0〉 (8)

With standard manipulations, it is straightforward to show that [76, 77]

Θ |Ψν〉 =

∫
d2rN+1 · · · d2rM Ψ̃1−ν(rN+1, · · · , rM )ψ̂†(rN+1) · · · ψ̂†(rM )|0〉 (9)

where

Ψ̃1−ν(rN+1, · · · , rM ) =

∫
d2r1 · · · d2rN Φ1(r1, · · · rM ) [Ψν(r1, · · · , rN )]

∗
(10)

is the real space wave function for the p-h conjugate of Ψν . The p-h transformation is thus a complicated nonlocal
transformation, requiring evaluation of multidimensional integrals.

We now show that for the FQHE states and their low energy excitations, the CF theory provides a relatively simple
way of accomplishing the p-h transformation that does not require evaluating any multidimensional integrals. For
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this purpose, let us begin by considering the fully spin polarized state at n/(2n+ 1). Its wave function is given by

ΨCF
n

2n+1
(z1, · · · , zN ) = PLLL

N∏
j<k=1

(zj − zk)2Φn(z1, · · · , zN ) (11)

Its p-h conjugate state Ψ̃ n+1
2n+1

at ν = 1 − n/(2n + 1) = (n + 1)/(2n + 1) can, in principle, be evaluated according

to Eq. 10. However, the CF theory provides another way of constructing a state at that filling factor directly, by
considering composite fermions at filling factor ν∗ = n+ 1 in negative effective magnetic field:

ΨCF
n+1
2n+1

(zN+1, · · · , zM ) = PLLL

M∏
j<k=N+1

(zj − zk)2Φ∗n+1(zN+1, · · · , zM ) (12)

At first sight, the p-h conjugate Ψ̃ n+1
2n+1

(zN+1, · · · , zM ) obtained according to Eq. 10 and Ψ n+1
2n+1

(zN+1, · · · , zM ) in

Eq. 12 appear to be distinct, because in the former the vortices are attached to electrons whereas in the latter the
vortices are attached to holes, suggesting very different correlations. From that vantage point, it is perhaps surprising,
but nonetheless a fact, that these two wave functions do not represent distinct states but are dual descriptions of the
same state, i.e.,

Ψ̃ n+1
2n+1

(rN+1, · · · rM ) ≡
∫
d2r1 · · · d2rN Φ1(r1, · · · rM )

[
Ψ n

2n+1
(r1, · · · , rN )

]∗
u ΨCF

n+1
2n+1

(zN+1, · · · , zM ) (13)

This relation is supported from the following observa-
tions: (i) The two descriptions produce identical quan-
tum numbers for the ground state as well as low energy
excitations. (ii) The wave functions themselves are es-
sentially identical. This has been tested explicitly for
small systems, where both the wave functions can be
constructed exactly on the computer[78, 79]. For larger
systems, we have computed the pair correlation function
g(r) for the wave functions at ν = (n + 1)/(2n + 1) and
ν = n/(2n + 1) and found that they accurately satisfy
the relation expected for two states that are exactly re-
lated by p-h symmetry. See the supplementary section
of Ref. [74] for further details. Eq. 13 encapsulates how
the CF theory provides a much simpler implementation
of p-h transformation, without doing any integrals as in
Eq. 10. We stress, however, that the relation in Eq. 13
is nontrivial, not exact, and does not apply to an arbi-
trary wave function but only to the low energy states of
composite fermions.

One of the corollaries of Eq. 13 is that there is a
unique incompressible state at each of the fractions ν =
n/(2n± 1) for fully spin polarized electrons. This is con-
sistent with the fact that only one state is found, both
in experiments and in exact diagonalization studies, at
each of these fractions (when the spin degree of freedom
is frozen). The uniqueness of these states is also closely
related to the uniqueness of the CF Fermi sea in the limit
n → ∞; otherwise the states at n/(2n − 1) for compos-
ite fermions in negative effective magnetic field and those
at n/(2n + 1) in positive effective magnetic field would
produce different CF Fermi seas in the n→∞ limit.

The p-h transformation on electrons in the LLL should
not be confused with p-h transformation of composite

fermions. As a matter of fact, it is not possible to de-
fine p-h transformation for composite fermions because
their Hilbert space is not restricted to their lowest ΛL.
Nonetheless, Eqs. 11, 12 and 13 tell us what transforma-
tion for composite fermions corresponds to p-h transfor-
mation of electrons. For now, we will replace the “u” sign
in Eq. 13 by the “=” sign, and come back to this assump-
tion later. In a hopefully transparent short-hand nota-
tion, the p-h transformation of electrons corresponds, ac-
cording to Eq. 13, to the transformation of composite
fermions as

Θ Φn(r1, · · · , rN ) Θ−1 = [Φn+1(rN+1, · · · , rM )]∗ (14)

i.e., the state of n filled ΛLs of N composite fermions
maps into the state of n + 1 filled ΛLs of M − N com-
posite fermions in a negative effective magnetic field (as
indicated by complex conjugation).

One can similarly determine how the excitations trans-
form under p-h transformation. The particle excitation is
an isolated composite fermion in an otherwise empty ΛL
and the hole excitation is a missing composite fermion
from an otherwise full ΛL. Straightforward application
of the CF theory shows[5]:

Θ Φhole
n (r1, · · · , rN ) Θ−1 = [Φhole

n+1(rN+1, · · · , rM )]∗

(15)

Θ Φparticle
n (r1, · · · , rN ) Θ−1 = [Φparticle

n+1 (rN+1, · · · , rM )]∗

(16)
We note that the hole in Φn produces an excitation
with a positive charge of 1/(2n + 1) whereas the hole
in Φn+1 produces an excitation with a negative charge of
−1/(2n + 1) under reverse vortex attachment[5], as re-
quired for consistency under p-h transformation. Similar
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arguments apply to the particle excitation of composite
fermions. (Note that all charges quoted here are with re-
spect to the uniform ground state.) For states with many
particle hole excitations of composite fermions, the spa-
tial locations of the particles (holes) of Φn are correlated
with the spatial locations of the particles (holes) of the
[Φn+1]∗. However, for states with several excitations,
the situation becomes more complicated, because in gen-
eral several states exist with the same quantum numbers,
which produce several eigenstates for a given interaction.
Within the CF theory, accurate wave functions for these
eigenstates can be obtained by the method of CF diag-
onalization [80]. The above rule for p-h transformation
relates an eigenstate to its hole partner.

