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Crystallization is one of the most familiar but hardest to analyze phase transitions. The principal
reason is that crystallization typically occurs via strongly first order phase transition, and thus
rigorous treatment would require comparing energies of infinite number of possible crystalline states
with the energy of liquid. A great simplification occurs when crystallization transition happens to
be weakly first order. In this case Weak crystallization theory, based on unbiased Ginzburg-Landau
expansion, can be applied. Even beyond its strict range of validity, it has been a useful qualitative
tool for understanding crystallization. In its standard form, however, Weak Crystallization theory
cannot explain the existence of majority of observed crystalline and quasicrystalline states. Here we
extend the Weak Crystallization theory to the case of metallic alloys. We identify a singular effect
of itinerant electrons on the form of Weak Crystallization free energy. It is geometric in nature,
generating strong dependence of free energy on the angles between ordering wavevectors of ionic
density. That leads to stabilization of FCC, Rhombohedral, and icosahedral quasicrystalline (iQC)
phases, which are absent in the generic theory with only local interactions. As an application,
we find the condition for stability of iQC that is consistent with the Hume-Rothery rules known
empirically for majority of stable iQC; namely, the length of the primary Bragg peak wavevector is
approximately equal to the diameter of the Fermi sphere.

I. INTRODUCTION

Crystals are best characterized in reciprocal space,
where the onset of long-range order is signaled by the
appearance of resolution-limited Bragg peaks. The in-
tensity of the Bragg peaks reflects the density distribu-
tion in a material – for smooth density modulations, as
in the case of liquid crystals, only few harmonics of prin-
cipal peaks located on a momentum shell of radius q0 are
needed to fully describe the state. The intensity of the
principal harmonics plays the role of the order parameter
in this case; when it is small near the transition (relative
to the average density), the application of the Ginzburg-
Landau theory is justified. In atomic crystals, typically,
density is highly concentrated near the equilibrium posi-
tions of atoms, and the number of relevant Bragg peak
harmonics scales in proportion to the ratio of the unit cell
size to the atomic size (smeared by thermal and quantum
fluctuations). In a typical crystal, the thermal fluctua-
tions of atoms are 15 − 30% of the lattice spacing at
the melting transition1; therefore, to accurately describe
the transition, multiple harmonics of q0 are required2,3.
The appearance of strong modulation immediately at the
phase transition, with multiple Bragg peaks forming re-
ciprocal lattice, is the signature of strongly first order
transition.

Weak crystallization theory4,5 applies Ginzburg-
Landau machinery to crystallization problem by assum-
ing that only principal Bragg peaks located on momen-
tum shell q0 significantly contribute to energy. Even
though it most directly applies only to liquid crystals
and polymers6, it has been successful in predicting ubiq-
uity of Body Centered Cubic (BCC) crystals near crys-
tallization temperature7. In this way, it has been a useful
symmetry-based tool to study the crystallization transi-
tion, even beyond its immediate range of validity. In the

standard – spatially-local – form, however, weak crys-
tallization theory is incapable of obtaining many of the
experimentally observed crystalline states, such as sim-
ple cubic, rhombohedral, or Face Centered Cubic (FCC),
while its heuristic modifications that allow to obtain some
of these states have not been microscopically justified.

The crystal structure depends on a variety of details,
such as ionic charge and electronic orbital structure, etc.,
which lead to an immense variety of natural an synthetic
crystals. Remarkably, in the case of metallic alloys simple
empirical rules exist that connect crystal structure and
the composition of alloys. These rules were identified by
Hume-Rothery8 who has found that metallic alloys are
particularly stable when in addition to the requirement
that atoms be of similar size and electronegativity, the
value of the average valence per atom (“e/a” ratio) has to
be close to certain “magic” values, which depend on the
crystal structure. Subsequently, the optimal e/a ratios
have been argued to be associated with a particular geo-
metrical matching condition, when the itinerant (nearly-
free) electron Fermi surface “just crosses” the boundary
of the first Brillouin zone9. Regardless of interpretation,
this observation highlights the important role that itin-
erant electrons play in determining the crystal structure.
This is indeed not surprising given that itinerant elec-
trons can effectively mediate long-ranged and multi-ionic
interactions.

A special case of a metallic crystalline solid is a qua-
sicrystal. In quasicrystals, atoms lack simple spatial pe-
riodicity, yet, in the reciprocal space, resolution-limited
Bragg peaks appear in a self-similar arrangement in-
consistent with crystallographically allowed point-group
symmetries10–14. Significantly, the majority of stable
quasicrystals are Hume-Rothery alloys15,16, i.e., they are
stable for narrow ranges of e/a. Despite nominally large
conduction electron concentration, their electrical and
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thermal conductivities are exceptionally low17,18, consis-
tently with strong scattering around the Fermi surface.
These observations led to attempts to construct a the-
ory of quasicrystals accounting for the Hume-Rothery
rules by perturbatively including electron scattering on
quasiperiodic ionic potential19. Just as in the case of
regular crystals, such approach is problematic since com-
parison of different ordered states requires the knowledge
of the magnitude of modulated ionic potential (see Ap-
pendix A). Weak crystallization theory, with some phe-
nomenological modifications, has also been invoked to ad-
dress the problem of stability of quasicrystals20–24. How-
ever, without including electrons explicitly it cannot ac-
count for the appearance of the Hume-Rothery rules in
quasicrystals.

