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The Periodic Anderson Model (PAM) is widely studied to understand strong correlation physics
and especially the competition of antiferromagnetism and singlet formation. In this paper we extend
QMC work on lattices with uniform numbers of neighbors to geometries in which the conduction
electron sites can have variable coordination z. This situation is relevant both to recently discovered
magnetic quasicrystals and also to magnetism in doped heavy fermion systems. Our key results are
the presence of antiferromagnetic order at weak interorbital hybridization Vfd, and a delay in singlet
formation to larger values of Vfd on sites with larger z. The staggered magnetization tends to be
larger on sites with higher z, providing insight into the behavior to be expected in crown, dice, and
CaVO lattices.

PACS numbers: 71.10.Fd, 71.30.+h, 02.70.Uu

I. INTRODUCTION

The single band Hubbard Hamiltonian1–4 captures
several of the most fundamental consequences of electron-
electron interactions in solids, namely magnetic order
and the Mott metal-insulator transition. Multi-band
Hamiltonians like the periodic Anderson model (PAM)5,6

examine what happens when two species of electrons,
one delocalized ‘conduction’ band (often d), and another
localized band (often f) are present. Here a central
effect is the competition between singlet formation7,
when the conduction and localized electrons are strongly
hybridized, and ordering of the local moments mediated
indirectly through the Ruderman-Kittel-Kasuya-Yosida
interaction8–11. In heavy fermion materials12,13,
this competition is believed to explain different low
temperature phases, e.g. non-magnetic CeAl3 where the
f moments are screened by the conduction electrons,
and CeAl2 which becomes antiferromagnetic (AF) at low
temperatures.

Quantum Monte Carlo (QMC) studies of the PAM
have explored some of this physics, in one14,15, two16,
and three dimensions17. The focus has been on
bipartite lattices which, at half-filling, host AF order
without frustration and are also free of the fermion sign
problem18,19. QMC in infinite dimensions20 complements
work in finite d by allowing simulations at very low
temperature, at or even well below the Kondo scale, at
the expense of some of the knowledge of correlations in
space.

There is interest in understanding the magnetic
correlations in more general geometries. One such
modification allows for intersite, rather than on-site,
hybridization between conduction and local orbitals and
hence metallic behavior in the absence of interactions21.
Another motivation is provided by chemical substitution
in heavy fermion materials, either by the replacement of
some of the local moment atoms by non-magnetic ones,
as in (Ce,La)CoIn5

22 or by changes to the conduction

orbitals, as in the alloying of Cd onto In sites in
CeCo(In,Cd)5

23,24. In the latter situation, Vfd is reduced
locally, and AF droplets can form around the impurity
sites.

A second motivation is the recent observation of a
quantum critical state in magnetic quasicrystals25,26. In
these Au-Al-Yb alloys (Au51Al34Yb15), measurements
of the magnetic susceptibility χ and specific heat C
diverge as T → 0. This non-Fermi liquid (NFL) behavior
is associated with strongly correlated 4f Yb electrons.
These two sets of materials share a common feature which
is that the coordination number of the different atoms is
no longer spatially uniform. The effects of these unique
local environments can be probed with nuclear magnetic
resonance27.

The NFL behavior of Au-Al-Yb alloys has recently
been studied by solving the U = ∞ Anderson Impurity
Model (AIM) for a single local moment coupled to
conduction electrons in a quasicrystal approximant
geometry28. The crucial result is that singular responses
in χ and C occur as a consequence of a broad (power
law) distribution of Kondo temperatures which delays
screening of a large fraction of the magnetic moments
until very low temperatures.

In this paper we study the PAM in two different
geometries: the Lieb lattice and a 2D “Ammann-
Beenker” tiling29,30. Quasicrystaline approximates32 for
Au51Al34Yb15 are in 3D; the quasi-periodic Ammann-
Beenker tiling is a more tractable 2D alternative for
QMC, which is limited in the number of sites which can
be simulated.