B. P-h transformation for the CF Fermi sea: Son’s
conjecture

Next we apply these ideas to the limit n → ∞ and
show how the situation greatly simplifies. In this limit,
Eq. 14 reduces to

Θ ΦFS(r1, · · · , rN ) Θ−1 = Φ∗FS(r1, · · · , rN ) (17)

where we have used the same coordinates on both sides
because the number of coordinates is the same. (Re-
member that the coordinates are all dummy variables in
Eq. 3.) Furthermore, following Rezayi and Read [58], we
write the Fermi sea wave function as

ΦFS(r1, · · · , rN ) = Det
[
e−iki·rj

]
(18)

where {k i} are the occupied states, as appropriate for the
torus geometry. The p-h transformation now implies:

Θ Det
[
e−iki·rj

]
Θ−1 = Det

[
e+iki·rj

]
(19)

This provides a microscopic derivation for Son’s conjec-
ture:

Under p-h transformation, the state of composite
fermions with occupation {kj} transforms into a state
with occupation {−kj} at the same energy.

We expect this statement to hold for the ground state
of composite fermions, the state with a single particle or
hole excitation, and for configurations {k j} of composite
fermions corresponding to very low energies. It is not
valid for highly excited states of composite fermions.

C. Absence of backscattering

In an impressive DMRG calculation, Geraedts et al.
[48] demonstrated that 2kF backscattering of a single
composite fermion is suppressed. To understand this in
our approach we use another result by Geraedts et al.
[48] that applying Θ twice to any electronic state gives

(−1)M(M−1)/2 times the same state. For ν = 1/2, we
have M = 2N and we can write

[Θ]2 |ν = 1/2〉 = (−1)N |ν = 1/2〉 (20)

Consider now a CF Fermi sea with an odd N such that a
single composite fermion lies in a state with momentum
K just outside a Fermi sea composed of N − 1 compos-
ite fermions. We will assume that the total momentum
is K , and denote the many-particle state as |K 〉 (sup-
pressing the momenta of the composite fermions forming
the CF Fermi sea). The above results can be written as
Θ|K 〉 = | − K 〉 and Θ2|K 〉 = −|K 〉, which imply, fol-
lowing the standard arguments for Kramers theorem (see
for example Ref. [81]), that a p-h symmetric perturbation
does not couple |K 〉 and | −K 〉, i.e., does not cause 2kF

backscattering. (A p-h symmetric perturbation does not
couple any two orthogonal states at ν = 1/2 related by p-
h transformation Θ, but only with the insight of the CF
theory can this result be interpreted in terms of the ab-
sence of 2kF backscattering of composite fermions.) This
argument generalizes to the situation when the compos-
ite fermion at K is dressed by CF particle-hole pairs
excited out of the CF Fermi sea, so long as the state
is orthogonal to its particle-hole conjugate state. Even
though we have derived this result for odd N , we expect,
on physical grounds, that backscattering should be ef-
fectively suppressed for arbitrary N for any excited com-
posite fermion that is a sharply defined quasiparticle (i.e.
close to an eigenstate), which should be the case provided
it is sufficiently close to the Fermi energy.

So far, we have worked directly with the strongly cor-
related many electron state, interpreting the results in
terms of composite fermions. In an effective descrip-
tion that assumes free composite fermions, it is natural
to make the assumption[44] that each single composite
fermion transforms as Θ|k〉 = | − k〉 and Θ2|k〉 = −|k〉.
These equations are consistent with the transformation
conditions on the many particle state listed in Eqs. 19
and 20. As explained by Levin and Son [44], this leads
to a π Berry phase for an adiabatic loop around the
Fermi circle. The π phase also implies an absence of
backscattering for a disorder that is symmetric under p-h
transformation[44]. However, the validity of the free par-
ticle assumption is not obvious for composite fermions
away from the Fermi level.

D. Remarks

Wang and Senthil [47] have motivated the π phase by
arguing that the LLL projection splits a single vortex
off of the composite fermion, converting it into a dipole
made of two charge ±1/2 semions oriented perpendicular
to k . When the composite fermion is taken around the
CF Fermi circle, the dipole also completes a rotation pro-
ducing a phase π. Another insight into this issue comes
from Haldane’s 2004 article [43], which derived a con-
nection between the intrinsic anomalous Hall effect and
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the Berry phase for an adiabatic path around the Fermi
circle. Applied to the 1/2 CF Fermi sea and interpret-
ing the Hall conductance at ν = 1/2 as an anomalous
Hall effect for composite fermions, this implies a π Berry
phase for non-relativistic composite fermions. Interest-
ingly, the arguments in Refs. [43, 47] do not rely, at least
in a direct fashion, on the p-h symmetry of the CF Fermi
sea. It is also worth noting that the starting point for
these arguments as well as the one presented above is
the Fermi sea of non-relativistic composite fermions, al-
though Wang and Senthil [47] present a scenario for how
LLL projection may endow composite fermions with a
two component internal structure.

We noted above that the Eq. 13 is not exact. This
implies that the correspondence {k j} ⇔ {−k j} for com-
posite fermions under p-h transformation is not exact.
One might ask if it is possible, in the spirit of the Lan-
dau Fermi liquid theory, to consider very slightly mod-
ified composite fermions for which the correspondence
{k j} ⇔ {−k j} would be exact, together with an exactly
p-h symmetric wave function for the 1/2 state. We have
not pursued that issue further.

