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We study the spin-1/2 Heisenberg antiferromagnet on a bilayer honeycomb lattice including
interlayer frustration. Using a set of complementary approaches, namely Schwinger bosons,
dimer series expansion, bond operators, and exact diagonalization, we map out the quantum
phase diagram. Analyzing ground state energies and elementary excitation spectra, we find
four distinct phases, corresponding to three collinear magnetic long range ordered states, and
one quantum disordered interlayer dimer phase. We detail, that the latter phase is adiabati-
cally connected to an exact singlet product ground state of the the bilayer which exists along a
line of maximum interlayer frustration. The order within the remaining three phases will be clarified.

I. INTRODUCTION

Disordered phases in frustrated two-dimensional spin
systems are a very active field of research which thrives
both, on the synthesis of new materials as well as
the development of new theoretical concepts1–4. In
this context, Heisenberg antiferromagnets on the hon-
eycomb lattice have attracted considerable interest re-
cently. Bi3Mn4O12(NO3) , discovered by Smirnova et
al.5 is among the materials to display this structure, with
Mn4+ ions with S = 3/2 forming an undistorted hon-
eycomb lattice. Two honeycomb layers are separated
by bismuth atoms, resulting in a bilayer arrangement,
thereby introducing the additional ingredient of a bilayer
honeycomb magnet.

Ab initio calculations, by Kandpal and van den Brink6

have suggested that in Bi3Mn4O12(NO3) the interlayer
exchanges are the dominant couplings, followed by in-
tralayer nearest neighbor interactions. Compared to the
latter two, frustrating intralayer, second and third neigh-
bors couplings have been evaluated, to be approximately
one order of magnitude smaller. Particularly important
however, (see Fig. 2 A of Ref. 6), the interlayer ex-
change has been found to be strongly frustrated. Dis-
ordered magnetic ground states, which have been ob-
served experimentally7, have been suggested to result
from competing interactions. While theoretically, sub-
stantial progress has been made regarding the effects of
intralayer frustration and quantum disordered phases in
the single-layer honeycomb magnet8–23, less attention has
been given to the the influence of an interlayer coupling
in their impact on disordered phases13,24–26.

The aim of this work is to study the zero tempera-
ture phase diagram of a frustrated Heisenberg model on
the bilayer honeycomb lattice including interlayer frus-
tration. At a particular value of maximum interlayer
frustration we obtain an exactly solvable model, with a
dimerised ground state. We focus on the S = 1/2 case,
where quantum fluctuations become more important, al-

though some results remain valid for larger values of the
spin, as we discuss in the following. We explore the quan-
tum phases of the model in the exchange parameter space
surrounding the exact dimer state, using various com-
plementary techniques, including bond operators (BO),
Schwinger boson mean field theory (SB-MFT) and series
expansion (SE) based on the continuous unitary trans-
formation method. These studies will be complemented
with exact diagonalization (ED) using Lanczos on finite
systems. We provide results for ground state energies,
spin gaps, spin correlation functions, the quantum phase
diagram, and the nature of the quantum phase transi-
tions.

The outline of the paper is as follows: Sec. II intro-
duces the model and proves that a product of dimers is
the exact ground state of the system on a special line
of the parameter space. Sec. III sketches several qual-
itative aspects of the the quantum phase diagram. In
Sec. IV we analyze the interlayer dimer phase, depart-
ing from the line of the exact dimer state. In Sec. V we
characterize the magnetic phases, including Néel-like and
collinear states. In Sec. VI we summarize our quantita-
tive findings on the quantum phase diagram. In Sec. VII
we briefly discuss some consequences of adding intralayer
frustration by next nearest neighbor exchange. Finally in
Sec. VIII we present our conclusions and perspectives.
Several appendices are added for technical details regard-
ing the methods we use.

II. MODEL AND EXACT GROUND STATE

We study the Heisenberg Hamiltonian on the bilayer
honeycomb lattice

H =
∑

~r,~r′,α,β

Jα,β(~r, ~r′)~Sα(~r) · ~Sβ(~r′), (1)

where ~Sα(~r) is the spin operator on site α correspond-
ing to the unit cell ~r. The index α takes the values
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FIG. 1. (Color online) Dominant exchange interactions in
Bi3Mn4O12(NO3) . Colored areas correspond to the unit cells.
Frustrating intralayer next nearest-neighbors interactions are
omitted in this figure for simplicity.

α = 1, A; 2, A; 1, B; 2, B corresponding to the four
sites on each unit cell and the couplings Jα,β(~r, ~r′) are
depicted in Fig. 1. As stated in Sec. I, the inclusion
of the frustrating interlayer coupling Jx is motivated by
ab initio calculations6. Jx may be comparable to J1 and
of relevant magnitude with respect to the remaining ex-
change couplings. In Sec. VII, we also consider intralayer
next-nearest neighbors frustrated coupling, which will be
labeled J2, but is not shown in Fig. 1 for simplicity.

In this Section we focus on interlayer frustration only,
i.e. J2 = 0. Interestingly, in that case, the bilayer hon-
eycomb belongs to a class of Hamiltonians, which ex-
hibits an exact dimer-product ground state in a certain
region of parameter space, even for finite J1,x. This re-
sult is valid for arbitrary site spin S. Hamiltonians with
this property seem to have been constructed first in Ref.
27, based on methods in Ref. 28, and have been re-
considered in many subsequent studies29–35. In partic-
ular the bilayer square lattice model have been investi-
gated previously33,34. However, the relevant point in our
work is that we find a bilayer model with the same ge-
ometry proposed for the material Bi3Mn4O12(NO3) wich
presents an exact dimer product ground state in the re-
gion of the parameter space where ab-initio calculations
suggest the material may exist.