Our goal here is to explore the nature of magnetic
correlations as a function of f -d hybridization,
and, specifically, to understand the competition
of antiferromagnetic order and singlet formation in
geometries where the coordination number of different
sites in the lattice is non-uniform. Our work extends
that of28 by examining a dense array of local orbitals
and also by including the effect of finite Uf . We begin
with the Lieb lattice, because it contains two separate
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coordination numbers, z = 2, 4 while still retaining very
simple lattice periodicity. We then turn to the more
complicated quasicrystal approximant structure. We do
not at present address the anomalous NFL behavior
of the magnetic susceptibility, since those phenomena
appear to be associated only with the quasicrystal itself,
and not its approximant24.

The magnetic properties of quantum antiferromagnets
in geometries which have variable coordination number
(quasicrysal, crown, and dice lattices) have also been
studied in the context of the spin-1/2 Heisenberg
Hamiltonian31,33–35. The general trend is to a reduction
in order (eg. the staggered magnetization) on sites with
larger z. On the other hand, in the case of regular
geometries with uniform z, the ordered moment increases
from the honeycomb and CaVO (z = 3) to square (z = 4)
lattices36. We observe the latter trend here: spin-spin
correlations grow with z. We will comment on this
further in our conclusions.

Similar issues of magnetic order in quasicrystal
lattices have also been explored in classical models.
Ising spins coupled by Ruderman-Kittel-Kasuya-Yosida
interactions37 exhibit the somewhat surprising result
of a low temperature phase with long range order,
as opposed to glassy behavior. As in the quantum
cases mentioned above, and studied in our work below,
the magnetism is strongly dependent on the local
environment. Meanwhile, the magnetic order of classical
Heisenberg spins on a quasicrystal lattice is explored in38.

II. MODEL AND METHODS

The PAM is a tight binding Hamiltonian for which each
spatial site contains both an extended and a localized
orbital,

H =− t
∑
〈ij〉,σ

(d†iσdjσ + d†jσdiσ)− Vfd

∑
iσ

(d†iσfiσ + f†iσdiσ)

+ Uf

∑
i

(nfi↑ −
1

2
)(nfi↓ −

1

2
) (1)

Here t is the hybridization between conduction orbitals

with creation(destruction) operators d†iσ(diσ) on near
neighbor sites 〈ij〉. In this paper we consider the
two conduction electron geometries shown in Figs. 1,2
corresponding to “Lieb” and “quasicrystal” lattices
respectively. Each site of these lattices also contains
a localized orbital, creation(destruction) operators

f†iσ(fiσ). Uf is the on-site interaction between spin up
and spin down electrons on the localized orbital, and Vfd

is the conduction-localized orbital hybridization. Both
geometries of Figs. 1,2 are bipartite. In H we have
written the interaction term, in ‘particle-hole’ symmetric
form, and set the site energy difference between f and d
orbitals to zero, so that the lattice is half-filled for all
temperatures T and Hamiltonian parameters t, Uf , Vfd.
Half-filling optimizes the tendency for AF correlations,

and also allows DQMC simulations at low temperature
since the sign problem18 is absent.

Figure 3 shows the density of states and band structure
of the PAM on a Lieb lattice for t = 1 and Vfd = 1.
There are six bands corresponding to the six sites (three
conduction and three localized) per unit cell. The lattice
is bipartite with four of the six sites on one sublattice
and two on the other. Hence, in accordance with Lieb’s
theorem39 there are two flat bands (at E = ±1). As
in the case of the PAM on a square lattice with on-site
hybridization, the half-filled lattice is a band insulator
in the non-interacting limit. However, by comparing
calculations for on-site and intersite Vfd, the latter being
metallic at half-filling, it has been shown that many
properties of the PAM when Uf/t >∼ 4 are insensitive
to the presence of a Uf/t = 0 band gap21.

FIG. 1: (Color online) The Lieb lattice geometry under
consideration in this paper. (Cluster shown has 4x4 unit
cells with 48 sites). Each site contains both a conduction
(d) orbital (circles) and a localized (f) orbital (squares), so
that there is a total of 96 sites/orbitals. Horizontal and
vertical lines correspond to the d-d hopping t. We use
periodic boundary conditions (pbc). There are two possible
conduction orbital coordinations, z = 2, 4. The local f
orbitals are connected to the d orbital on the same site by
hybridization Vfd (diagonal lines).