Here we extend the weak crystallization theory to
metallic systems. This method is unbiased in the sense
that no assumptions regarding the ionic potentials are
needed, and the energies of different crystalline and qua-
sicrystalline states can be directly compared. The weak-
ness of the method is that it applies, strictly speaking,
only to the weakly first order transitions, and hence in
many practical situations its results can only be taken
qualitatively. Nevertheless, the singular features that we
identify in the 4th order Ginzburg-Landau theory due
to electrons, are geometrical in nature (being higher or-
der analogs of the Peierls instability), and thus should
remain important even beyond the assumptions of the
weak crystallization theory.

Within our approach, the Hume-Rothery rules emerge
from the interplay of two length scales – the preferred
interionic distance, 1/q0, and the Fermi wavelength of
itinerant electrons, 1/kF . We find that interionic in-
teractions generated by electrons qualitatively modify
the generic weak crystallization theory, stabilizing FCC,
rhombohedral, and, notably, icosahedral quasicrystal
(iQC) states. Even though we find that numerically these
phases are stabilized near q0 ≈ 2kF , the physical and geo-
metric meaning of this condition in our case is completely
different from the Fermi surface “nesting” of Jones9.

It should be mentioned that density functional the-
ory appropriate for the case of strongly first order
crystallization2 has also been applied to the problem of
energetic stability of quasicrystals25. The great appeal
of such theories is that by taking only the properties of
the liquid as an input (e.g., the structure factor) they
can predict the properties of the solids in the coexistence
phase. The weakness, however, is that being inherently
phenomenological they cannot explicitly account for the
role of electrons and, hence, the occurrence of the Hume-
Rothery rules. The systematic expansion in terms of
electron-ion interactions that we perform here is implicit
within these liquid parameters.
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FIG. 1. (a) First shell of reciprocal lattice vectors for the case
of FCC real space (BCC reciprocal) lattice vectors. Four vec-
tors point from the center of a tetrahedron to its vertices. (b)
Example of a scattering path between electronic momentum
states induced by the ionic densities modulated at wavevec-
tors in (a). This process makes contribution to w({qi}) in
Eq. (4). (c) Feynman “box” diagram for the fourth order
contribution to the GL free energy. Lines correspond to elec-
tronic Green functions; vertices to ionic densities with a given
wavevector. (d) An example of coplanar contribution to free
energy that only contains two pairs of ±qi [a contribution
to u(q0, αij)]. As shown, it corresponds to the “resonance”
conditions satisfied: tree or more electronic momenta are on
a great circe of the Fermi surface.

II. WEAK CRYSTALLIZATION THEORY AND
ITS EXTENSION TO METALS

In what follows, we shall keep only momenta of
length q0; i.e., we shall make the ansatz ρ(x) = ρ0 +∑
|k|=q0

Re[ρke
ik·x] for ionic density. As discussed above,

this ansatz, which is central to “weak crystallization” the-
ory5, is strictly valid only where the crystallization tran-
sition is weakly first-order and its latent heat is small.
Outside this regime, our results will not be quantitatively
accurate; nevertheless, we expect them to provide guid-
ance as to what kinds of crystal structures are favored.

We proceed by writing down a general Ginzburg-
Landau (GL) free energy functional, F = F0 + H0 + V ,
where

F0 =
∑

q
r(q)|ρq|2 +

λ3

3!

∑
qi

ρq1ρq2ρq3δ(
∑

qi)

+
λ4

4!

∑
qi

ρq1ρq2ρq3ρq4δ(
∑

qi) (1)

H0 =
∑

k
[E(k)− µ]c†kck (2)

V =
∑

kq
v(q)ρqc

†
kck−q (3)

Here, F0 describes the physics of ions and core elec-
trons in the absence of itinerant electrons. The minimal
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FIG. 2. Electronic contribution u(α) to 4th order term in
Ginzburg-Landau energy functional Eq. (4). Temperature
is T = 0.1EF . Black lines mark location of zero-temperature
singularity, Q/kF = 2 cos α

2
.