Using Fig. 2, we start by writing the Hamiltonian Eq.
(1) as H = H0 +H1 +H2, with

Hi =
∑
~r

[
J0

3

(
~S1,A(~ri) · ~S2,A(~ri) + ~S1,B(~r) · ~S2,B(~r)

)
+ J1

(
~S1,A(~ri) · ~S1,B(~ri) + ~S2,A(~ri) · ~S2,B(~ri)

)
+ Jx

(
~S1,A(~ri) · ~S2,B(~ri) + ~S2,A(~ri) · ~S1,B(~ri)

)]
, (2)

in which i = 0, 1, 2 corresponds to ~r(0,1,2) = ~r+(~0, ~e1, ~e2),
being ~e1 and ~e2 the primitive vectors of the triangular
lattice. Introducing the bond spin operators

~Lα = ~S1,α + ~S2,α
~Kα = ~S1,α − ~S2,α. (3)

J0/3
J1

Jx

FIG. 2. (Color online) Decomposition of the Heisenberg
model on the frustrated bilayer honeycomb lattice into three
sets of four-spin plaquets.

with α = A,B, we can rewrite H0 as

H0 = −2J0NS(S + 1) +
∑
~r

{
J0

2

(
~L2
A(~r) + ~L2

B(~r)
)

+

(
J1 + Jx

2

)(
~LA(~r) · ~LB(~r)

)
+

(
J1 − Jx

2

)(
~KA(~r) · ~KB(~r)

)}
, (4)

with similar expressions for H1 and H2.
The main point of this Section is, that for J1 = Jx,

the last term in the Hamiltonian vanishes, and there-

fore, (i) each bond spin ~LA(~r) is conserved and (ii) the

total bond spin
∑
~r
~LA(~r) is conserved. Therefore, at

J1 = Jx, the eigenstates of H are multiplets of the total
bond spin. Among those is the product state of bond sin-

glets, i.e. |ψ〉 =
⊗N

i=1 |sA〉~ri |sB〉~ri with ~Lα(~ri)|sα〉~ri = 0,

and |sα〉~ri =
∑S
m=−S(−1)S−m|m,−m〉/

√
2S + 1. Here

|m,−m〉 labels a product of eigenstates of Sz1;α(~ri) and
Sz2;α(~ri) on dimer α of the unit cell located at ~ri. The
energy E0 of |ψ〉 can be read off from Eq. (4), namely
E0 = −J0NS(S + 1).

For any other multiplets of the total bond spin one

has to promote dimers into eigenstates of ~Lα(~r) different
from zero. This will increase any eigenstate’s energy pro-
portional to J0, due to the first term under sum in Eq.
(4), but will also lead to exchange-lowering of the energy
proportional to J1 + Jx from pairs of nearest neighbor
dimers with non-zero bond spin due to the second term
under sum in Eq. (4). Therefore, for any finite site spin
S, and for J1 less than a critical coupling 0 < J1 < Jc1 ,
|ψ〉 is indeed also the ground state at J1 = Jx.

While we emphasize, that the preceding is valid for
any site spin S, the nature of the state for J1 > Jc1 at
J1 = Jx may depend on details. However, for S = 1/2
the situation is definite. Since there are only two eigen-

states of ~LA(~r), i.e. singlet and triplet, the ground state

will either be |ψ〉 or stem from the sector of all ~Lα(~r) in
triplet states |tµα〉~ri , where µ refers to the z-component.
By virtue of Eq. (4) the latter sector is isomorphic to
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FIG. 3. Qualitative sketch of quantum phase diagram of
Heisenberg model on the frustrated bilayer honeycomb lat-
tice

the spin-1 Heisenberg model on the hexagonal lattice. In
both of these sector nucleation of inhomogeneous distri-
butions of L = 0 and L = 1 are energetically unfavorable,
i.e. do not lead to ground states.

The exact dimer singlet product state serves as a con-
venient starting point for several perturbative and mean
field methods, which we will take advantage of starting
with Sec. IV.

III. QUALITATIVE ASPECTS

In order to pave the way through the remainder of this
work, we provide a qualitative picture of the quantum
phase diagram to be expected for the bilayer without in-
tralayer frustration (J2 = 0) in this Section. This is de-
picted in Fig. 3. A quantitative justification will be given
in the following Sections by analyzing various regions of
this anticipated phase diagram, considering ground state
energies, low energy excitations, triplet gaps, order pa-
rameters and spin correlations as extracted from com-
plementary methods, specifically exact diagonalization,
Schwinger boson and bond operator mean field theories,
series expansion and linear spin-wave theory.

Several comments apply to Fig. 3. First, the diagram
is symmetric respect to the J1 = Jx line. This is evident
at the Hamiltonian level. Indeed, from Fig. 1 we see
that exchanging J1 ↔ Jx, induces a site exchange 1, B ↔
2, B, which in turn results in KB ↔ −KB . This leaves
the last term of H0 in Eq.(4) invariant. The same is true
for H1 and H2. In the following we normalize energies
in units of J0 and introduce the dimensionless couplings
j0 = 1, j1 = J1/J0, j2 = J2/J0 and jx = Jx/J0.

The bold dark-red section of the diagonal line of max-
imum frustration, j1 = jx in Fig. 3, refers to the exact
dimer state. As discussed in Sec. II this state terminates
in a first order transition point into the ground state of
an S = 1 AFM Heisenberg on the single layer hexago-
nal lattice, which extends over the solid black diagonal
line shown in Fig. 3. We will show, that this occurs at
j1 = jx ' 0.5.

Departing off the line of maximum frustration the
exact dimer turns into a gaped interlayer dimer phase
(IDP) (see Fig. 3). This phase is quantum disordered,
and shows dispersive triplon excitations. The triplon gap
will decrease from ∆ = 1 as distance increases from the
diagonal line.

For sufficiently large j1 and/or jx, the system will favor
collinear order with a straightforward semi-classical inter-
pretation. Namely three possibilities exist to minimize
two out of the three exchange energies, leaving one of
them frustrated. The corresponding spin arrangements
and phases are labeled I, II, and III in Fig. 3, with the
frustrated link marked by red dashes. Phases I and III
obey the j1 ↔ jx symmetry already mentioned. While
the classical states I, II and III do not represent exact
eigenstates of the Hamiltonian, we detect signals of these
orderings in the quantum model, which justify this iden-
tification.

We end this Section by expressing some expectations,
regarding the order of the phase transitions. Since the
symmetry of phases I, II, and III have no subgroup re-
lations, we expect the transitions I-II and II-III to be of
first order, i.e. of level-crossing type. On the other hand,
the transition from the IDP into the magnetic phases I
and III will be signaled by the closure of the IDP spin
gap ∆, which decreases symmetrically from 1 to 0, off the
red exact-dimer product line up to the two correspond-
ing critical lines. This gap closure signals a second order
quantum phase transition.

Finally, as discussed in Sec. II, the transition from the
tip of the bold dark-red line in the IDP to phase II is first
order. The nature of the transition remains first order
all along the IDP-II transition up to the two tricritical
points, separating IDP-I-II and IDP-II-III phases.