It is also worth recalling that p-h symmetry is not a
necessary requirement for the existence of the CF Fermi
sea. Under experimental conditions, the p-h symmetry
is only an approximate symmetry of the Hamiltonian at
ν = 1/2, because of the presence of some – and sometimes
a significant amount of – LL mixing. Furthermore, p-h
symmetry is not relevant, even in principle, for all incar-
nations of the CF Fermi sea. Two examples are obvious.
When the spin of the composite fermions is included, the
standard CF theory predicts a partially spin polarized
CF Fermi sea for sufficiently low Zeeman energies, going
into a spin unpolarized CF Fermi sea in the limit when
the Zeeman energy vanishes[8, 82]. For non-fully spin
polarized CF Fermi sea at ν = 1/2, p-h symmetry is not
relevant, as it relates filling factor ν to 2 − ν for spinful
electrons. Experimental evidence exists for partially spin
polarized CF Fermi sea[9, 83]. Experiments[84, 85] have
shown that the temperature dependence of the spin po-
larization at ν = 1/2 is generally consistent with the sim-
ple theory that assumes non-interacting non-relativistic
composite fermions in zero effective magnetic field. The
second example is that of the Fermi sea at ν = 1/4
of composite fermions carrying four vortices, which has
been confirmed experimentally[86, 87]. P-h symmetry is
not relevant at ν = 1/4. The arguments relying on p-
h symmetry are not relevant either to the partially spin
polarized CF Fermi sea at ν = 1/2 or to the fully or
partially spin polarized CF Fermi sea at ν = 1/4, but
it would be natural to expect, based on general physical
grounds, that the physics of all of these CF Fermi seas
ought to be the same. In particular, Haldane’s reasoning
[43]predicts π/2 phase for each spin component for the
spin singlet CF Fermi sea (to the extent that the spin-
up and spin-down composite fermions can be treated as
independent), and the same phase for the fully spin po-
larized 1/4 CF Fermi sea.

Finally, our microscopic treatment clarifies that the
identification of p-h transformation of electrons with the
{k j}→{−k j} transformation of composite fermions is
special to ν = 1/2, and is not valid for general filling
factors ν 6= 1/2.

IV. DISPERSION OF THE “BARE”
COMPOSITE FERMION

In the simplest theory, Dirac fermions have a lin-
ear dispersion whereas non-relativistic fermions have a
quadratic dispersion. The dispersion is not necessar-
ily connected to the nature of composite fermions, but
one can still ask what is the dispersion of the under-
lying composite fermions. As noted above, the disper-
sion of a single composite fermion can only be deduced
by asking if the spectra of interacting electrons are de-
scribed in terms of Dirac or non-relativistic composite
fermions. The different dispersions reflect through the
different functional forms for the Landau level energies of
the particles: the energy of the nth LL of a single Dirac
particle is given, in appropriate units, by

√
n, whereas for

the non-relativistic particle it is equal to (n+1/2). This,
in turn, results in different band structures in the excita-
tion spectrum of the multi-particle state. In particular,
the excitation spectrum of non-interacting Dirac fermions
consists of many more bands than that of non-interacting
non-relativistic fermions. Consider, for example, the 3/7
state. In the standard CF theory, this maps into ν∗ = 3 of
non-relativistic composite fermions, where the n = 0, 1, 2
ΛLs of composite fermions are fully occupied. The first
excited band is produced from the excitations 2→3, with
energy ~ω∗c (the CF cyclotron energy). The second ex-
cited band at 2~ω∗c consists of excitations 1→3, 2→4 and
(2→3)2, where the superscript denotes the number of ex-
citations. Similarly we get bands at 3~ω∗c , and so on.
In the mapping into Dirac composite fermions, the 3/7
FQHE state maps into ν∗ = 3 + 1/2, with all Dirac Lan-
dau levels with n ≤ 3 occupied. For the lowest excita-
tion 3→4, the corresponding band is identical, insofar as
counting of states and their quantum numbers are con-
cerned, to the first excited band for the non-relativistic
fermions. The structure of higher bands is different, how-
ever. For example, excitations 2→4, 3→5 and (3→4)2 all
produce distinct bands for Dirac fermions.

It is therefore necessary to consider the second or
higher excited band to distinguish between Dirac and
non-relativistic fermions. Fortunately, the largest sys-
tem at 3/7 for which exact diagonalization is possible
shows well defined first and second excited bands above
the ground state, as seen in Fig. 1. The emergence of the
bands itself is highly non-trivial and a result of the forma-
tion of composite fermions and their ΛLs. Furthermore,
as described in full detail in Ref. [33], the description in
terms of non-relativistic composite fermions explains the
second excited band as a combination of excitations 1→3,
2→4 and (2→3)2. The dots in Fig. 1 show the spectrum
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FIG. 1. (color online) The exact Coulomb spectrum (dashes)
of interacting electrons at ν = 3/7 for 18 electrons, repro-
duced from Ref. 33. Several bands are evident, marked alter-
nately by blue and red colors for ease of depiction. The sec-
ond excited band (colored blue) is well explained in terms of a
combination of the excitations 2→ 4, 1→ 3 and (2→ 3)2 of
non-relativistic composite fermions. The CF theory based on
non-relativistic composite fermions predicts the correct num-
ber of states in the band at each quantum number and, fur-
thermore, predicts energies shown by black dots (obtained
without any adjustable parameter).

predicted from the non-relativistic CF theory. (It should
be noted that the number of states in the actual band is
slightly less than that predicted by a mapping into the
IQHE of non-interacting particles. Ref. [33] shows that
this discrepancy can be removed by imposing a hard-core
constraint on certain tightly bound CF excitons, demon-
strating that the discrepancy is thermodynamically in-
significant.)