(“local”) assumption that is commonly made is that in-
teractions λ3 and λ4 are mere constants. However, as
interatomic interactions set a preferred length-scale for
crystallization even in the absence of conduction elec-
trons, this length-scale is introduced into the second-
order term, via the weak-crystallization form r(q) =
r0 + χ(|q| − q0)2. As already stated, we will restrict our
attention to density modes that are precisely at q = q0

26.
The second term, H0, describes the itinerant electrons:
for simplicity we shall treat these as noninteracting. The
third term, V , describes the interaction between itiner-
ant electrons and atoms. As we are only concerned with
density modulations satisfying q = q0, and the interac-
tion is assumed to be spherically symmetric, we can pa-
rameterize the interaction strength entirely by its Fourier
component at momentum transfer q0, viz. v ≡ v(q0).
Thus we need not make any assumptions about screening

of the Coulomb interaction. The kinematic constraints∑
qi

, in combination with the q = q0 restriction, strongly
limit the number of allowed terms. Namely, the cubic
term is only non-zero for triplets of qi forming equilat-
eral triangles, and thus favors hexagonal and BCC crystal
structures7. The quartic term obtains generically from
combining ±qi with ±qj . It can also appear in the sit-
uation when four qi form a non-copanar quadrilateral
[e.g., the geometry in Fig. 1(a)].

III. ELECTRONIC CONTRIBUTION TO WEAK
CRYSTALLIZATION ENERGY FUNCTIONAL

We now integrate out the conduction electrons to ar-
rive at a description that is purely in terms of the ionic
densities. The procedure is analogous to the derivation
of Ginzburg-Landau functional for superconductivity or
a charge density wave states27. The difference is that
the ionic density order parameter, a priori, can have an
arbitrary number of components, and the energy func-
tional should be able to predict not only the magnitude
of the order parameter, but also the number and orien-
tation of its components. The latter determine the type
of crystalline state.

As the free energy functional F = F0 + H0 + V is
quadratic in fermion operators, we can integrate out the
fermions; this allows us to write the partition function
purely in terms of ionic densities, as Z = exp[−β(F0 −
∆F )] where F0 is defined in Eq. (1) and ∆F is given
by the following perturbation series, which we have re-
summed using the linked cluster theorem:

∆F = − 1

β

∑
n

(−1)n

n

∫
dτ1...dτn〈TτV (τ1)...V (τn)〉conn,

Explicit expressions are given in Appendix B. We now
expand ∆F to quartic order in the bosonic densities; this
yields, for the free energy functional F ≡ F0 + ∆F :

F =
∑

qi

r̃(q)|ρq|2 + λ̃3(q0)
∑
4
ρq1

ρq2
ρq3

δ(
∑

qi)

+
1

2

∑
qi 6=qj

[λ4 + u(αij)]|ρqi |2|ρqj |2 +
1

4

∑
qi

[λ4 + u(0)]|ρqi |4 +
∑

�
[λ4 + w({qi})]ρq1ρq2ρq3ρq4 (4)

The symbols
∑
4 and

∑
� indicate summation over

unique triangles and non-planar quadrilaterals of qi; αij
is the angle between vectors qi and qj .

A. Numerical results

Figure 2 shows u(α) for various values of q0 at T =
0.1EF . Already at this not very low temperature cer-
tain features become apparent. For q0/kF ∼

√
2, a min-

imum in u(α) develops around α = π/2, which then
splits into two minima for larger values of q0. In the
limit of zero temperature, a singularity develops along



4

q0/kF

1.5 2 2.5

w
(q

0)

-40

-30

-20

-10

0

10

20

30

T = 0.2 EF
T = 0.1 EF
T = 0.05 EF
q0 = 1.63 kF

FIG. 3. Temperature and q0 dependence of noncoplanar elec-
tronic contribution w(q0) to 4th order term in Ginzburg-
Landau energy for FCC crystal. Black vertical line marks
location of zero-temperature singularity, q0/kF = 2 cos α
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where α = arccos(1/3).

the line q0/kF = 2 cos α2 . Geometrically this condition
corresponds to the configuration when three momenta
connected by scattering off the ionic order parameter, k,
k + q1 and k + q2 can all simultaneously be on a great
circle of the Fermi surface (Fig. 1d). Near this line, the
vertex is repulsively divergent for smaller q0 and attrac-
tively divergent for larger q0 as T → 0. This singular be-
havior is a four particle/hole analog of the particle-hole
divergence in 1D that drives Peierls instability. Natu-
rally, such a strong angular dependence of u(α) at tem-
peratures much lower than EF can influence the energetic
balance between different crystalline phases. It should be
noted, that the angular dependence is a result of sharply
defined Fermi surface; at temperatures comparable to or
higher than the Fermi energy it becomes smeared out.

The non-coplanar terms w({qi}) are less generic than
u(α) since they require four distinct wavevectors to add
up to zero. A case where these terms are important is the
FCC crystal, whose first Bragg shell (the set of shortest
symmetry-related reciprocal lattice vectors) is comprised
of eight vertices of a cube; hence there are two non-trivial
quadruplets of wavevectors that correspond to the ver-
tices of two tetrahedra (see Fig. 1). The significance of
non-coplanar terms is that they can always be made to
lower energy by appropriate choice of the relative signs
of constituent ρqi

. For the momentum-independent in-
teractions this does not change the fact that stripe state
has the lowest energy within Weak Crystallization theory.
However, inclusion of the electron-induced interaction
can change he situation dramatically. In Figure 3 we plot
w({qi}) as a function of q0 for FCC. We find that it has
features similar to u(α); namely, when q0/kF = 2 cos αt

2 ,
with αt = arccos(1/3) the tetrahedral angle, w diverges
as T → 0. This enhanced interaction is the cause of a
large region of stability of FCC phase that we find.