IV. INTERLAYER DIMER PHASE

In this Section we analyze the interlayer dimer phase
(IDP) at j1, jx � 1. In particular, we discuss our re-
sults for the ground state energy and the spin gap, as
obtained from dimer series expansion (D-SE), bond op-
erator (BO) theory using Holstein-Primakoff (HP) and
mean-field theory (MFT), as well as from exact diagonal-
ization (ED). Both, D-SE and BO-HP/MFT are natural
approaches to treat the IDP, since they are both exact in
the fully decoupled dimer-product state, along the line
j1 = jx and treat deviations from the latter perturba-
tively. While D-SE is exact order-by-order in j1 − jx,
BO-HP/MFT is perturbatively proper only to leading
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FIG. 4. (Color online) Ground state energy per spin E at
j2 = 0 versus j1 from ED (red with squares), D-SE (blue, blue
dashed with circles), BO-HP (black) and BO-MFT (green) for
a) jx = 0 with system size N = 24, and orders O(4) and O(5),
see also Refs. 26, 36, and 37 and b) jx = 0.3 with system size
N = 24, and order O(4).

order. Since both approaches renormalize only the fully
decoupled dimer-product state, they are insensitive to
level crossing, which may occur within the ground state,
as a function of j1 − jx. In turn, these methods do not
detect first order, but only second order quantum phase
transitions accompanied by the closure of a spin gap.
Therefore, in order to probe for first order transitions,
we resort to ED as an unbiased technique. While finite
size effects, render ED less effective to detect gap clo-
sures, it allows to search for level crossings rather effec-
tively. In turn ED, BO, and D-SE are complementary
to determine the extent of IDP phase, as well as the na-
ture of the transitions also to the other phases present in
the model. Technical details about the implementation
of the different methods can be found in the Appendices.

We begin by considering the ground state energy. From
D-SE we obtain the following O(4) expression for the
ground state energy per spin evolving from the limit of
decoupled interlayer dimers

E(j1, jx) = −3

8
+

9

512
(j1 − jx)

2
[
− 16− 8(j1 + jx)

+3
(
j2
1 + j2

x

)
− 22j1jx

]
. (5)

This explicitly satisfies E(j1, j1) = − 3
8 , corresponding

the exact dimer-product solution along jx = j1 and
E(j1, jx) = E(jx, j1) fulfilling the Hamiltonian invari-
ance under j1 ↔ jx. In Fig. 4 we compare the ground
state energy obtained from the various methods for two
different values of jx. Fig. 4a), in part also contains BO-
MFT solutions from Refs. 36 and 37 and results from
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-0.48
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FIG. 5. (Color online) Ground state energy per spin E vs
j1, for different paths parametrized by b = jx − j1, with b =
0, 0.1, 0.2, and 0.3 (top to bottom). Line-connected blue
(brown) dots: ED for S=1/2 (S=1) bilayer (effective single
layer). Solid red: D-SE. Green: LSWT for S=1 effective single
layer.

Ref. 26, where O(5) D-SE is available at jx = 0, and ED
for N = 24 sites. In both panels and for all methods, the
energy shows a maximum at j1 = jx, where the ground
state is a dimer-product state with energy per spin equal
to −3/8. Around the exact solution point, ED and D-SE
show excellent agreement up to |j1 − jx| ' 0.2 . . . 0.3 in
both panels. Deviations between ED and D-SE beyond
that points are due to finite size effects of the ED and
due the finite order of the D-SE. The impact of the lat-
ter can be assessed at jx = 0, where higher orders of
the D-SE have been reached26. From Fig. 4a), clearly
visible differences arise between O(4) and O(5) D-SE for
|j1 − jx| & 0.3. Turning to the BO theory, two com-
ments are in order. First, the HP spin gap closes within
the range of j1, jx-values depicted. Therefore, the BO
curves terminate. Second, both HP and MFT depend on
j1 and jx only via the difference j1 − jx. This is not an
exact property of the model beyond leading order, which
is obvious e.g. from Eq. (5). In turn, BO results are
identical for Fig. 4a) and b) up to a shift of origin and
have been plotted only for positive j1 − jx. Moreover,
agreement between ED, D-SE and BO is expected to be
best at either j1 = 0 or jx = 0, which is consistent with
this figure. In fact, the agreement between all four meth-
ods is excellent for jx = 0 and for j1 . 0.3, while ED and
D-SE show some difference to BO theory at jx = 0.3. In
view of the significant changes from O(4) to O(5) D-SE,
a quantitative assessment of these differences is beyond
this work. In fact, Fig. 4a) would suggest that O(5)
D-SE agrees better with BO theory than with ED for
j1 & 0.3.

While the variations of results between the methods
discussed so far are quantitative only, we expect a quali-
tative difference between ED and D-SE or BO theory in
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the vicinity of the first order transition from the IDP to
the magnetic phase II (Fig. 3). Therefore, in Fig. 5 we
depict the ground state energy per spin versus jx along
lines parametrized by b = jx−j1, with b = 0, 0.1, 0.2, and
0.3 from top to bottom. ED results are shown by line-
connected blue dots, whereas D-SE results are shown by
solid red lines. First, the small, albeit finite slope of E at
small j1 in this figure, which is increasing as b increases,
demonstrates once more, that properties of the system in
the IDP are not only functions of b = jx− j1. Therefore,
in this figure we do not consider BO results. Second, we
note that for b = 0 (j1 = jx) the upper pair of curves
representing ED and D-SE coincide exactly at −3/8 up
to a critical point of jc1, j

c
x ' 0.52. This corresponds to

the bold red line in Fig. 3. At the critical point, ED
exhibits a kink in the energy versus j1, signaling a first
order transition into another type of ground state of the
system. Clearly D-SE cannot detect this transition be-
cause it adiabatically evolves the dimer state with j1,
which discontinues to be the ground state for j1 > jcc .
Qualitative differences between ED and D-SE are also
observed off the diagonal line, for j1 roughly larger than
jc1. Here again, a clear change of slope is detected by
ED in Fig. 5 for b = 0.1, 0.2. This supports our claim
that the transition IDP-II is first order, as anticipated in
the previous Section. At b = 0.3, ED shows no clear sig-
nature of a single kink anymore, suggesting a succession
of second and then first-order transitions, close to one of
the tricritical points of Fig. 3.