No splitting into Dirac-CF bands is visible in the sec-
ond excited band band of Fig. 1. One may argue, how-
ever, that this physics is obscured by the broadening of
the bands due to the residual interaction between com-
posite fermions. We therefore ask if it is possible to de-
termine the dispersion of the single composite fermion.
This can in principle be accomplished from exact diago-
nalization studies if one could identify many well defined
bands in the excitation spectrum (although this task will
be complicated by the fact that the bands have finite
widths due to the residual interaction between compos-
ite fermions). Such a program is difficult to implement
in practice, because of the empirical observation that the
bands are well defined approximately up to the energy
equal to the Fermi energy of composite fermions, which
implies that for the state at n/(2n+1) well defined bands
occur for excitations up to n~ω∗c . Not many bands are
therefore visible in the available numerical spectra. One
may consider the n dependence of the excitation gaps of
different FQHE states along the sequences n/(2n ± 1),
but their interpretation is somewhat complicated by the
possible n dependence of the “CF mass.”

We therefore take the following route. We calculate the
energy of the “bare” CF hole as a function of its ΛL in-

dex λ. The bare CF hole is obtained by removing a single
composite fermion from a filled ΛL, as shown schemat-
ically in Fig. 2. Fig. 2 shows results for the CF hole
energies in different ΛLs for up to ν = 7/15, where each
point represents the thermodynamic limit for the energy
of the bare CF hole. This extends a previous calculation
by Mandal and Jain[23]. It is evident that the actual
bare CF hole energies obtained from the microscopic cal-
culation are consistent with a constant ΛL spacing, and
thus with a parabolic dispersion for the underlying com-
posite fermion. We note that we are using wave functions
that are based on a mapping to non-relativistic compos-
ite fermions, but we consider this to be a valid procedure
given that these wave functions have been shown quanti-
tatively to describe the actual ground and excited states
with extremely good accuracy. Furthermore, use of these
CF hole wave functions does not guarantee by any means
that the spacing between the ΛLs would be constant.

We note that the y-intercept in the lower panel of
Fig. 2, which is the difference between the energy of a
hole in the lowest and the highest occupied ΛLs, is equal
to the CF Fermi energy for sufficiently large n. Indeed,
even for n ≥ 4, this difference is more or less independent
of n. Our calculations show that the CF Fermi energy
is approximately equal to 0.1 e2/ε`, consistent with the
number reported in Ref. [23].

An equivalent way of calculating the dispersion would
be to evaluate the energy of a CF particle placed in higher
unoccupied ΛLs. This is more challenging for techni-
cal reasons. Empirically, the ΛLs are well defined in
the exact spectra only for excitation energies less than
the Fermi energy, which means that for the n/(2n + 1)
state we can only consider approximately n ΛLs above
the Fermi energy. As a result, one must consider large
values of n for a definitive conclusion. Unfortunately, our
projection method becomes unstable beyond 8 or 9 ΛLs
because of the large degree of the derivatives, thus mak-
ing the CF particle excitations not very useful for the
question at hand.

Is it possible that the CF dispersion may become linear
for FQHE states very close to 1/2? While we cannot rule
it out, we do not see any reason to suspect that would be
the case. We do not see any such tendency as the filling
factor is changed from 3/7 to 7/15.

We end this section with an important caveat: We have
only considered here the bare CF hole. It is not close to
an eigenstate of the LLL Coulomb Hamiltonian, and will
be dressed by CF excitons to acquire a finite quasiparti-
cle width that increases with its energy. Unfortunately,
the fully dressed CF hole is a very complicated object,
a proper discussion of which is beyond the scope of the
present work. Nonetheless, if the energy of the bare CF
hole matches with the peak of the quasiparticle spectral
weight, the results presented above are meaningful.
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FIG. 2. (color online) The upper panel shows bare CF hole
in various Λ levels at ν = 3/7 (right panels), analogous to
the hole in various Landau levels at ν = 3. The lower panel
shows the thermodynamic Coulomb energy of the bare CF
hole excitation as a function of its ΛL index for various filling
factors in the sequence n/(2n+ 1). All energies are quoted in
Coulomb units of e2/ε` and measured relative to the energy
of the bare CF hole in the topmost filled ΛL. The filled sym-
bols are obtained using Jain’s wave functions for the CF hole.
The solid straight lines indicate the prediction if composite
fermions are taken as non-relativistic fermions. The energies
units are chosen to force agreement at the two end points.

V. LLL PROJECTION AND P-H SYMMETRY
IN CHERN-SIMONS THEORY

The CS theory of Lopez and Fradkin[3] and HLR
[4] implements the physics of non-relativistic composite
fermions by performing a singular gauge transformation
that binds point flux quanta to each electron. The com-
posite fermions in this approach are topologically similar
to the composite fermions defined previously in the con-
text of the microscopic theory, but not identical. The CS
mean-field (CS-MF) wave function is given by:

ΨCS−MF
ν= n

2pn±1
=
∏
j<k

(
zj − zk
|zj − zk|

)2p

Φ±n(B∗), (21)

where Φ±n(B∗) is evaluated at the effective magnetic
field and contains the Gaussian factor exp[+

∑
j |zj |2/`∗2

with `∗ =
√
~c/e|B∗|. The wave function can

also be written as ΨCS−MF
ν= n

2pn±1
= (Φ1/|Φ1|)2pΦ±n(B∗),

where each factor Φν contains the Gaussian factor
exp[−

∑
j |zj |2/4`2ν ], where `ν =

√
~c/e|Bν | =

√
|ν|/2πρ

with Bν = ρφ0/ν. We will follow this convention below.
This form turns out to be convenient for generalization
to Haldane’s spherical geometry[88], which we use for all
our calculations below. Certain elementary facts about
the spherical geometry are given in Appendix A.