The magnetic properties of the PAM are characterized
by intra- and inter-orbital spin-spin correlations,

czz
′

ff (r) = 〈f†i+r↓fi+r↑f
†
i↑fi↓〉

czz
′

dd (r) = 〈d†i+r↓di+r↑d
†
i↑di↓〉

czz
′

fd (r) = 〈f†i+r↓fi+r↑d
†
i↑di↓〉 (2)

Here the superscripts z, z′ refer to the coordination
number of the conduction orbital on site i and
i + r respectively. This separation allows us to
isolate the effects of the number of neighbors on the
spin correlations40. We focus here on czz

′

ff (r) which
measures intersite magnetic correlations between the
local electrons, and czzfd (r = 0), the singlet correlator
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FIG. 2: (Color online) Top (bottom): Approximants to
the Au51Al34Yb15 crystalline lattice for N = 41(239) sites.
In each case, sites shown contain both a conduction (d)
orbital and a localized (f) orbital. Because of the more
complex (irregular) structure, we show only the conduction
sites (circles) explicitly. There is a partner localized site, not
shown, for each, the analogs of the squares in Fig. 1. Lines
correspond to the d-d hopping t. The local f orbitals are
connected to the d orbital on the same site by hybridization
Vfd. For this geometry we use open boundary conditions
(OBC) to avoid frustration. The conduction electron sites
range in coordination from z = 1 to z = 8. The use of two
colors for the sites emphasizes that, despite its complexity,
the geometry is still bipartite.

between local and conduction electrons on the same site.
The spin-spin correlations are translationally invariant
for uniform geometries and periodic boundary conditions,
but depend more generally on both i and r in irregular
lattices.
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FIG. 3: (Color online) DOS (top) and band structure
(bottom) of the PAM on a Lieb lattice. Here t = 1 and
Vfd = 1. The two completely flat bands at E = ±1 give
rise to δ function spikes in D(E) which are indicated by
dashed vertical lines). D(E = 0) vanishes: the system is
a band insulator at half-filling. The DOS for the N = 239
quasicrystal approximant is also shown in the top panel. As
is the case for the Lieb lattice PAM, the quasicrystal PAM
also has a hybridization gap at E = 0. The single band case
is metallic28,35.

We also measure the structure factor,

Szff =
∑
r

∑
z′

czz
′

ff (r)(−1)r

Stot
ff =

∑
r

∑
zz′

gzz
′
czz

′

ff (r)(−1)r (3)

which sums the spin-spin correlations to all distances r
from sites i with a given z. The staggered phase factor
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(−1)r takes the value ±1 on the two sublattices of the
bipartite geometry and hence measures AF order. The
z-resolved contributions to the total structure factor Stot

ff
are weighted by the fractions of sites in the lattice with
a given coordination gzz

′
. In the singlet phase, the spin

correlations decay exponentially with separation r and
Stot

ff gets contributions only from a small number r < ξ of
local correlations. It becomes temperature independent
below a relatively high T set by the singlet energy scale.
In an ordered phase, on the other hand, Stot

ff will depend
on temperature down to much lower T as the correlation
length ξ diverges. Thus a T dependence of Stot

ff can be
used as an initial indicator of AF order.

To determine the possibility of long range order in the
ground state, we follow the seminal analysis of Hirsch and
Tang41 in their study of the two dimensional Hubbard
model. The essence of the procedure is the observation
that the correlation length ξ(T ) diverges as T → 0,
so that if one lowers T sufficiently one can satisfy the
condition ξ >> L: the correlation length is much larger
than the linear lattice size L. The required T will, of
course, decrease as L increases. If one does this for a
collection of L, one has a set of measurements which
is in the ground state for each L. These results can
then be extrapolated to L = ∞ to infer the ground
state properties in the thermodynamic limit. As we shall
discuss, a challenge which makes the PAM more difficult
than the single band Hubbard model is the smallness of
the RKKY interaction for weak interorbital hybridization
Vfd, which necessitates a very large β.

Our computational approach is determinant Quantum
Monte Carlo (DQMC)42,43. This method allows the
solution of interacting tight-binding Hamiltionians like
the PAM through an exact mapping onto a problem
of non-interacting particles moving in a space and
(imaginary) time dependent auxiliary field. This field
is sampled stochastically to obtain the expectation
values of different correlation functions. The update
moves require the non-local computation of the fermion
Green’s function, which also the quantity needed to
measure equal time observables including the energy,
double occupation, and spin correlations. The algorithm
involves matrix operations and scales as the cube of
the product of the number of spatial lattice sites and
the number of orbitals. In certain special situations,
including the PAM on the geometries studied here,
the sampling is free of the sign problem18 so that the
simulation may be conducted on large lattices (here
several hundreds of spatial sites) at low temperature
(here T/t <∼ 1/30).

