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We use, for the first time, ab initio coupled-cluster theory to compute the spectral function of the uniform

electron gas at a Wigner-Seitz radius of rs = 4. The coupled-cluster approximations we employ go significantly

beyond the diagrammatic content of state-of-the-art GW theory. We compare our calculations extensively to

GW and GW-plus-cumulant theory, illustrating the strengths and weaknesses of these methods in capturing the

quasiparticle and satellite features of the electron gas. Our accurate calculations further allow us to address

the long-standing debate over the occupied bandwidth of metallic sodium. Our findings indicate that the future

application of coupled-cluster theory to condensed phase material spectra is highly promising.

I. INTRODUCTION

Computing the electronic excitations and spectra of con-

densed phase systems with significant correlations from first-

principles continues to be a premier challenge in computa-

tional materials science. Currently, a widely used approach is

time-dependent many-body perturbation theory (MBPT). In

this approach, the electronic Green’s function G, whose poles

yield the single-particle excitation energies, is obtained by

evaluating Feynman diagrams representing many-electron in-

teraction processes. Retaining only the lowest-order diagram

in an expansion in terms of the screened Coulomb interac-

tion W leads to the GW method.1 The GW method greatly

improves band gaps obtained from density-functional theory

(DFT),2,3 and further yields other accurate quasiparticle prop-

erties, such as lifetimes and bandwidths,4,5 in a wide range of

weakly and moderately correlated materials.

Despite its successes, the GW method has well-known lim-

itations. Specifically, it has proven difficult to systematically

improve GW theory by including higher-order Feynman di-

agrams, so-called vertex corrections. While extensions of

the GW approach have been developed for specific applica-

tions such as plasmon satellites6–8 or magnetic systems,9–11

there exists currently no universally accepted and applica-

ble “beyond-GW” approach. An additional problem in most

practical “one-shot” GW calculations (i.e. G0W0) is the de-

pendence of the results on the mean-field starting point; at a

greater numerical cost, self-consistent GW calculations have

been carried out with mixed success.12–16

More common in ab initio quantum chemistry, methods

based on time-independent many-body perturbation theory

provide a different route to electronic excitations.17–20 In

this framework, coupled cluster theory is an example of a

well-studied and systematically improvable hierarchy within

which to resum the corresponding classes of Goldstone dia-

grams.20–22 Electronic excited states are obtained by equation-

of-motion (EOM) coupled-cluster theory.23–25 For molecules

with weak to moderate correlations, coupled-cluster theories

at the singles, doubles, and perturbative triples level are estab-

lished as the quantitative “gold standard” of quantum chem-

istry.22

While such ab initio coupled-cluster theories have been

widely applied to atoms and molecules, they have traditionally

been thought too expensive to use in extended systems; for ex-

ample, coupled-cluster theory with single and double excita-

tions formally has a computational scaling O(N6). However,

with improvements in algorithms and increases in computer

power, the exciting possibility of applying these methods to

condensed matter problems is now within reach.

In this article we apply, for the first time, EOM coupled-

cluster theory to the uniform electron gas (UEG) – a paradig-

matic model of metallic condensed matter systems – and study

its one-particle electronic excitations. We employ coupled-

cluster theory with single and double (and in some cases

triple) excitations; at this level, the diagrammatic content of

our treatment goes significantly beyond the standard GW level

of approximation. As such, our coupled-cluster spectra allow

us to assess the quality of vertex corrections to the GW method

in the UEG and our results at rs = 4.0 have strong implications

for photoemission experiments in metallic sodium.