IV. PHASE DIAGRAM

To construct the phase diagram, we first consider the
set of variational states that contain N pairs of ±qi,
where all qi’s are symmetry related, and hence have ex-
actly the same set of neighbors. Then, all the Fourier
amplitudes are identical, |ρqi

| = ρ and the free energy is

F = Nr0|ρ|2+
N

2

∑
j 6=0

ũ(α0j) +
ũ0

2
− 2M�

N
|w̃({qi})|

 |ρ|4,
where we redefined ũ = u + λ4 and w̃ = w + λ4 for
compactness. We assumed that all M� quadruplets have
the same w({qi}) (the case for FCC) and that vectors
qi do not form equilateral triangles, and hence the cu-
bic invariant that could stabilize BCC (FCC reciprocal)
crystal does not contribute (the latter assumption should
become valid for sufficiently large negative r0). Now it
only remains to minimize the energy to obtain,

|ρ|2 = − r0∑
j 6=0 ũ(α0j) + ũ0

2 −
2M�
N |w̃({qi})|

and

F = − r2
0

2
N

∑
j 6=0 ũ(α0j) + ũ0

N −
4M�
N2 |w̃({qi})|

. (5)

It is important to note that the pure electronic vertex
u is negative (attractive) in a wide range of q0 and α,
which taken by itself could cause an absolute instability.
In this regime, one cannot truncate F at fourth order, but
must include higher-order terms in the GL expansion to
find stable equilibrium states. However, the structureless
local interaction λ4 restores stability while maintaining
the strong angle-dependence of the interactions.

The results of our analysis are presented in Figure 4.
We find only four stable phases: rhombohedral, striped,
FCC, and iQC (i.e., icosahedral quasicrystal). The
other symmetric variational states we explored are al-
ways higher in free energy than these (see lower panel
of Figure 4 for energy comparison and Appendix C for
details of the variational states). The overall shape of
the phase diagram can be understood as follows. When
the structureless interaction λ4 is absent or too weak,
as noted above, the free energy can become unbounded
from below at quartic order. On the other hand, when λ4

is dominant, the electron-induced interaction can be ig-
nored, and we recover the standard weak-crystallization
result that the equilibrium state is striped (or smectic).
When we are far from the matching condition q0 ∼ 2kF ,
or the temperature is relatively high, the interactions are
not strongly angle-dependent, and these are the two dom-
inant possibilities. On the other hand, when the struc-
tureless and electronic contributions are of similar mag-
nitude and the temperature is low, the angle-dependence
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of the electron-mediated interaction stabilizes nontrivial
crystalline phases.

The most significant qualitative feature of the phase
diagram for intermediate values of λ4 is the dominance
of FCC and rhombohedral phases, with balance shift-
ing in favor of FCC at lower temperatures. The rea-
son for this trend is that FCC has two appealing fea-
tures – (1) it has only one inter-q angle αij (up to
π − αij), and (2) it has lower energy due to the pres-
ence of non-coplanar 4th order terms. Rhombohedral
crystal only has former feature, and thus only becomes
competitive when the angle αmin that minimizes u(α) is
sufficiently far from the tetrahedral angle. Surrounded
by the FCC and rhombohedral phases is the iQC phase.
The key advantage of iQC phase is that it has large num-
ber (six) of ±qi pairs, all separated by the same angle
αi = 2 sin−1(γ2 + 1)−1 ≈ 63.43o (γ is the Golden mean).
Even thought iQC can not benefit from the non-coplanar
energy terms, when the optimal angle αmin is close to the
αi, iQC can beat both FCC and Rhombohedral. Finally,
for large λ4 we recover the Stripe phase predicted by the
original featureless Weak crystallization theory.

Except for the FCC phase with its non-coplanar terms
in energy, the phase diagram can be understood as fol-
lows. For the states with only one non-trivial inter-q an-
gle αmin, the denominator in Eq. (5) is ũ(αmin)+[ũ(0)−
2ũ(αmin)]/N . Thus, if the second term is positive, it fa-
vors large N ; it it is negative, then N = 1. Note that
for u(0) = 2u(α̃) states with all possible N ’s are energet-
ically degenerate (can be seen in triple crossing point in
Figure 4(lower) at q0/kF ≈ 2.05).