III. PAM ON THE LIEB LATTICE

We begin with the Lieb lattice which has 2N/3 sites
of coordination number z = 2 and N/3 sites with z = 4.

Figure 4 shows czz
′

ff (r) for Vfd = 0.8 and Vfd = 1.3. In the
former case, the correlation function alternates between

positive and negative values, with a correlation length
which exceeds the linear lattice size, as is characteristic
of an AF phase. r = 1 corresponds to the separation
between unit cells, so that integer values of r are between
sites with z′ = z (and hence the same sublattice)
and half-integer values have z′ 6= z (and hence occupy
different sublattices). The AF correlations are evident
in both z = 2 and z = 4, although they are larger for
higher coordination number. This reflects the collective
nature of the AF order, which is more robust as the
number of neighbors grows. Actually, because the A
and B sublattices have different numbers, the ordered
phase is Ferrimagnetic39, with N↑ 6= N↓ in addition to
the staggered pattern seen in the Figure. For Vfd = 1.3,
on the other hand, czz

′

ff (r) falls rapidly to zero, indicative
of a singlet phase.

The AF and singlet regimes can also be distinguished
by czzfd (r = 0), as shown in Fig. 5. (Here since r = 0
the coordination numbers z′ = z.) czzfd (r = 0) vanishes
for Vfd = 0 where the localized and conduction fermions
are decoupled, and saturates at a large value for Vfd →
∞. For the sites with larger coordination number z′ =
z = 4, singlet correlations develop at larger Vfd than
for sites with z′ = z = 2. As might be expected for a
local quantity, the singlet correlator for the z = 4 sites
matches quite well to those on a square lattice. (The
4 × 4 square lattice is anomalous because of its unusual
additional symmetries, and is not shown.)

In Fig. 6 we turn to the AF structure factor, Eq. 3,
which sums the spin correlations on the localized orbitals
over the whole lattice. In the singlet phase, czz

′

ff (r) is
short ranged and temperature independent, achieving its
ground state value at T ∼ V 2

fd/Uf . In the AF phase,
on the other hand, the correlation length grows as T is
lowered, and hence czz

′

ff (r) contributes to the structure
factor out to larger and larger distances. The structure
factor becomes temperature dependent at low T . These
two regimes are evident, and are separated by Vc ∼ 1.1.
This is suggestive, but certainly not conclusive, evidence
of the presence of a QCP. At the end of the following
section we will provide a finite size scaling analysis of
this data to ascertain whether there is true long range
order below Vc . Note that the reduction in Stot

ff as Vfd
is reduced below Vfd ≈ 0.7 is a finite temperature effect.
The RKKY exchange scales as V 2

fd and T = t/30 (βt =

30) is no longer low enough to reach the ground state.

IV. PAM ON A QUASICRYSTAL LATTICE

We turn now to the quasicrystal geometry. Our
discussion will parallel that of the preceding section. For
this lattice, the choices for coordination number are more
numerous, z = 1, 2, · · · 8, as evident in Fig. 2. The
z = 1, 2 sites originate in our use of OBC, a choice made
to avoid frustration of AF order44. It is important to
emphasize that these coordination numbers occur only
at the lattice edges. Their contribution to the properties
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FIG. 4: (Color online) Spin-spin correlation function czz
′

ff (r)
as a function of r for the half-filled Lieb lattice with Uf = 4t
and β = 30. r = 1 is the unit cell size: integer r correspond
to z′ = z and half-integer values to z′ 6= z. The red(blue)
symbols show Vfd = 0.8t(1.3t) respectively. For Vfd = 0.8t

there is AF order to large r, while for Vfd = 1.3, czz
′

ff (r) decays

rapidly to zero. In the AF regime, larger z increases czz
′

ff (r).
Data depicted by x (Vfd = 0.8) and ∗ (Vfd = 1.3) are for the
square lattice. r = 0.5 is for near-neighbors, and r = 1.0 for
next near-neighbors.

of the system will vanish in the thermodynamic limit.
czz

′

ff (r) for the quasi-crystal geometry is given in Fig. 7
and shows a differentiation between long range behavior
for Vfd = 0.8 and rapid decay to zero for Vfd = 1.4.
Similar to the Lieb case, czz

′

ff (r) is larger for z = 4
than z = 2. Data for other z (not shown) confirm this
trend. The AF correlations extending outward from a
site become more and more robust as the coordination
number of the conduction orbital increases.