II. METHODS

We study electronic excitations of the three-dimensional

UEG using a supercell approach, i.e. we place N electrons

in a cubic box of volume Ω with a neutralizing positive back-

ground charge and periodic boundary conditions. The thermo-

dynamic limit is obtained, in principle, by increasing N andΩ

while keeping the density N/Ω fixed. Here, we only present

results for the UEG with a Wigner-Seitz radius rs = 4.0

(kF = 0.480 a.u.) corresponding approximately to the valence
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electron density of metallic sodium. We treat the divergent

G = 0 component of the Coulomb potential with the “probe-

charge” Ewald summation method,26 i.e. v(G = 0) = α0/L

where α0 = 2.837 297 479 is the Madelung constant of a 3D

simple cubic lattice.27,28 For this UEG Hamiltonian we cal-

culate the one-electron Green’s function Gk(ω) and the cor-

responding spectral function Ak(ω) = π−1|ImGk(ω)| using

several methods: (i) mean-field theory, i.e. HF and DFT in

the local-density approximation (LDA),29 (ii) time-dependent

MBPT, i.e. the GW and GW-plus-cumulant methods, (iii)

EOM coupled-cluster theory, and (iv) dynamical density ma-

trix renormalization group (DMRG), which provides numer-

ically exact spectral functions for small system sizes;30 all

DMRG calculations were performed with a bond dimension

of M = 1000. Specifically, we compute spectral functions of

occupied states, which are the ones probed in photoemission

experiments.

The one-particle eigenstates of the mean-field theories are

plane-waves, φk(r) = Ω−1/2eik·r, and these serve as a finite

basis set in the subsequent MBPT, CC, and DMRG calcula-

tions. The corresponding eigenenergies are given by ǫk =

k2/2 + Vxc
k

, where Vxc
k

denotes the exchange-correlation ma-

trix element, evaluated either at the HF or DFT-LDA level (the

Hartree term exactly cancels the interaction energy with the

positive background charge density). Based on the HF and

DFT-LDA mean-field starting points, we carry out one-shot

GW (i.e. G0W0) calculations2,3 where screening is treated in

the random-phase approximation, as well as G0Wxc calcula-

tions where screening is treated with the DFT-LDA dielec-

tric function.11,31 We also evaluate spectral functions using

the GW-plus-cumulant (henceforth GW+C) method. This ap-

proximation yields the exact solution for a dispersionless core

electron interacting with plasmons32 and noticeably improves

the description of plasmon satellite properties compared to

GW, while retaining the accuracy of GW for the quasipar-

ticle energies. The GW+C formalism defines the Green’s

function as Gk(t) = G0,k(t) exp
[

−iΣx
k

t +Ck(t)
]

, where G0

is the Green’s function from mean-field theory, Σx
k

is the

bare exchange self-energy and Ck(t) = π−1
∫

dω|ImΣk(ω +

EGW
k

)|(e−iωt + iωt − 1)/ω2 is the cumulant function.6,7,33 Here,

EGW
k

denotes the GW orbital energy. The GW+C approach

has been applied to range of bulk materials8,34–36 and nanosys-

tems37,38 and good agreement with experimental measure-

ments on satellite structures was found. However, compar-

isons of the GW+C to other accurate numerical calculations

have been difficult to perform, and this is one of the objectives

below.

We perform EOM coupled-cluster calculations of the

one-electron Green’s function starting from the mean-field

ground-state determinant |Φ0〉, defined by the occupied one-

particle eigenstates with k < kF . We briefly describe the

relevant theory and we refer to Refs. 20, 39, and 40 for de-

tails. The coupled-cluster ground-state is defined as |Ψ0〉 =

eT |Φ0〉, where the cluster operator is T =
∑

ia ta
i
c
†
aci +

1
4

∑

i jab tab
i j

c
†
ac
†

b
c jci + ... (with the indices i, j referring to occu-

pied states and the indices a, b referring to unoccupied states).