Non-IDP phases will be analyzed in detail in the follow-
ing Sections. Here we elaborate further on the transition
from the IDP into the effective S = 1 AFM on the sin-

gle layer hexagonal lattice anticipated already in Sec. II.
We have verified this scenario using two checks. First, we
have performed ED calculations on a single layer spin-1
cluster comprising the same site-geometry as that of the
dimers in the original cluster. The corresponding ground
state energy is depicted by line-connected brown dots in
Fig. 5. The excellent agreement between both types of
ED calculations verifies our assertion. For a second check,
we have considered linear spin wave theory (LSWT) for
the ground state energy of the spin-1 Heisenberg antifer-
romagnet on the hexagonal lattice. For details see ap-
pendix D. The result, also shown in Fig. 5, is quanti-
tatively very similar to the ED results, with jc1 ' 0.551.
Since LSWT for a collinear state with S = 1 should be
rather well defined, it would be interesting to analyze if
the small difference of the critical coupling ∆jc1 ≈ 0.03
between ED and LSWT is dominated by O(1/S2) cor-
rection or by finite size effects.

Perpendicular to the exact dimer line, the dispersion
of triplons will lead to a closure of the spin gap ∆ at
kc = (0, 0) for sufficiently large j1− jx. From O(4) D-SE
we get

∆(j1, jx) = 1− 3

16
|j1 − jx|

∣∣∣−8 + (j1 − jx)
2

(j1 − jx)
∣∣∣

− 3

128
(j1 − jx)

2
[
− 16 + 8(j1 − jx)

+55
(
j2
1 + jx

)
− 14j1jx

]
. (6)

As for the ground state energy, Eq. (5), this satisfies
∆(j1, jx) = ∆(jx, j1) and resembles the decoupled dimer
state, i.e. ∆(j1, j1) = 1. In Fig. 6 we compare Eq. (6)
with ED, BO-HP and BO-MFT versus j1 for the same
two values of jx as in Fig. 4. As for the ground state
energy, the BO results are identical for Fig. 6a) and b) up
to a shift of origin and have been plotted only for positive
j1 − jx. As is clear from the figure, ED, D-SE, and BO-
MFT tend to keep the spin gap open for a larger range of
exchange couplings off the exact dimer state, while the
BO-HP gap closes more rapidly. The agreement between
ED, D-SE, and BO-MFT is very good for |j1− jx| . 0.3.
It is obvious, that finite size effects for the spin gap in the
ED are rather large, showing a minimum of ∆ of ∼ 0.35
at N = 24, versus ∼ 0.5 only for N = 24. A proper finite-
size scaling analysis of the spin gap from ED is unfeasible,
because of the large unit cell. Interestingly, while BO-HP
shows standard square root behavior of the gap at the
critical point, with a negative curvature, self-consistency
within the BO-MFT leads to a positive curvature of ∆,
with no obvious power law at gap closure.

We close this Section with two remarks on SB-MFT.
Also in this approach, quantum disordered phases are as-
sociated with a gapped excitation spectrum. In turn, the
IDP can equally well be detected using SB-MFT. How-
ever, while in the D-SE and BO theory the elementary
excitations in the IDP actually correspond to the physi-
cal triplons, in SB-MFT they are fractionalized bosonic
spinons. The latter are unphysical in the IDP. In or-
der to obtain a proper spin spectrum and the gap, the
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two-spinon propagator would have to be evaluated, see
e.g. Ref. 38, however including interactions beyond Ref.
38, in order to confine the spinon into a sharp triplon
mode. We will not perform such calculations. Despite
of this, it is perfectly valid to use SB-MFT to extract
transition points from the IDP into the magnetic phases
of the bilayer from a closure of the spinon gap, since long
range magnetic order is characterized by a condensation
of the bosons at some wave vector leading to a gapless
spectrum. In Fig. 7 we show a representative exam-
ple. As the second remark, let us note that SB-MFT
predicts a critical point jc1 = 0.547 on the j1 = jx line
for the transition IDP-II, which agrees very well with the
LSWT prediction given by jc1 = 0.551, and therefore is
larger than ED, similar to the latter.

V. MAGNETIC PHASES

In this Section we analyze quantum properties of the
phases I, II and III of Fig. 3. These are gapless states
with magnetic long-range order (LRO) and a spin struc-
ture, which has been explained on the classical level in
Sec. III.

To investigate how the signatures of these orderings
survive under quantum fluctuations, we evaluate the
static correlation functions C(r) = 〈Sz0Szr 〉. In panels
(b-d) of Fig. 8 we show C(r) vs r along the green path
depicted in panel (a), calculated by means of ED on a fi-
nite cluster of 24 spins. We have selected three different
points of parameters space to illustrate the behavior of
the correlations along the considered path. In panel (b)
we show C(r) for the point (j1 = 0.7, jx = 0.3), whereas
in panel (d) we depict the correlation for the symmetric
point (jx = 0.7, j1 = 0.3). As it can be observed, in both
cases the sign alternation in C(r) is consistent with the
magnetically ordered phases I and III illustrated in the
insets of Fig. 3. The same occurs with panel (c), which

æ

æ
æ

æ æ

æ

æ

æ

1 2 3 4 5 6 7 8

-0.10

-0.05

0.00

0.05

æ æ

æ æ

æ

æ

æ

æ

1 2 3 4 5 6 7 8

-0.04

-0.02

0.00

0.02

0.04

0.06

æ

æ

æ

æ

æ

æ

æ

æ

1 2 3 4 5 6 7 8

-0.10

-0.05

0.00

0.05a) b)

c)
d)

I

II III

C
(r

)

C
(r

)
C
(r

)

r r

r

0 1

2

3 4

5
6 7

8

FIG. 8. (Color online) Static correlation function C(r) vs. r
along the green path depicted in panel a), obtained by means
of ED on a finite cluster of 24 spins. Panel b) j1,x = 0.7, 0.3,
c) j1,x = 0.7, 0.7, and d) j1,x = 0.3, 0.7 clearly show a pattern
consistent with the classical structure shown in regions I, II,
and III of Fig. 3.

shows C(r)’s dependence on r for (jx = 0.7, j1 = 0.7).
In this case the behavior of the correlation is consistent
with the classical spin pattern depicted in the inset of
phase II in Fig. 3.

Although we can verify short-distance correlations con-
sistent with the ordered phases by means of ED, the finite
cluster size imposes severe constraints and does, for ex-
ample, not permit to consider the actual form of C(r)
and to claim LRO in the sense of C(r→∞)=const.

These aspects can be considered with complemen-
tary techniques, such as Schwinger bosons mean field
theory (SB-MFT). This approach has been successfully
used to study two-dimensional frustrated Heisenberg
antiferromagnets12,21,26,39,40. We refer to Appendix B
for details about this technique.