The CS-MF wave function is unsatisfactory for a num-
ber of reasons[5]. First, it has the same probability am-
plitude as the non-interacting IQHE state at ν∗ = ±n
and hence does not build any repulsive correlations be-
tween the electrons (besides what is mandated by the
Pauli principle). Second, it has a significant admixture
with higher LLs as evidenced by the fact that it con-
tains large powers of z̄’s through the factors Φ±n(B∗)
and |zi − zj |2p. The approach in Ref. 2 was to make
modifications in the CS-MF wave function to eliminate
these deficiencies while retaining its topological character
(i.e. the winding phases), which led to the wave functions
in Eq. 1.

We now ask if the CS field theory is compat-
ible with LLL constraint. In order for the per-
turbation theory to produce a LLL wave function,
it must effectively renormalize the uncorrelated wave
function Φn(B∗) of the gauge transformed particles
into a strongly correlated form

∏
j<k[|zj − zk|/(zj −

zk)]2pΨ({zj}) exp[+
∑
j |zj |2/`∗2], in order produce the

LLL wave function Ψ({zj}) containing the correct Gaus-
sian factor for electrons. Within the field theoretical
method itself, it has not been possible to identify the
Feynman diagrams that will produce meaningful LLL re-
sults. We therefore ask a more modest question: Can the
CS-MF wave function be projected into the LLL and, if
so, how well does the projected wave function compare
to the exact solution? The CS-MF wave function does
not have the standard form that we expect from a valid
wave function in a magnetic field, i.e., it is not a poly-
nomial of zj ’s and z̄j ’s multiplying the Gaussian factor.
It is thus not immediately obvious how, or even if, the
wave function can be projected into the LLL.

We therefore seek to project the CS-MF wave function
into the LLL by brute force for finite systems. We pro-
ceed by formally writing down the CS-MF wave of Eq.
21 as:

ΨCS−MF
ν= n

2pn±1
=
∑
i

ci|i〉+ extra terms, (22)

where |i〉 are orthonormalized many-body basis states
(Slater determinants) confined to the LLL, and the extra
terms are all orthogonal to every |i〉. The (unnormalized)
projected CS-MF wave function is defined as:

PLLLΨCS−MF
ν= n

2pn±1
=
∑
i

ci|i〉. (23)
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ν N dimLz=0 dimL=0 |〈ΨCF|ΨCoulomb〉|2 |〈PLLLΨCS−MF|ΨCoulomb〉|2

1/3 4 18 2 0.99608 0.9858(0)

5 73 2 0.99812 0.9879(0)

6 338 6 0.99289 0.9747(0)

7 1656 10 0.99273 0.9697(1)

8 8512 31 0.99082 0.9481(7)

2/5 6 58 3 0.99960 0.9994(0)

8 910 8 0.99920 0.9969(0)

2/3 6 18 2 0.99307 0.9961(0)

8 73 2 0.99640 0.9981(0)

10 338 6 0.98810 0.9928(0)

B∗ = 0 9 910 8 0.99876 0.9963(1)

TABLE I. Overlaps between the exact Coulomb ground states and the corresponding LLL projected Chern-Simons mean field
wave functions PLLLΨCS−MF are given in the last column, where ΨCS−MF is defined in Eq. 21. For comparison, the overlaps
of the exact Coulomb ground states with the corresponding wave functions ΨCF of Eq. 1 are reproduced from Fano et al. [89]
(ν = 1/3), Dev and Jain [90] (ν = 2/5 and B∗ = 0) and Wu et al.[78] (ν = 2/3). The spherical geometry is used. N is the
number of particles. The uncertainty from Monte Carlo sampling is shown in the parentheses. Also shown for reference are the
total Hilbert space dimension (dimLz=0) and the zero total orbital angular momentum subspace dimension (dimL=0).

To explicitly carry out this projection we again use
the spherical geometry and determine the expansion co-
efficients ci = 〈i|ΨCS−MF

ν= n
2pn±1

〉 by performing the multi-

dimensional integrals for all LLL basis functions |i〉 by
the Monte Carlo method. Since the number of LLL basis
states grows exponentially with the number of particles
N , we have only been able to perform the projection of
the CS-MF state for up to N = 10. We note that it may
be possible to carry out projection for larger system sizes
using the energy projection method of Ref. [91], but we
have not pursued that here. Once we have the explicit
state, its overlap with the exact Coulomb ground state
can be evaluated straightforwardly.

Table I gives the overlaps of the projected CS-MF state
with the exact Coulomb ground state. The overlaps are
quite high. We also consider the quasihole (qh) and the
quasiparticle (qp) along the sequence n/(2n± 1), follow-
ing the same procedure as above. As shown in Table II,
the overlaps of the projected CS-MF qp and qh with the
exact Coulomb qp and qh are also reasonably high. (For
systems smaller than the ones listed in these tables there
is only a single state in the relevant total orbital angu-
lar momentum sector and hence the overlaps for these
systems are trivially equal to unity.)

We find the degree of agreement with the exact
Coulomb solutions to be quite surprising in view of the
fact, stated above, that the CS-MF wave functions do
not build any repulsive correlations between particles.
It appears that provided one begins with wave functions
with the correct topological phase factors, the act of LLL
projection itself induces strong correlations between par-
ticles, attesting to the robustness of the CF physics. In
particular, these results suggest that if a LLL projection
could be implemented in the CS theory for the ν = 1/2
Fermi sea, it would produce a state that honors p-h sym-
metry to a good approximation.