Singles, doubles, and triples coupled-cluster theories (denoted

CCS, CCSD, and CCSDT) correspond to truncating T after

one, two, and three electron-hole excitations. The T operator

and coupled-cluster ground-state energy are obtained through

the relations

E0 = 〈Φ0|e
−T HeT |Φ0〉 = 〈Φ0|H̄|Φ0〉

0 = 〈Φa
i |H̄|Φ0〉 = 〈Φ

ab
i j |H̄|Φ0〉 = . . . ,

(1)

where the notationΦa
i
, Φab

i j
, . . . represents Slater determinants

with one, two, . . . electron-hole pairs, and H̄ is the non-

Hermitian coupled-cluster effective Hamiltonian. By con-

struction from Eq. (1), |Φ0〉 is the right ground-state eigenvec-

tor of H̄; its left ground-state eigenvector 〈Φ̃0| takes the form

〈Φ0|(1 + S ), where S =
∑

ia sa
i
cac
†

i
+ 1

4

∑

i jab sab
i j

cacbc
†

j
c
†

i
+ ...

creates excitations in the bra, to the same level as in T .

Coupled-cluster excited states and energies are formally de-

termined by diagonalizing the non-Hermitian effective Hamil-

tonian H̄ = e−T HeT in an appropriate space of excitations.

For the single-particle (ionization) energies here, we diago-

nalize in the space of 1-hole (1h) and 2-hole, 1-particle (2h1p)

states for a CCSD ground-state, additionally including the

space of 3-hole, 2-particle (3h2p) states for a CCSDT ground-

state.41,42 The ionization contribution to the CC Green’s func-

tion39,40 is then defined in the same space, as

Gk(ω) = 〈Φ̃0|c
†

k
P

1

ω − (E0 − H̄) − iη
Pck|Φ0〉 (2)

where 〈Φ̃0| is the left ground-state eigenvector of H̄ and P

projects onto the space of 1h, 2h1p, and (for CCSDT) 3h2p

states. In practice, the CC Green’s function is calculated at

each frequency value with the aid of an iterative Arnoldi-

style linear solver in the EOM framework. We emphasize

that although the initial ground-state CCSD calculation scales

as O(N6), the excited state ionization-potential EOM-CCSD

has a reduced scaling O(N5); this should be compared to the

O(N4) scaling of GW methods.

With respect to other works, this article represents multi-

ple significant methodological advances. Most importantly,

we present the first application of CCSD to the full spectrum

of excited states for a condensed phase system and establish

its accuracy in a parameter regime relevant for real materi-

als. These results complement recent work applying CCSD to

the ground state of the electron gas.43–45 Remarkably, to the

best of our knowledge, our results are also the first report of

the full frequency-dependent CCSD spectral function (and not

just the energy of select ionization poles) for any system. Fur-

thermore, we present the first nonperturbative CCSDT results

for the ground state of the UEG, as well as the first CCSDT

Green’s function for any system.

III. ANALYSIS OF CC AND GW METHODS

Coupled-cluster theory with n-fold electron-hole excita-

tions in the T operator includes all time-independent diagrams

with energy denominators that sum at most n single-particle

energies. At the singles and doubles CCSD level (the lowest
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level used in this work), this already includes more Feynman

diagrams than are in GW theory. In particular, the CCSD ener-

gies and Green’s function include not only the ring diagrams

which dominate the high-density limit of the electron gas46

and which yield the screened RPA interaction in GW, but also

ladder diagrams (such as generated in T -matrix approxima-

tions) and self-energy insertions which couple the two.44,47

The dominance of ladder diagrams at low density suggests

that the results of CCSD will be superior in this limit.

Unlike GW theory, CC approximations are invariant to the

values of the single-particle energies and relatively insensi-

tive to the single-particle orbitals, because eT1 parametrizes

rotations from |Φ0〉 to any other determinant.48 While CC cal-

culations typically start from a HF mean-field calculation, in

the UEG the HF and DFT mean-field theories share the same

plane-wave states as their one-particle eigenstates. This means

that the UEG CC calculations are completely invariant to the

mean-field choice (in the paramagnetic phase). Because this

complicates a fair comparison, we present GW calculations

with both HF and LDA as a reference; the former may be

considered a fairer comparison with CC when assessing the

diagrammatic quality of the theories.