Fig. 9 shows the spin-spin correlation calculated by
means SB-MFT between spins belonging to the same
layer, and traversing the layer along one of the ’zigzag-
chain’ paths of the hexagonal lattice, for a system of
10000 sites at j1 = 0.8, jx = 0.3 (phase I); j1 = 0.9,
jx = 0.6 (phase II); and j1 = 0.52, jx = 0.3 (IDP).
The last case is depicted for a contrast to the magnetic
phases. Due to the mirror symmetry of the phase di-
agram along the line j1 = jx, we confine the figure to
j1 > jx. While AFM LRO is clearly visible in panels (a)
and (b) on each layer, the difference between (a) and (b)
is with the nearest-neighbor interlayer correlation (not
depicted). We find the latter to be AFM in phase I and
FM in phase II, in agreement with the Lanczos results.
Panel (c) of Fig. 9 clearly shows, that the IDP phase
only has short range spin-spin correlations, consistently
with a finite gap.

To determine the location of the transitions between
the LRO phases we may use, that these phases have no
subgroup relations, and therefore any direct transitions
between them is of first order, i.e. they can be determined
from a discontinuity in the ground state energy. This is
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FIG. 9. (Color online) Spin-spin correlation between spins
belonging to the same layer in the zigzag direction obtained
by SBMFT for a 10000 sites system. It is shown for the three
different phases in the j1 > jx side of the phase diagram (Fig.
3): (a) j1 = 0.8, jx = 0.3 (phase I), (b) j1 = 0.9, jx = 0.6
(phase II), and (c) j1 = 0.52, jx = 0.3 (IDP).

true, both, for ED and SB-MFT. In Fig. 10 a represen-
tative example obtained from the latter is depicted for a
vertical cut through Fig. 3. Similar results are obtained
from ED and will be summarized in the next Section.

Let us finally mention that we have not obtained any
evidence of the existence of intermediate phases (e.g. ex-
hibiting non-collinear structures like helical order) be-
tween I-II or II-III phases. However, the limitations
of the techniques employed, especially the reduced sizes
which ED achieves, as well as the mean field character of
SB-MFT, does not allow completely discard the existence
of such phases.

VI. QUANTUM PHASE DIAGRAM

In this Section we compare the critical lines for the
phase transitions of the system obtained from all com-
plementary methods of this work. As a central result
Fig. 11 compiles our findings from SB-MFT, BO-HP,
BO-MFT, D-SE, and ED. This figure is the quantitative
analog of the qualitative sketch in Fig. 3. Several com-
ments are in order.

To begin, we note that for the first order transitions,
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FIG. 10. (Color online) Energy per unit cell from SB-MFT
along a vertical cut through the phase diagram (Fig. 3) at
j1 = 0.9 for the phase transition I-II.
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FIG. 11. Quantum phases and critical lines determined by
the different techniques considered.

i.e. I↔II, II↔III, and IDP↔II, there is a very good quan-
titative agreement between SB-MFT and ED, showed by
line-connected magenta and green open circles, respec-
tively in Fig. 11. This is expected, since first order transi-
tions are determined by ground state energies. These are
less susceptible to errors of different approaches as e.g.
finite size effects or mean-field approximations. We note
that SB-MFT technique is the only method employed in
our work, which potentially allows for an estimation of
all critical lines, independently of the character of the
transition, i.e. first or second order.

In contrast to the first order transitions, for the sec-
ond order IDP↔(I, III) transitions, the critical lines ob-
tained from our complementary methods will determine
a range of potential transition points at most, since the
gap closure, i.e. the behavior of the critical correlation
length is sensitive to the method used. Nevertheless it is
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clearly visible from Fig. 11, that the symmetric regions
of both IDP↔(I, III) transitions are centered around the
lines jx ∼ j1 ± 0.6(±0.2), where ±0.2 denotes an uncer-
tainty set by the scatter between the various approaches.
Note that this scatter also implies an uncertainty of the
location of the two tricritical points separating phases
IDP-I-II and IDP-II-III.

Remarkably all techniques predict essentially straight
critical lines for the IDP↔(I, III) transitions with ap-
proximately unit slope, at least on the scale of the plot.
This is a direct consequence of the last term in Eq. 4,
perturbing the exact dimer state. As a consequence, e.g.
in both BO methods, and by construction, the triplon
hopping amplitude is a function of the combination of
exchanges |j1 − jx| only. Yet, D-SE at O(4) (red open
circles in Fig. 11) leads to a small curvature of the transi-
tion lines. In BO-HP it is possible to obtain an analytical
expression, namely jx = j1 ± 1/3, for critical lines (see
appendix A), depicted by blue open circles in Fig. 11.
For BO-MFT (orange open circles in Fig. 11), the offset
1/3 is replaced through numerical solution of the analytic
self-consistency equations by ≈ 0.76 (see Fig. 6a))

Note that in all the cases (except SB-MFT) the second
order critical line ends at the border of phase II, which
is obviously an artifact of the methods since, as we have
previously mentioned, level crossings are not detected by
D-SE nor BO techniques.

VII. INTRALAYER FRUSTRATION

In this Section we analyze the effect of frustrating
intra-layer J2 coupling on the model. The results are
discussed in a way to make contact with previous anal-
ysis of the Heisenberg model on the frustrated bilayer26

as well as the single layer honeycomb lattice8,14,19–21,23.
To this end in Fig. 12 we present the phase diagram

in the plane J2/J1 − J0/J1, at Jx = 0, which enables
to incorporate the single layer (J0/J1 = 0) as a limit-
ing case. Before considering our results, let us briefly
comment on some aspects previously investigated. Re-
garding the frustrated single layer model (along x-axis
of Fig. 12), Néel order is present for J2/J1 . 0.2. For
0.2 . J2/J1 . 0.4 several non-magnetic phases have been
proposed to exist, including gapped spin liquids (GSL)
and VBC plaquette and dimer phases. However, their
extension and the type of phase transitions is still under
debate8,14,19–21,23. Finally, for larger values of frustra-
tion spiral order emerges, which (as the Néel phase) is
reminiscent of the classical version of the model.

The Néel phase persists for finite values J0 and J2,
as illustrated by the gray shaded region in Fig. 12. The
blue solid line in this figure refers to the SB-MFT critical
line, determined in ref.26, where, as it can be observed, a
re-entrant pocket at small J0/J1 was predicted.

In order to relate the latter findings with those of the
previous sections, one has to note that the numerical lo-
cation of critical points depicted along y-axis (J0/J1) in

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

Néel

IDP

J 0
/J

1

J2/J1

FIG. 12. Numerical Results in the plane J2/J1 − J0/J1. The
gray shaded region corresponds to BO-MFT prediction of
Néel order. Blue solid line corresponds to SB-MFT critical
line determined in ref.26. Black and red lines correspond to
BO-HP results. Black line-segment correspond to BO-HP re-
sults where the critical wave vector is kc = (0, 0) whereas the
red line corresponds to different kc values. Blue dots corre-
sponds to D-SE results for the transition.