VI. LLL PROJECTION FOR GENERALIZED
WAVE FUNCTIONS

In the wave functions of Eq. 1, prior to the LLL projec-
tion, the number of vortices attached to the each electron,
as counted through the winding phases, also is equal to
the number of “zeroes” attached to it (not counting the
Pauli zero). The CS wave function of Eq. 21, on the other
hand, attaches to each electron 2p vortices but no zeroes.
A generalized wave function was introduced in Ref. [92]
which we reproduce here (in the spherical geometry):

χ n
2pn±1

(α) =
Φ2p

1

|Φ1|2pα
Φ±n (24)

where the number of attached vortices is 2p and the num-
ber of zeroes is 2p(1−α). This wave function reduces to
the unprojected Jain wave function for α = 0 and to the
CS-MF wave function for α = 1, but is defined for other
values of α as well (except for α > (2p+ 1)/2p, when the
wave function becomes non-normalizable). The change
in the vortex structure does not affect the monopole
strength at which these wave functions occur. Because
|Φ1|2pα = [Φ∗1]pαΦpα1 and the monopole strength of [Φ∗1]
is precisely negative of that of Φ1, the denominator
makes no contribution to the monopole strength. The
above wave function occurs at a monopole strength of
2Q = 4pQ1 ± 2Qn = 2p(N − 1) ± (N − n2)/n with
2Qn = (N − n2)/n, independent of α.

The overlaps of the projected versions of these gen-
eralized wave functions with the exact LLL Coulomb
ground states are shown in Table III for certain values
of α. These are again quite high, further confirming the
view that provided we begin with a wave function with
the correct topology, the LLL projection itself produces
good correlation.
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ν N dimLz=L dimL=Lqp/qh |〈PLLLΨCS−MF|ΨCoulomb〉|2

1/3 qp 4 11 2 0.9690(0)

5 46 3 0.9723(0)

6 217 12 0.9458(0)

1/3 qh 4 23 3 0.9690(0)

5 98 5 0.9723(0)

6 464 18 0.9459(0)

7 2306 53 0.9406(1)

2/3 qp 7 23 3 0.9862(0)

9 98 5 0.9918(0)

11 464 18 0.9775(1)

13 2306 53 0.9571(8)

2/3 qh 5 11 2 0.9856(0)

6 46 3 0.9961(0)

7 217 12 0.9763(1)

11 1069 31 0.9746(3)

2/5 qh 7 282 10 0.9844(0)

9 4890 76 0.9673(1)

TABLE II. Overlaps of the projected Chern-Simons-mean-field wave functions PLLLΨCS−MF – with the corresponding exact
Coulomb ground states for quasihole (qh) and quasiparticle (qp) excitations at 1/3, 2/3 and 2/5 in the spherical geometry. Also

shown for reference are the total Hilbert space dimension (dimLz=L) and the L = Lqp/qh subspace dimension (dimL=Lqp/qh),

where Lqp/qh is the total orbital angular momentum quantum number at which the qp/qh occurs.

ν N dimLz=0 dimL=0 |〈PLLLχ(1/2)|ΨC〉|2 |〈PLLLχ(−1/2)|ΨC〉|2 |〈PLLLχ(−1)|ΨC〉|2

1/3 4 18 2 0.9919(0) 0.9985(1) 0.9996(0)

5 73 2 0.9946(0) 0.9989(1) 0.9975(4)

6 338 6 0.9858(0) 0.9918(10) 0.9900(17)

7 1656 10 0.9825(5) 0.9854(12) 0.9743(50)

8 8512 31 0.9706(8) 0.9498(51) 0.9562(41)

2/5 6 58 3 0.9995(0) 0.9989(2) 0.9969(5)

8 910 8 0.9967(14) 0.9864(22) 0.9704(89)

2/3 6 18 2 0.9947(0) 0.9902(6) 0.9849(20)

8 73 2 0.9973(0) 0.9926(4) 0.9821(22)

10 338 6 0.9903(1) 0.9645(53) 0.9454(134)

B∗ = 0 9 910 8 0.9967(9) 0.9828(31) 0.9708(32)

TABLE III. Overlaps of the LLL projected χ(α), defined in Eq. 24, with the exact Coulomb ground states ΨC in the spherical
geometry. The uncertainty from Monte Carlo sampling is shown in the parentheses. Also shown for reference are the total
Hilbert space dimension (dimLz=0) and and the zero total orbital angular momentum subspace dimension (dimL=0).

VII. QUASIPARTICLE CHARGE AND
ADIABATIC CONTINUITY

One may ask if the unprojected CS-MF state in Eq. 21
is perturbatively connected to the LLL projected state
in Eq. 2. An important measure of the topological struc-
ture of this state is the charge of its quasiparticle or
quasihole. We can evaluate this charge for the CS-MF
state in two ways. In both derivations, we assume, as
usual, that the ground state, quasiparticle and quasihole
at ν = n/(2pn+1) are related to the ground state, quasi-
particle and quasihole at ν∗ = n through Eq. 21.

First, we note that the ground state, quasiparticle and
quasihole have exactly the same density profiles as the
corresponding states at ν∗ = n. It therefore follows that
the local charge, i.e. the charge deficiency or excess as-
sociated with the quasihole or quasiparticle, is precisely
equal to the electron charge e in magnitude. This can
also be understood from the fact that the addition of a
composite fermion requires adding an electron and two
flux quanta. Because the flux in the CS-MF approach
carries no charge (i.e. creates no correlation hole), the
charge of the electron flux bound state is simply equal to
the electron charge.
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Alternatively, we can determine the charge of a single
quasiparticle by determining how many quasiparticles are
created when a single electron is added to the system.
(Removal of an electron to produce quasiholes can be
considered analogously.) This is most easily addressed in
the spherical geometry. As shown in Ref. [5], the answer
to this calculation depends only on the relation between
2Q and 2Q∗, which is Q = Q∗ + p(N − 1) independent
of α. From this, one can deduce, following the discussion
in Ref. [5], that 2pn+ 1 quasiparticles are created when
an electron is added at a fixed Q, which can be taken to
imply that the charge of each is of magnitude e/(2pn+1).