Figure 8 shows the singlet correlator for the N =
239 site quasicrystal geometry of Fig. 2(bottom). The
appearance of well-formed singlets depends on the
coordination number z of the conduction electron site-
the point of maximum change of czfd(r = 0) shifts from
Vfd ∼ 0.4 to Vfd ∼ 1.1 as z increases. This reflects the
fact that AF is favored by a larger number of neighbors,
so that the cross-over to singlets requires larger Vfd as
z increases. Since czzfd (r = 0) is a local quantity, its
value is relatively unaffected by total lattice size (data
in Fig. 8 for N = 41 and N = 239 are similar), and it
also converges with β fairly quickly. (Data in Fig. 8 for
β = 15 and β = 20 are similar).

The sum of the spin-spin correlation function of
localized fermions in the quasi-crystal geometry yields
the structure factor and is given in Fig. 9 as a function
of Vfd. For hybridizations Vfd

>∼ 1.1, where results in
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5x5  Sqr   β=15

U
f
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FIG. 5: (Color online) Local singlet correlator czz
′

fd (r = 0)
for the half-filled Lieb lattice with Uf = 4t. The singlet
correlations develop more rapidly for z = 2 than for z = 4
since for smaller coordination number the competition with
AF order is reduced. Data for different (β = 15, 20) as well as
different system sizes (4x4 and 6x6) overlap: this short range
correlation function converges rather quickly as T is lowered
and N is increased. Vertical dashed lines at Vfd = 0.8, 1.3
demark the values used for the real space spin correlation
data of Fig. 4. Square lattice data coincide well with Lieb
sites with z = 4.

Fig. 8 suggest singlet formation is robust for all z, Stot
ff

is temperature independent. Below Vfd ∼ 1.1, curves for
different β break apart, suggesting that AF correlations
are present and increasing as T is lowered. As noted in
the discussion of Fig. 6, the reduction in the structure
factor at low Vfd is a finite temperature effect: the
effective RKKY coupling goes as V 2

fd and hence even
larger β is needed for AF correlations to develop at small
Vfd. See also45.

In the presence of long range order (LRO) the
correlation approaches a nonzero asymptotic value c(r →
∞) → m2, where m is the order parameter, and the
structure factor scales as S = Nm2. Even if LRO is
present only at T = 0, as is the cases in d = 2 with
continuous symmetries, this scaling is observed at T low
enough that the correlation length exceeds the largest
linear lattice size studied. We expect S > Nm2 on finite
lattices, since c(r) > m2 at small distances, and these
short range contributions can be substantial if the lattice
size is small. A finite size scaling plot for the Lieb lattice
is given in Fig. 10.
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FIG. 6: (Color online) Localized electron antiferromagnetic
structure factor for the Lieb lattice. For Vfd

>∼ 1.1, Stot
ff is

independent of temperature and lattice size N . However,
when T is decreased for Vfd

<∼ 1.1, Stot
ff grows as the system

is cooled. These distinct behaviors reflect the completely
local nature of magnetic correlations in the singlet phase, and
an increasing correlation length at low T in the AF phase.
Vertical dashed lines at Vfd = 0.8, 1.3 demark the values used
for the real space spin correlation data of Fig. 4.
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FIG. 7: (Color online) z resolved spin-spin correlation
function between localized orbitals for Vfd = 0.8 (AF phase)
and Vfd = 1.4 (singlet phase) for the N = 41 quasicrystal
lattice at β = 30. In the former case, czff(r) remains non-zero
out to large separations, while in the latter case it falls off to
zero. Left(right) panels are z = 2(4).
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FIG. 8: (Color online) The singlet correlators (circles) for
the quasicrystal geometry with N = 239 sites and inverse
temperature β = 20 shown as functions of Vfd. czfd(r = 0) is
largest in magnitude for smallest z = 1. The singlets become
less and less well-formed as z increases. Data for N = 41 sites
(squares) indicate that finite size effects are relatively small.
Similarly, data for β = 15 (diamonds) show that the low T
limit has been reached. Vertical dashed lines show the Vfd