Fig. 12 are inversely related to those shown on x-axis of
Fig. 11 (J1/J0). Therefore along y-axis of Fig. 12 there
is direct second order transition between the IDP, i.e. the
green shaded area in the Figure, to the Néel phase, which
therefore has to be associated with phase I in the con-
text of the previous sections. This transition is signaled
by the closure of the triplet IDP gap.

Next we discuss the evolution of the second order tran-
sition into the IDP phase for finite J2 by analyzing the
closure of triplet gap obtained from BO-HP and D-SE
techniques. The technical aspects of this analysis are
layed out in full detail in appendices A and C. Sev-
eral comments are in order. First we focus on BO-
HP versus SB-MFT. The corresponding quantum criti-
cal line from the BO-HP can be dissected into a black
line-segment, which terminates at the green point at
(J2/J1, J0/J1) = (1/6, 2), and a red line-segment. On the
black line-segment the critical wave vector is kc = (0, 0).
This is consistent with a transition from the IDP phase
into the Néel state, which is also obtained from the SB-
MFT approach below the blue critical line. It is remark-
able, that with only a parallel shift by ∼ 10% the critical
lines from SB-MFT and BO-HP can be brought to es-
sentially coincide, from J2 = 0 up to the green point.
Beyond the latter, the critical wave vector kc of the BO-
HP starts to be inconsistent with a transition into a Néel
state and, accordingly, the critical lines from BO-HP and
SB-MFT separate.

As J2/J1 increases at fixed J0/J1, the interlayer ex-
change gets less relevant, rendering the IDP phase unfa-
vorable and resulting in an upward curvature of the IDP
critical line in this region. In particular, nowhere the
BO-HP does stays gapped down to J0/J1 = 0. Outside
of the Néel and IDP phase this implies a region of un-
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known phases of the bilayer, i.e. the violet region in Fig.
12. Since exactly on the line J2/J1 at J0/J1 = 0 various
GSL and VBC phases have been proposed8,14,19–21,23, it
is very tempting to speculate, that such phases are sta-
ble to a certain extent against finite interlayer exchange
J0/J1. This may open the possibility of direct transitions
of such phases into the IDP phase. Additionally, the vi-
olet region could also host states nonexistent on the line
J0/J1 = 0. The study of such transitions or states is not
the purpose of this paper and remains as open issue.

Regarding the transitions along the red BO-HP line,
the critical wave vector evolves from that for a Néel state
on the black line segment into that of the 120◦-order of
the triangular lattice antiferromagnet for J2/J1 � 1 -
as to be expected, but not visible on the scale of Fig.
12. Interestingly, this evolution is accompanied by the
appearance of line degeneracies of the triplon dispersion
at intermediate and large J2/J1. From a technical point
of view such degeneracies limit the applicability of the
BO-MFT treatment on the quadratic level. In fact, power
counting for Eq. (A13) shows that the integral on the
right hand side diverges for such cases. In turn the MFT
gap stays finite for all J2/J1 displaying line minima of the
dispersion. This is certainly an artifact, rendering the
BO-MFT at quadratic level insufficient for finite J2/J1.

Several routes beyond the purely quadratic level of
Eqs. (A4)-(A7) exist for BO theory, potentially lifting
degeneracies in the dispersion at finite J2/J1. However
these routes lead to additional issues, which we will not
touch upon in the present work. Incorporating triplon
interactions either pertubatively, or at the self-consistent
Hartree-Fock level41 is one option. Such approaches how-
ever do not systematically improve the quadratic low-
triplon density approximation and remain uncontrolled.
Treating the hard-core constraint Eq. (A2) via infinite
on-site triplon repulsion in a T-matrix approximation42

is another scheme, which however is limited to small
triplon density and, while providing excellent results on
unfrustrated lattices, has been found to be unsuited for
frustrated lattices41. Finally, a truly systematic 1/d-
expansion has been proposed very recently43,44. Its rele-
vance for d = 2 needs further studies.

To close this section, D-SE results are shown with blue
dots in Fig. 12. As it can be observed, for small J2/J1

D-SE displays the same tendency as SB-MFT and BO-
HP, which is similar to the conclusions drawn in the j1-
jx plane in Fig.11. Note that, at least for J2 = 0, the
location of the gap closure, as predicted by D-SE quanti-
tatively is in better agreement with precise QMC deter-
mination of this transition at J0/J1 ≈ 1.64524 than SB-
MFT and BO-HP. In that sense SB-MFT and BO-HP
overestimate the extent of the Néel phase. In contrast to
the BO-HP, the spin gap in O(4) D-SE closes at the sin-
gle point kc = (0, 0) in the range depicted in Fig.12. For
larger J2/J1 deviations with respect to other techniques
are occur and also other kc emerge from D-SE. It would
be necessary to go to higher orders within the series, to
clarify the k-dependence of gap closure in that regime

VIII. CONCLUSIONS

We have studied the zero temperature quantum phase
diagram of the frustrated antiferromagnet on the bilayer
honeycomb lattice. To characterize the different phases
present in the model, as well as their transitions, we
have calculated a variety of quantities, such as ground
state energies, low energy excitations, triplet gaps and
static spin-spin correlations. This has been done, using
several complementary techniques: bond operator and
Schwinger bosons mean field theories, dimer series ex-
pansion and exact diagonalization of finite systems.

The main results of our work are contained in the
schematic phase diagram of Fig. 3. This diagram is
symmetric with respect to j1 = jx. For j1 = jx ≤
jcx ≈ 0.55 the model exhibits an exact interlayer dimer-
product state, whose ground state and elementary triplet
excitations are identical to the decoupled dimer limit
(j1 = jx = 0). Perpendicularly to the diagonal line
a dimerised phase evolves adiabatically from the exact
ground state and extends over a region around the di-
agonal line. This gapped interlayer dimer phase (IDP)
has been analyzed by means of bond operator theory and
dimer series expansion (complemented with Lanczos di-
agonalization) since both methods are exact for the sin-
glet product state.