A. Distorted states

In construction of the phase diagram we have only
considered highly symmetric states. We now discuss
possible deviations from these assumptions. First, we
can ask whether the highly symmetric crystal states are
stable with respect to “Bragg-fractionalization,” namely
whether it may be beneficial to split Bragg peaks into
multiple nearby ones. From the fact that ũ(α → 0) =
ũ0, which can be explicitly demonstrated for electron-
mediated and local interaction, for ũ0 > 0, lack of frac-
tionalization follows trivially (see Appendix D). The next
possibility is a distortion of peaks from symmetric posi-
tions. Clearly this is not a concern for Rhombohedral
state, but could be for iQC and FCC. Here we specifi-
cally ask whether iQC will remain stable even if αmin is
not exactly αi (see Appendix E). Due to its high sym-
metry iQC cannot naturally distort, unlike, e.g., Rhom-
bohedral state. To answer this question, we have ex-
panded the interaction energy around the symmetric iQC
state. We have found that if u′(αi) < −(2/3)u′′(αi), then
iQC spontaneously distorts into a lower symmetry state,
i.e. a distortion could occur if αmin > αi (“compressed
springs”). This criterion also shows that if u(α) is suffi-
ciently smooth, as it is for temperatures not very much
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FIG. 4. Variational phase diagram for T = 0.2EF (top) and
T = 0.1EF (middle) as a function of local repulsion strength
λ4 and the ionic ordering vector q0. At small values of λ4

(region marked Unst), the fourth order terms in GL for one
or more of the variational state becomes negative, signaling
the need to consider higher order stabilizing terms. Lower
panel shows Energy comparison of different variational states
for a fixed value of λ4 at T = 0.1EF .

smaller than the Fermi energy, then undistorted iQC
should in fact be quite stable. Indeed, expanding around
α̃, we find that criterion for instability is α̃min−αi > 2/3,
i.e., the minimum is at least 40o away (above) from the
icosahedral angle. This estimate is based on the assump-
tion of smoothness of u(α), which is violated at temper-
atures sufficiently below the Fermi temperature. Thus,
for quasicrystals that form under such conditions, there
is a possibility of distorted iQC, as well as a structural
transition from perfect to distorted iQC as a function of
temperature.



6

B. Stochastic energy minimization

We have also explored possible ordered states in an
alternative fashion by applying unconstrained stochastic
minimization of the free energy functional. To simplify
simulations, we neglected the cubic and non-coplanar
quartic terms and thus cannot fully capture FCC and
BCC phases; however, the advantage of this method
is that it provides an unbiased treatment for arbitrary
multi-q states that are not required to possess any spe-
cial symmetries. We start from random configuration of
several hundred components ρqi

with qi on a sphere of
radius q0. We then iteratively minimize energy by ran-
domly selecting ρqi

and changing its value and position
on q0 sphere in the direction of decreasing energy. The
minimization results are consistent with the variational
phase diagram in Figure 4 (modulo underestimating the
stability of FCC). Due to the stochastic nature of the al-
gorithm, however, it sometimes converges to other states.
In particular, in the region of stability of iQC, the final
state is rather commonly the decagonal state, which is
approximately the iQC state with one pair ±qi removed.
This state is and example of a 2d quasicrystal – it is
periodic along one axis and quasiperiodic in the plane
perpendicular to it. Even though the energy of this state
is very close to the iQC, we have not observed it ever
to be lower in energy than the perfect iQC (consistently
with Figure 4 (lower)). The energy difference is never-
theless sufficiently delicate, so one cannot rule out that
for modified conditions decagonal state may appear as
the lowest energy state in the phase diagram.

V. DISCUSSION

The conjecture that stability of 3D quasicrystals is as-
sociated with “bond-orientational order” that favors spe-
cific inter-qi angles within Weak Crystallization theory
has been previously proposed by Mermin and Troian23

and Jaric22. In Ref.23 an auxiliary field was introduced
to generate preferred inter-qi angle, however, no physi-
cal justification was given as to the nature of this field.
The key result of our work is that itinerant electrons play
the role similar to the auxiliary field postulated in23. On
the experimental side, it has been found that the optimal
e/a ratio observed in quasicrystals corresponds to the ap-
proximate matching between the quasicrystalline quasi-
Brillouin zone and the electronic Fermi surface, that is,
the length of the dominant Bragg wave vector approx-
imately equals the diameter of the Fermi surface, 2kF .
This is indeed what we find (Figure 4).

It is interesting to note that related physics takes place
in Faraday ripple patterns that appear on a liquid surface
upon vertical driving. In this system, the Lyapunov func-
tion assumes the role of the Ginzburg-Landau functional.
Various crystalline and quasicrystalline patterns emerge
as a direct consequence of the angular dependence of the
4th order coefficient of the Lyapunov function29,30.