How do we resolve this apparent contradiction? The
error in the above argument is in the last sentence of the
preceding paragraph, which implicitly assumes that the
charge of the background state is not altered when we
add an electron. In reality, when an electron is added,
2pn+ 1 quasiparticles indeed are created, but each has a
unit charge −e, with charge 2pne spread uniformly in the
background state. The situation for holes is analogous.
This is seen in Fig. 3, where we show the density profiles
of the quasihole state at ν = 1/3 for different values of α,
defined in Eq. 24. For α = 0 (red curve) the charge den-
sity away from the quasihole goes to the uniform back-
ground charge density (dotted magenta line), so the local
charge of the quasihole is equal to a third of the elec-
tron charge. Contrast this with the α = 1 Chern-Simons
quasihole (blue dotted curve) where the charge deficiency
associated with the quasihole is one electron charge, but
the density far from the quasihole is slightly higher than
the uniform background charge density, which precisely
accounts for the remaining −2/3 charge.

The fact that the quasiparticle charges of the CS-MF
state and the projected CF state are different implies that
the act of LLL projection represents a non-perturbative
effect. However, as shown in Ref.[3], random phase ap-
proximation (RPA) in the CS theory produces the correct
quasiparticle charge, suggesting that the CS theory com-
bined with RPA can be adiabatically connected to the
projected solution.

We define the natural value for the parameter α in
Eq. 24 by requiring that the wave function

∏
j<k[(zj −

zk)2p/|zj−zk|2αp]Φ±n(B) produce the correct filling fac-
tor ν = n/(2pn ± 1), where the factor Φ±n(B) is eval-
uated at the external magnetic field (which appears in
the Gaussian factor) and Φ−n(B) = [Φn(B)]∗. Not-
ing that this wave function has the same density as∏
j<k(zj − zk)2p(1−α)Φn(B), we calculate its filling fac-

tor by dividing N by the largest power of, say, z1, which
is 2p(1 − α)N + N/n and equate it to n/(2pn ± 1) to
determine α. This yields the following “normal” form:

χunproj−normal
ν= n

2pn±1
=

{∏
j<k(zj − zk)2pΦn(B), ν = n

2pn+1∏
j<k

(zj−zk)2p

|zj−zk|2/n
[Φn(B)]∗, ν = n

2pn−1

(25)
[In the spherical geometry, the normal form is given

by Φ2p
1 Φn for ν = n

2pn+1 , and Φ2p
1 |Φ1|−2/n(Φn)∗ for
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FIG. 3. (color online) Comparison of the non-normalized den-
sity of the generalized CF quasihole state at ν = 1/3 for dif-
ferent values of α for N = 15 electrons. The coordinate r
is the chord distance on the sphere. The horizontal dotted
magenta line shows the density of the corresponding uniform
incompressible state.

ν = n
2pn−1 .] This normal form for the unprojected wave

functions has many nice properties. First of all, it ex-
plicitly has the correct Gaussian factor and the correct
filling factor. Further, it produces the correct quasipar-
ticle and quasihole charge even for the unprojected wave
functions. Let us take two examples. For α = 0, the
unprojected 2/3 state

∏
j<k(zj − zk)2Φ∗2 has the same

density as the 2/5 state, and thus has filling factor 2/5
and quasiparticle charge 1/5. Although this unphysi-
cal feature is corrected upon projection, the unprojected

wave function
∏
j<k

(zj−zk)2

|zj−zk| [Φ2]∗ already has the correct

charge and correct filling factor even without projection.
Another interesting example is

∏
j<k(zj − zk)2Φ∗1 which

has the filling factor 1/3 before projection, but 1 after

projection, in contrast to
∏
j<k

(zj−zk)2

|zj−zk|2 [Φ1]∗ which has

filling factor 1 both before and after projection. Finally,
the normal form is very nicely consistent with the the-
oretical exponent that describes the power law decay of
the edge Green function as well as the theoretical tunnel-
ing exponent, which is α = 2p+1 for ν = n/(2pn+1) and
α = 2p+1−2/n for the fractions ν = n/(2pn−1) [93–95].

To summarize, the value of α, which determines the
structure of the quantized vortices, is not particularly
important if the wave function is projected into the
LLL. For this purpose, the wave functions with α = 0
are the most convenient because they can be projected
with the Jain-Kamilla projection method for fairly large
systems[59, 79, 96, 97]. For the unprojected wave func-
tions, on the other hand, the normal form in Eq. 25
gives the correct answers for the topological charge of
the quasiparticles and quasiholes.
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VIII. CONCLUDING REMARKS

Son’s proposal that composite fermions are Dirac par-
ticles was motivated by certain deficiencies of the Chern-
Simons formulation of composite fermions, especially the
lack of p-h symmetry of the ν = 1/2 state. We note
that many of these deficiencies are not shared by the mi-
croscopic theory of non-relativistic composite fermions.
In particular, the microscopic theory produces an essen-
tially particle-hole symmetric wave function for the CF
Fermi sea. We ask which of the assumptions of the Dirac-
CF approach can be rationalized within the microscopic
theory of non-relativistic composite fermions.

We demonstrate that, within the microscopic theory
of non-relativistic composite fermions, the p-h transfor-
mation for electrons at ν = 1/2 translates into a time-
reversal-like {k j}→{−k j} transformation on composite
fermions, as assumed by Son [42]. Supplemented with
the identity Θ2 = (−1)N valid at ν = 1/2 [48], this im-
plies absence of 2kF backscattering, for a p-h symmetric
perturbation, of a single composite fermion quasiparti-
cle for odd N , and presumably for all low energy excited
composite fermions for arbitrary N . If one further as-
sumes that each composite fermion individually satisfies
Θ2 = −1, a π Berry phase is produced for an adiabatic
loop around the CF Fermi circle [44].