In contrast to the IDP phase, which is a gapped, mag-
netically disordered, and of quantum origin, the other
phases present in the model are gapless, magnetically
ordered, and quasi classical. In particular we have deter-
mined three magnetic phases, denoted by I, II, and III
in Fig. 3. The phases I and II are Néel-like, whereas
III exhibits columnar order. The magnetic structure of
these phases has been clarified both, by exact diagonal-
ization on finite systems of N=24 sites and by Schwinger
bosons mean field theory on large lattices of N=10000
sites, both with identical results. In particular phase II
along the diagonal line, for j1 = jx > jcx is equivalent to
the ground state of an effective spin-1 Heisenberg model
on the single-layer honeycomb lattice, with an antiferro-
magnetic coupling j1 = jx.

All the numerical techniques suggest that the nature of
the phase transitions are first order (level crossing) for the
transitions I↔II, II↔III and IDP↔II, and second order
(gap closure) for the transitions IDP↔I and IDP↔III.
A quantitative analysis of the quantum phase diagram,
obtained from the combination of all methods has been
presented. For all first order transitions good agreement
between Lanczos and Schwinger bosons MFT has been
obtained. For the second order transitions, qualitative
agreement between the different methods used has been
shown.

Finally we have briefly explored the effects of intralayer
frustration. We find, that both, the IDP and the LRO
phase I naturally extend into the j1−j2 plane, and are
terminated by sufficiently large intralayer frustration j2.
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Appendix A: Bond Operator Approach

Quantum spin models comprising weakly coupled an-
tiferromagnetic spin-1/2 dimers allow for a description
in terms of bosonic operators, so called bond operators
(BO)45–47, which label the dimer’s singlet-triplet spec-
trum. BOs lead to a treatment of dimerised phases sim-
ilar to the linear spin wave theory for magnetically or-

dered phases. Within BO theory the two spins ~Si=1,2 on
each dimer are expressed as

Sα1
2

=
1

2
(±s†tα ± t†s−

∑
β,γ

iεαβγt
†
βtγ) , (A1)

where s(†)and t
(†)
α destroy(create) the singlet and triplet

states of the dimer and Greek labels, α = 1, 2, 3, refer to
the threefold triplet multiplet. A hard-core constraint

s†s+
∑
α

t†αtα = 1 (A2)

is implied, which renders the algebra of the r.h.s of Eq.
(A1) identical to that of spins.

Inserting the BO representation into a spin model leads
to an interacting Bose gas. Two kinds of quadratic
approximations have become popular in the limit of
weak dimer coupling, namely the BO mean-field the-
ory (BO-MFT)47 and the BO Holstein-Primakoff (BO-
HP) approach45,46. In both cases, terms only up to sec-
ond order in the BOs are retained. In the BO-MFT,
singlets are condensed by s(†) → s ∈Re and the con-
straint Eq. (A2) is satisfied on the average with a
global Lagrange multiplier η47. In the BO-HP, the con-
straint is used to eliminate all singlet operators using
s = s† = (1−

∑
α t
†
αtα)−1/2, followed by expanding the

square root45,46.

For both approaches, i.e. BO-MFT and BO-HP, the
Hamiltonian in units of J0 of our frustrated hexagonal

bilayer lattice reads

H = H0 +H1 +H2 +Hc (A3)

H0 =
∑
l,b

(−3

4
s2 +

1

2

∑
α

t†lbαtlbα) (A4)

H1 =
∑
l,m̃,α

s2j̃1
2

(t†m̃AαtlBα + t†m̃Aαt
†
lBα + h.c.) (A5)

H2 =
∑
l,l̃,α,b

s2j2
2

(t†
l̃bα
tlbα + t†

l̃bα
t†lbα + h.c.) (A6)

Hc = −
∑
l,b

η(s2 +
∑
α

t†lbαtlbα − 1) (A7)

where t
(†)
lbα labels triplets in unit cell l at basis site

b = A,B of the two interpenetrating triangular lattices
comprising the hexagonal lattice. The sites m̃A in Eq.
(A5) refer to the three nearest neighbors of the honey-
comb basis around each of the triangular lattice sites at

lB and the l̃ labels the three nearest neighbors on each of
the triangular lattices. j̃1 = j1−jx and j2 are the dimen-
sionless exchange couplings. s2 is the singlet condensate,
and η the global Lagrange multiplier for constraint (A2).

This Hamiltonian can be diagonalized by standard Bo-
goliubov transformation leading to an energy E per unit
cell, i.e. per two dimers, of

E = −3

4
−3

2
s2−2ηs2+5η +

3

2N

∑
k

(Ek++Ek−) (A8)

with the triplon dispersion

Ek± = a

√
1± s2

a
e±(k) (A9)

where

e±(k) = j̃1

√
3+2 cos(kx)+4 cos(

kx
2

) cos(

√
3ky
2

)

±2j2(cos(kx)+2 cos(
kx
2

) cos(

√
3ky
2

)) (A10)

≡ j̃1
√

3 + g(k)± j2 g(k) (A11)

and a = 1/4 − η. Eqs. (A9)-(A11) display an impor-

tant symmetry for j̃1 ↔ −j̃1, namely for that e±(k) ↔
−e∓(k). This implies, that on the quadratic level of the
BO-HP and BO-MFT all results of the theory will be
symmetric w.r.t. diagonal j1 = jx

From (A8)-(A11) the BO-HP is completed by replacing
the sum of the first four addends in Eq. (A8) with to
−9/2 and by setting a = 1, s = 1 in (A9, A10).

For the BO-MFT the energy E has to be extremized,
implying two self-consistency equations ∂aE/∂a = 0 and
∂sE/∂s = 0. These can be combined into a single one
for the parameter d = s2/a, i.e.

d =
5

2
− 3

4N

∑
k,v=±

1√
1 + v d ev(k)

. (A12)
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Knowing d, both mean field parameters can be obtained
from substituting into either one of the mean field equa-
tions, e.g. ∂aE/∂a = 0

2s2 = 5− 3

2N

∑
k,v=±

1 + 1
2 v d ev(k)√

1 + v d ev(k)
. (A13)

We mention in passing, that the trivial limit, i.e. j̃1 =
j2 = 0, leads to d = 1, s = 1, and η = −3/4, and
therefore to a singlet-triplet gap of ∆ = 1 and a ground
state energy of E = −3/2, which is consistent with two
saturated singlets per unit cell.

Appendix B: Schwinger Boson Mean-Field Approach

In the Schwinger-boson representation, the Heisenberg
interaction can be written as a bi-quadratic form. The
spin operators are replaced by two species of bosons via
the relation48–50

~Sα(~r) =
1

2
~b†α(~r) · ~σ · ~bα(~r), (B1)

where ~bα(~r)†=(b†α,↑(~r),b
†
α,↓(~r)) is a bosonic spinor cor-

responding to the site α in the unit cell sitting at ~r. ~σ is
the vector of Pauli matrices, and there is a boson-number
restriction

∑
σ b
†
α,σ(~r)bα,σ(~r)=2S on each site.