VI. CONCLUSIONS

In conclusion, we have analyzed the effects of electron-
ion interactions on crystallization transition within Weak
Crystallization theory. We found that the angular-
depended multi-ion interactions induced by electrons can
lead to stabilization of such empirically common but elu-
sive, within the standard theory, states as Rhombohe-
dral, FCC, and icosahedral quasicrystals. The stability
conditions gives a physical interpretation of the Hume-
Rothery rules connecting primary ionic ordering wave-
vectors and the size of the electronic Fermi surface. Our
results are obtained within the assumption that the cubic
invariants are less relevant than the quartic ones, i.e., at
temperatures sufficiently lower than the temperature of
mean field transition (r0 = 0). Near the transition, more
careful analysis of fluctuations is required28, which will
be the subject of future work.
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Appendix A: Other approaches to crystallization
theory and their limitations.

The most common approach to determine the lowest-
energy crystal structure is based on variants of micro-
scopic density functional theory, which specifies atoms
with their electronic shells and variationally optimizes
their spatial arrangement31. Due to computational com-
plexity, this approach can effectively treat only periodic
arrangements of atoms. Near the melting transition, ap-
plication of this method becomes difficult since atoms in
a liquid lack spatial periodicity. In that regime, meth-
ods combining density functional theory with molecular
dynamics are applied, but only with limited success32–34.

Periodic approximants to quasicrystals have also been
studied by density functional theory35; application of this
method, however, requires a very large number of atoms
to be explicitly considered and optimized for the approx-
imants energies to provide a good estimate for quasicrys-
tals, even away from the melting transition.

Another, semi-microscopic, approach is based on the
Peierls instability-type arguments. There, one studies
the features in the electronic susceptibility and attempts
to use its anomalies as a predictor of stable phases. This
approach is problematic in the case of 3D alloys, as can
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be easily seen. We would like to have an unbiased pre-
dictor of an ordered state; therefore, the only starting
point possible is free electron Fermi sea coupled to fea-
tureless (constant) ionic density. In 1D, electronic sus-
ceptibility diverges at 2kF at T = 0, which leads to a
density instability at this wavevector; this is the origin of
charge density waves in many quasi-1D materials. In con-
trast, in 3D, free electron susceptibility is maximized at
zero momentum and at 2kF only has infinite first deriva-
tive (the cause of Friedel oscillations of electron mediated
interaction36–38). However, this is insufficient to cause in-
stability in ionic density – theory would predict that the
instability should occur at zero wavevector, i.e., at uni-
form density. Moreover, the (quadratic) term in the GL
theory that is proportional to the electronic susceptibil-
ity only includes a single density modulation, and thus
cannot discern between orderings that contain multiple
wave vectors.

A way to go beyond the quadratic energy approxima-
tion is to include the ionic modulation non-perturbatively

in electron dispersion9. It has been argued this way that
for a given crystal structure, the electronic energy is mini-
mized when the Fermi surface “just crosses” the Brillouin
zone boundary. This naturally corresponds to crystal-
specific optimal e/a ratios, and thus appears to be consis-
tent with the empirical Hume-Rothery rules. Application
of this approach to discriminate between energies of dif-
ferent crystalline and quasicrystalline states is, however,
problematic, as it presupposes the knowledge of the am-
plitude of the periodic lattice (pseudo-)potential, which
is different for different crystals. Since the energies of var-
ious states are typically rather similar, the uncertainty in
the potential makes such approach unreliable.

Appendix B: Details of electronic corrections to Free
energy

Integration of electronic degrees of freedom leads to the
following corrections to the ionic free energy functional:

∆F (2) = − 1

2β

∫
dτ1dτ2〈Tτ

∑
k1,q1,k2,q2

vq1ρq1c
†
k1+q1

ck1|τ1vq2ρq2c†k2+q2
ck2|τ2〉conn (B1)

=
|vqρq|2

2β

∫
dτ1dτ2Gp(τ2 − τ1)Gp−q(τ1 − τ2) =

|vqρq|2
2β

∑
ωn,p

Gp(ωn)Gp−q(ωn), (B2)

∆F (3) = −v
3
q0ρq1ρq2ρq3δ(

∑
qi)

3β

∑
ωn,p

Gp(ωn)Gp−q1(ωn)Gp−q1−q2(ωn), (B3)

∆F (4) =
v4
q0ρq1ρq2ρq3ρq4δ(

∑
qi)

4β

∑
ωn,k

Gp(ωn)Gp−q1(ωn)Gp−q1−q2(ωn)Gp−q1−q2−q3(ωn). (B4)

Here, Gp(ωn) = (iωn − εp)−1.

As one can see, the new terms in the Ginzburg-Landau
functional have the form similar to those already con-
tained in F0 (Eq. (1)). The second order term ∆F (2)

only serves to redefine q0 and hence will be of no inter-
est to us. The prefactor of the cubic term becomes a
function of q0. We find by numerical integration that the
electronic contribution to this term is non-singular in the
limit of zero temperature, and thus it does not introduce
any qualitatively new features relative to those already
in F0.

The 4th order correction ∆F (4) can diverge if certain
geometric conditions are satisfied (see Figure 1 of the
main text). Thus we concentrate here on this term only.