The identification of p-h transformation of electrons
with {k j}→{−k j} transformation on composite fermions
is not valid for general filling factors. It is not clear to us
how the wave function for the n/(2n± 1) FQHE state in
Eq. 1 may be interpreted as a wave function of M/2 two-
component Dirac fermions at ν∗ = n+ 1/2 in a positive
or negative magnetic field.

We ascertain the dispersion of the underlying compos-
ite fermion by considering a bare (undressed) CF hole in
different ΛLs. We find that the ΛL separation is indepen-
dent of the ΛL index to a good approximation, which is
consistent with a parabolic dispersion for the composite
fermion.

We also address the question whether the CS theory is
amenable to LLL projection. We find that a brute force
projection of the CF-mean field wave function produces
surprisingly accurate wave functions for the FQHE states
as well as the Fermi sea. These results suggest (but do
not prove) that the lack of particle-hole symmetry may
not be an intrinsic difficulty with the Chern-Simons for-
mulation but a technical problem stemming from the lack
of the lowest Landau level projection.
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Appendix A: Haldane’s spherical geometry

For completeness, we list some elementary facts of Hal-
dane’s spherical geometry[88] used for our calculations.
This geometry consider N electrons on the surface of
a sphere subjected to a radial magnetic flux of 2Qφ0

(where 2Q is a positive integer and φ0 = hc/e is quan-
tum of flux), arising from a monopole located at the cen-
ter of the sphere. The quantity Q is called the monopole
strength, which can take either integer or half integer val-
ues. The nth LL is the shell with single particle orbital
angular momentum l = Q + n and has a degeneracy of
2l+1. These 2l+1 degenerate states are labeled by the z-
component of the single particle orbital angular momen-
tum m = −l,−l + 1, · · · , l. The N -particle state with n
filled LLs occurs at a flux of 2Q = (N −n2)/n and has a
total orbital angular momentum L and its z-component
Lz both equal to zero.

The wave functions of Eq. 1 take the form Φν =
PLLLΦ2

1Φν∗ in the shperical geometry. Here Φ1 =∏
j<k(ujvk − ukvj), where u = cos(θ/2)eiφ/2 and v =

sin(θ/2)e−iφ/2 are the spinor coordinates, θ and φ are
the polar and azimuthal angles on the sphere respectively,
and PLLL implements the LLL projection. If the effec-
tive monopole strength at ν∗ is Q∗, then the monopole
strength at ν is given by Q = Q∗ +N − 1, which implies
the standard relation between ν and ν∗.

Appendix B: Wave functions in the disk geometry

At first, there appears to be a difference between the
disk and the spherical geometries. The generalized wave
functions in the disk geometry are written as

Ψun.gen.CF
ν= n

2pn±1
(α) =

∏
j<k

(zj − zk)2p

|zj − zk|2pα
Φ±n(Beff). (B1)

The effective magnetic field is obtained by demanding
that the wave function be at the right filling factor. Doing
so we find:

Beff(α) =
B(βn± 1)

2pn± 1
, β = 2p(1− α) (B2)

where β is defined as the number of zeros on an electron in
addition to the single zero mandated by the Pauli exclu-
sion principle (i.e. the wave function vanishes as rβ+1).



15

To avoid divergences in the wave function as two particles
approach each other we need β+1 ≥ 0⇒ α ≤ 1+(2p)−1.
The fact that the effective magnetic field depends on α
appears to be distinct from that in the spherical geome-
try.

However, we can eliminate these differences if we de-
fine the wave function in the disk geometry slightly dif-
ferently:

Ψun.gen.CF
ν= n

2pn±1
(α) =

Φ2p
1

|Φ1|2pα
Φ±n(B′eff). (B3)

where the wave function of one filled LL is given by:

Φ1 =
∏
j<k

(zj − zk)e
− 1

4`21

∑
i |zi|

2

, `1 =

√
~c
eBν

(B4)

The relation between B′eff and B can be obtained by
equating the Gaussian factors of the wave functions given
in Eqs. B1 and B3 and making use of the value of Beff(α)
given in Eq. B2. Doing so we get

B′eff(α) =
( ±1

2pn± 1

)
B = Beff(α = 1) (B5)

which is independent of α and the same as B∗, the effec-
tive magnetic field seen by composite fermions.
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[66] A. Wójs, C. Tőke, and J. K. Jain, Phys. Rev. Lett. 105, 096802 (2010), URL http://link.aps.org/doi/10.1103/

PhysRevLett.105.096802.
[67] E. H. Rezayi and S. H. Simon, Phys. Rev. Lett. 106, 116801 (2011), URL http://link.aps.org/doi/10.1103/

PhysRevLett.106.116801.
[68] M. R. Peterson and C. Nayak, Phys. Rev. Lett. 113, 086401 (2014), URL http://link.aps.org/doi/10.1103/

PhysRevLett.113.086401.
[69] K. Pakrouski, M. R. Peterson, T. Jolicoeur, V. W. Scarola, C. Nayak, and M. Troyer, Phys. Rev. X 5, 021004 (2015), URL

http://link.aps.org/doi/10.1103/PhysRevX.5.021004.
[70] A. Tylan-Tyler and Y. Lyanda-Geller, Phys. Rev. B 91, 205404 (2015), URL http://link.aps.org/doi/10.1103/

PhysRevB.91.205404.
[71] M. Barkeshli, M. Mulligan, and M. P. A. Fisher, Phys. Rev. B 92, 165125 (2015), URL http://link.aps.org/doi/10.

1103/PhysRevB.92.165125.
[72] S. A. Kivelson, D.-H. Lee, Y. Krotov, and J. Gan, Phys. Rev. B 55, 15552 (1997), URL http://link.aps.org/doi/10.

1103/PhysRevB.55.15552.
[73] D. Kamburov, Y. Liu, M. A. Mueed, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. Lett. 113,

196801 (2014), URL http://link.aps.org/doi/10.1103/PhysRevLett.113.196801.
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