values of Fig. 7.
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FIG. 9: (Color online) Stot
ff as a function of Vfd for several

inverse temperatures β and quasicrystal lattice sizes N =
41, 239. As for the Lieb lattice, curves coincide for different
β in the singlet phase at large Vfd, but break apart at Vfd ≈
1.0 − 1.1. This signals the development of antiferromagnetic
correlations at large spatial separations at low Vfd. Vertical
dashed lines show the Vfd values of Fig. 7.
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FIG. 10: (Color online) Finite size scaling plot for the PAM
on the Lieb lattice. Using 4x4, 6x6, and 8x8 unit cells, the
normalized structure factor Stot

ff /N scales to a nonzero value
for Vfd = 0.8. Here the inverse temperature β = 30 which is
large enough that ground state properties have been reached
for lattices of the sizes shown.

V. CONCLUSIONS

We have explored the competition between
antiferromagnetic order and singlet formation in
the periodic Anderson model in 2D geometries which
are unfrustrated, but which have conduction electron
coordination which varies from site to site. As is
intuitively reasonable, singlet formation depends on
z, and is delayed to larger interorbital hybridization
Vfd as z increases. Our data suggest that, as in the
case of uniform z, AF order is present in the ground
state at low Vfd and absent at large Vfd. Related
issues arise in models in which site dilution provides
different conduction electron coordination46,47 or in
which variation in conduction electron-local orbital
hybridization is considered48.

As noted in the introduction, the staggered moment
tends to go down with increasing z in the spin-1/2
Heisenberg model on quasicrystal lattices30,33–35. Our
work differs from those studies in two respects. First, we
consider itinerant, rather than localized spins. Second,
we consider a model with two moments per site, one
associated with the conduction electron band and one
with the local band. It is not completely clear which of
these differences is responsible for the alteration in the

effect of local z on the spin correlations. It might be
of interest to study a single band (Hubbard) model with
variable z to isolate the answer to this question.A number
of experimental systems also exhibit a similar behavior
in which TNeel can be higher at the (lower z) surface
than in the (higher z) bulk.49 Our work, and much of the
literature, has considered models with variable z which,
however, remain bipartite. The combined of frustration
and variable z are studied in36.

Both geometries studied have unusual Uf = 0 single
particle eigenstates. In the case of the Lieb lattice, the
inequivalence of the number of sites in the A and B
sublattices leads to the presence of flat bands. In the
true quasicrystal geometry (of which we explore only
an approximant) the eigenstates exhibit an intermediate
scaling with system size, between the limits where the
participation ratio P grows with the number of sites, as
occurs for Bloch states, and P ∼ o(1) for conventional
localization24,28. Thus our work also explores the effects
of those features of the noninteracting spectrum on
magnetic correlations in the presence of interactions.

Limitations on accessible system sizes and
temperatures prevent us from addressing high precision
questions such as whether the distribution of z destroys
a sharp quantum critical point (QCP) between the AF
and singlet phases and replaces it with a more gradual
cross-over. Related DMFT work28 indicates that there
is a range of Kondo temperatures. It is interesting to
note that, to within the accuracy DQMC simulations
provide, there is remarkably little variation between
the critical value of Vfd for different 2D conduction
electron geometry. The QCP appears to be quite close
to the square lattice value Vfd/t ≈ 1 for the Lieb and
quasicrystal lattices considered here.

The usual view of the PAM is of a two band
(conduction and localized) tight binding Hamiltonian.
Although we have emphasized here the presence of sites
with different conduction electron lattice coordination
numbers, an alternate perspective on our work is
that of a study of a PAM in which the conduction
electrons themselves have several bands. The Lieb lattice
geometry, for example, has three sites per unit cell, and
hence three conduction bands (Fig. 3), in addition to the
localized orbitals. Our DQMC simulations indicate that
the competition between singlet formation and AF order
is not fundamentally affected by this more complex band
structure.
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