The first type of 4th order term that we will consider is
self-interaction. Self-interaction is generated by box dia-
grams with momentum transfers (q1,q1,−q1,−q1) (type
A) and (q1,−q1,q1,−q1) (type B). The combinatorial
multiplicities of these diagrams can be calculated as fol-
lows. At every vertex of the box diagram we can place
ρ±q1

. For A type, there the sign pattern has to be such

that same signs are adjacent, while for B – interlaced.
There are 4 ways to place two adjacent ++ in 4 boxes.
(++−−), (−++−), (−−++), (+−−+). Hence A type
has multiplicity 4. For B type, there are only two distinct
ways to arrange: (+−+−), (−+−+), and multiplicity
is 2. Therefore, the self-interaction goes as

∑
i

(4A+ 2B)|ρqi |4.

There are two types of mutual interaction diagrams:
those that contain only two pairs of ±qi (“coplanar”
diagrams), and those that contain four distinct qi’s
(“non-coplanar” diagrams). Coplanar diagrams depend
only on one angle between q1 and q2 (for α = 0 we
get self-interaction). There are three distinct contribu-
tions to ∆F (4), which come from the following arrange-

ments or momenta around the box diagram: ∆F
(4)
1 :

(q1,−q1,q2,−q2) (type V1), ∆F
(4)
2 : (q1,−q1,−q2,q2)

(type V2), and ∆F
(4)
3 : (q1,q2,−q1,−q2) (type D).

Their combinatorial multiplicities are as follows:
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V1 + V2: 4 ways to place q1, 2 ways to place −q1 next
to it (PBC), 2 way to place ±q2: total 16. Hence there
are 8 diagrams of each type.

D: 4 ways to place q1, 2 ways to place ±q2. Total
multiplicity is 8.

Therefore, the mutual interaction term is

∑
i<j(8V1 + 8V2 + 8D)|ρqi

|2|ρqj
|2 (B5)

=
∑
i6=j(4V1 + 4V2 + 4D)|ρqi

|2|ρqj
|2. (B6)

Notice, that in the limit qi → qj , V1 → B, and
(V2, D) → A. Hence, going back to the original nota-
tion in terms of u(α) , we find that the full 4th order GL
term is

δF (4) =
1

2

∑
i6=j

u(αij)|ρqi |2|ρqj |2 +
1

4

∑
i

u0|ρqi |2

where u(α) = 8(V1 + V2 +D) and u0 = u(α = 0) (it can
be shown explicitly that the limit α→ 0 is continuous at
finite temperature).

The interaction functions can be obtained by a mixture
of analytical and numerical integration. The frequency
summations could be performed with the help of contour
integration,

{V1, V2} =
v4
q0 |ρq1 |2|ρq2 |2

4

∑
k

nF (ε1)

(ε1 − ε2)2(ε1 − ε4)
+

nF (ε4)

(ε4 − ε1)(ε4 − ε2)2

− nF (ε2)

(ε2 − ε1)2(ε2 − ε4)
− nF (ε2)

(ε2 − ε1)(ε2 − ε4)2
+− n′F (ε2)

(ε2 − ε1)(ε2 − ε4)
, (B7)

and

D =
v4
q0 |ρq1 |2|ρq2 |2

4

∑
k

nF (ε1)

(ε1 − ε2)(ε1 − ε3)(ε1 − ε4)
+

nF (ε2)

(ε2 − ε1)(ε2 − ε3)(ε2 − ε4)

+
nF (ε3)

(ε3 − ε1)(ε3 − ε2)(ε3 − ε4)
+

nF (ε4)

(ε4 − ε1)(ε4 − ε2)(ε4 − ε3)
. (B8)

The numerical integration over momenta has to be
done with care due to singular denominators. We found
that numerical integration performs the best using the
above forms of ∆F (4) after introducing regularization

1
(ε3−ε1) → Re 1

(ε3−ε1+iΓ) , with Γ = 10−15 using Matlab

3d integration routine.
In 3D, there is a possibility of a non-coplanar interac-

tion diagrams. They arise only if there are non-trivial
{q1, ...,q4} that add up to 0. Such diagrams exist for ex-
ample for FCC lattice, which has reciprocal BCC. There
are 8 BCC reciprocal vectors, which can be split into
two distinct quadruplets (tetrahedra). Each has total
4! = 24 multiplicity. In the case of FCC, by symmetry,
all diagrams have the same value and each has the same
expression as D above. Lets name it D�. Then, in Eq.
(4) w = 24D�. The relative magnitude of coplanar and
non-coplanar terms is obviously important. In Figure 2
we plotted u(α)/8 and in Figure 3 – w/24.

Appendix C: Variational crystalline states

We have considered the following variational states (N
is the number of ±qi pairs, see Figure 5):

• Smectic or stripe: N = 1.