In terms of boson operators we define the SU(2) in-
variants

Aαβ(~x, ~y) =
1

2

∑
σ

σbα,σ(~x)bβ,−σ(~y) (B2)

Bαβ(~x, ~y) =
1

2

∑
σ

b†α,σ(~x)bβ,−σ(~y). (B3)

The operator Aαβ(~x, ~y) creates a spin singlet pair be-
tween sites α and β corresponding to unit cells located
at ~x and ~y respectively. The operator Bαβ(~x, ~y) creates a
ferromagnetic bond, which implies the inter-site coherent
hopping of the Schwinger bosons.

In this representation, the rotational invariant spin-
spin interaction can be written as

~Sα(~x) · ~Sβ(~y) =: B†αβ(~x, ~y)Bαβ(~x, ~y) : −A†αβ(~x, ~y)Aαβ(~x, ~y)

where : O : denotes the normal ordering of the opera-
tor O. One of the advantages of this rotational invari-
ant decomposition is that it enables to treat ferromag-
netism and antiferromagnetism on equal footing. This
decomposition has been successfully used to describe
quantum disordered phases in two-dimensional frustrated
antiferromagnets12,15,21,40,51–54.

In order to generate a mean field theory, we perform
the Hartree-Fock decoupling

(~Sα(~x) · ~Sβ(~y))MF = [B∗αβ(~x− ~y)Bαβ(~x, ~y)

− A∗αβ(~x− ~y)Aαβ(~x, ~y)] (B4)

− 〈(~Sα(~x) · ~Sβ(~y))MF 〉

where the mean field parameters are given by

A∗αβ(~x− ~y) = 〈A†αβ(~x, ~y)〉, (B5)

B∗αβ(~x− ~y) = 〈B†αβ(~x, ~y)〉, (B6)

and the exchange at the mean field level is

〈(~Sα(~x) · ~Sβ(~y))MF 〉 = |Bαβ(~x− ~y)|2 − |Aαβ(~x− ~y)|2.
(B7)

The mean field equations (B5) and (B6) must be solved
in a self-consistent way together with the following con-
straint for the number of bosons in the system

Bαα(~R = ~0) = 4NcS, (B8)

where Nc is the total number of unit cells and S is the
spin strength. Self-consistent solutions in the bilayer hon-
eycomb lattice involve finding the roots of coupled nonlin-
ear equations for the mean field parameters and solving
the constraints to determine the values of the Lagrange
multipliers λ(α) which fix the number of bosons in the
system. We perform the calculations for large systems
and extrapolate the results to the thermodynamic limit.
Details of the self consistent calculation can be found in
Refs. 12 and 21.

Appendix C: Series expansion

The D-SE calculations start from the limit of isolated
dimers. To this end we decompose the Hamiltonian given
by Eq.(1) in units of J0 into

H = H0 + V (j1, jx, j2), (C1)

where H0 represents decoupled interlayer dimers and
V (j1, jx, j2) is the interaction part of Hamiltonian, con-
necting dimers via j1, jx, j2 couplings.

By construction the levels structure of H0 is equidis-
tant, which allows to sort the spectrum of H0 in a block-
diagonal form, where each block is labeled by an en-
ergy quantum-number Q. Therefore, Q=0 represents the
ground state (vacuum), i.e., all dimers are in the sin-
glet state. Q=1 sector is composed by states obtained
by creating (from vacuum state) one-elementary triplet
excitation (particle) on a given dimer, and so on. The
cases in which Q ≥ 2 will be of multi-particle nature.

In general the action of V (j1, jx, j2) mixes different
Q-sectors, so that the block-diagonal form of H0 is not
conserved in H. However because of the ladder struc-
ture of the unperturbed spectrum, is possible to restore
the block-diagonal form by application of continuous uni-
tary transformations, using the flow equation method of
Wegner55. This method can be implemented perturba-
tively order by order, transforming H onto an effective
Hamiltonian Heff which is block-diagonal in the quantum
number Q, having the structure

Heff = H0 +

∞∑
n,m,l

Cn,m,lj
n
1 j

m
x j

l
2, (C2)
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where Cn,m,l are weighted products of terms in
V (j1, jx, j2) which conserve the Q-number, with weights
determined by recursive differential equations, details of
which can be found in Ref. 56.

Due to Q-number conservation several observables can
be calculated directly from Heff in terms of a D-SE in
j1, jx, j2. For systems with coupled spin-plaquettes con-
tinuous unitary transformations D-SE has been used for
one32, two57–60 and three61 dimensions. For the present
model we have performed O(4) D-SE in j1, jx, j2 for
ground state energy (Q = 0) and for Q = 1 sectors,
respectively. We refer for technical details about the
calculation to ref.62. Note finally that the contribution
of perturbation in the case V (j1, j1, 0) is zero, reflecting
the invariance of original Hamiltonian under j1 ↔ jx ex-
change.

Appendix D: Linear Spin Wave Theory at j1 = jx

Here we briefly quote the equations necessary to deter-
mine the critical coupling jc1 for the first order IDP↔II
quantum phase transition along the line j1 = jx from
linear spin wave theory. In the IDP along the latter line,
the ground state energy is

Eall L = 0 sector/J0 = −3

2
N4 , (D1)

where N4 is the number of triangular unit cells. The
Hamiltonian of the “all L = 1 sector” on the other hand

reads

Hall L = 1 sector/J0 =
1

2
N4 + j1

∑
〈lm〉

Ll · Lm , (D2)

where the sum refers to an S = 1 Heisenberg antiferro-
magnet on the hexagonal lattice. The ground state of
the latter is known to be an Néel state with an energy
per site to O(1/S) of63

ELSWT = j1

{
−3S2

2
+

S

4π2
√

2

∫ 2π

0

∫ 2π

0

dx dy [3−

cos(x)− cos(y)− cos(x+y)]1/2−3S

2

}
' j1

(
−3S2

2
− 0.314763S

)
. (D3)

For S = 1 this yields the line

ELSWT ' −1.81476 j1 , (D4)

which is plotted in Fig. 5. Together with (D1, D2) and
keeping in mind that a ’site’ in (D3) refers to two spins
on the original bilayer, this implies that 1.81476 jc1 = 1,
i.e.

jc1 ' 0.551036
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