• Columnar: N = 2. 1 neighbor at optimal anlge
αmin

• Rhombohedral: N = 3. 2 neighbors at optimal
angle αmin

• BCC lattice (FCC reciprocal): N = 6. 4 neighbors
with α = π/3, 1 with α = π/2;

• FCC lattice (BCC reciprocal): N = 4. 3 neighbors
with α = cos−1(1/3)

• iQC: N = 6. 5 neighbors with αi ≈ 63.4o

• Edge-icosahedral (momenta are the edges of icosa-
hedron – favored by cubic interaction which we ne-
glect): N = 15. 4 neighbors with α = 60o, 4 neigh-
bors with α = 72o, 4 neighbors with α = 36o, and
2 neighbors with α = 90o. In the energy there are
non-coplanar terms present; we did not include this
contribution since the energy of this states is rela-
tively too high (due to many suboptimal angles α)
and the non-coplanar contribution is weighted by
small factor N−2.

• Decagonal (same as iQC, but with one vector pair
missing): N = 5. 4 neighbors at icosahedral angles
αi.
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Stripe	   Columnar	   Hexagonal	  

Cubic/	  
rhombohedral	  

FCC	   BCC	  

iQC	   Edge-‐icosa	   decagonal	   dodecahedral	  

FIG. 5. Primary reciprocal lattice shells of variational states that we considered. Reciprocal vectors are indicated by red lines
that start from red sphere and end at golden spheres. Within assumptions of Weak Crystallization theory, only such vectors,
which all have equal length, contribute to crystallization energy. Clarifications: (1) vertices of perfect octahedron represent the
primary reciprocal shell of a Cubic state; general rhombohedral case can be obtained by linear dilatation or contraction along
the axis connecting centers of opposite triangular faces (black line). (2) Reciprocal vectors of the edge-icosahedral state are, as
the name implies, edges of icosahedron, shown in red.

• Dodecahedral in momentum space: N = 10. 3
neighbors with α1 ≈ 41.8o, 6 neighbors with α2 ≈
70.5o.

• Hexagonal: N = 3. 2 neighbors at 60o.

Appendix D: Splitting peaks

Here we show that splitting of one Bragg peak into a
pair is unfavorable. This is an immediate consequence of
u(α) being smooth as α→ 0, as is the case for electron-
mediated and local interactions. Indeed, assume that
there is an energetically favorable (possibly multi-q) con-
figurations with a spot at q0 with amplitude ρq0

. Now,
suppose we split it into two at q′0 and q′′0 , both approx-
imately equal to q0. To keep the interaction with the

other momentum components unchanged (we assumed
it to be optimal), we need |ρq′

0
|2 + |ρq′′

0
|2 = |ρq0

|2.
That keeps the second order (r) and the interaction
with distant q components intact. However, instead
of the original self-interaction we now have u0|ρq0

|4 →
u0|ρq′′

0
|4 + 4u(α)|ρq′

0
|2|ρq′′

0
|2 ≈ u0(|ρq′

0
|2 + |ρq′′

0
|2)2 +

2u(α)|ρq′
0
|2|ρq′′

0
|2. Hence, the energy goes up, and split-

ting is not favored for u0 > 0. Indeed, the crystallization
simulations starting from random initial conditions show
the extinction behavior: large Bragg peak suppresses its
smaller neighbors, leaving in the end only a small number
of spots that correspond to a (q)crystal.
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Appendix E: Distorted iQC state

To explore the stability of iQC state with respect to
distortions away from perfect icosahedron, let us expand
the interaction energy in the vicinity of the iQC:

Eint =
∑
i<j

u(αij)|ρi|2|ρj |2.

For the sake of argument will neglect the fact that
the amplitudes of the order parameter can also react to
distortions – this will only further lower the energy of
distorted state. Then, defining δij = αij − α0,

Eint = E0 + u′(α0)
∑
i<j

δij + 0.5u′′(α0)
∑
i<j

δ2
ij + ...

Now we can choose convenient coordinates for the

Bragg peaks on the sphere, and explore whether the en-
ergy can be lowered by a distortion. Both the first and
the second derivate terms define quadratic forms with
non-negative eigenvalues (due to the nonlinear depen-
dence of δij on local coordinates, even the first order
term produces quadratic form upon expansion). Out
of 12 total eigenvalues, the quadratic form of

∑
i<j δij

has only 4 non-zeros; in contrast
∑
i<j δ

2
ij has only 3

zero modes that correspond to rigid global rotations.
When put together, for u′(α0) < −(2/3)u′′(α0) negative
stiffness modes emerge, signifying distortive instability
of icosahedron. The strongest instability occurs at the
largest possible quasimomenta ±4π/5. At the critical
point u′(α0) = −(2/3)u′′(α0), four zero modes simulta-
neously appear, forming a flat zero-frequency band as a
function of quasimomentum on icosahedron.

Hence, the conclusion is that even if u(α) reaches the
minimum at non-icosahedral angle, the iQC remains (at
least) locally stable for u′ > 0 (“tensile strain” between
Bragg peaks), and even for “compressive strain” it re-
main stable until a critical value of negative u′ is reached.
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