IV. RESULTS

To establish the accuracy of the different methods, we ini-

tially study a supercell containing 14 electrons in a minimal

single-particle basis of 19 spatial orbitals. The electrons oc-

cupy seven orbitals, namely the orbital with k = (0, 0, 0),

corresponding to the bottom of the band in the thermody-

namic limit, and the six-fold degenerate highest occupied or-

bital k = (2π/L, 0, 0) corresponding to the Fermi level in the

thermodynamic limit. For this small system, we can compare

GW and CCSD to coupled-cluster theory with all triple exci-

tations (CCSDT) as well as numerically exact dynamical den-

sity matrix renormalization group (DMRG) calculations of the

spectral function.

Figure 1(a) shows our results for the deeply bound k =

(0, 0, 0) state. All spectral functions (except for GW+C) ex-

hibit two peaks: a quasiparticle peak near −6 eV and a strong

satellite peak near −10 eV. We find excellent agreement be-

tween the CCSDT and the dynamical DMRG result. The

agreement between CCSD and the DMRG result is also very

good, in particular for the quasiparticle peak. Starting from

the same HF reference as typically used in coupled-cluster

theory, HF+GW yields a much less accurate result: the bind-

ing energy of the quasiparticle is too large by about 1 eV

and the spectral weight is overestimated by almost a factor

of 2. This error is inherited from the underlying HF mean-

field theory and illustrates the starting point dependence of

the method. Even worse results are obtained for the satellite

feature which is at far too low an energy. However, when start-

ing from a DFT-LDA reference, the GW approximation gives

results with much improved accuracy, and is only slightly

worse than CCSD. Interestingly, GW+C yields several satel-

lite peaks with incorrect energies and underestimated peak

heights, illustrating some of the challenges in systematically
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FIG. 1. Spectral functions for the UEG with rs = 4.0 using a

supercell containing 14 electrons in 19 spatial orbitals. (a) For the

k = (0, 0, 0) state, the spectral functions exhibits a prominent satel-

lite peak; the HF+GW result has been scaled down by a factor of

1.5. (b) For the highest occupied state at k = (2π/L, 0, 0), the spec-

tral function exhibits a strong quasiparticle peak with a very weak

satellite structure; the satellite region between −18 eV and −7 eV

has been magnified by a factor of 30. A linewidth broadening of

η = 0.2 eV is used in all calculations.

improving on GW theory through standard vertex corrections.

By construction, the GW+C approach produces a plasmon-

replica satellite structure (see below) even for small systems,

which is physically incorrect.

Consistent with Fermi liquid theory, the spectral functions

of the k = (2π/L, 0, 0) state shown in Fig. 1(b) exhibit sig-

nificantly weaker electron correlations than those of the k =

(0, 0, 0) state. All methods predict a strong quasiparticle peak

with a binding energy of about 5 eV and weak satellite fea-

tures, although the inset of Fig. 1(b) shows that the detailed

structure of the satellites is quite complex and only CCSDT

accurately captures the features seen in the exact spectrum.

Next, to study the approach to the thermodynamic limit,

we carried out calculations on larger supercells for which

CCSDT and dynamical DMRG are no longer computation-

ally tractable. We performed CCSD, GW, and GW+C calcu-

lations for supercells containing 38, 54, 66, and 114 electrons.

The quasiparticle features of all systems studied are similar

(e.g. the occupied bandwidth), however the satellite features

are unsurprisingly different, and so here we will only discuss

the largest system studied. For the 114 electron system, we

used plane-wave basis sets with at least 485 spatial orbitals,

which is sufficiently large to converge all peak positions to

within 0.2 eV.

Figure 2(a) shows the spectral function of the k = (0, 0, 0)

state for the UEG with 114 electrons in 485 orbitals. The

CCSD spectral function exhibits a strong quasiparticle peak

near −6 eV. For the GW calculations, we observe again a

strong dependence on the mean-field starting point: while the

quasiparticle energy from LDA+GW agrees very well with

CCSD, that from HF+GW is significantly worse. This is not

surprising since DFT-LDA yields much more accurate metal-

lic bands than HF.
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FIG. 2. (a) Spectral function of the k = (0, 0, 0) state of the 3D

UEG with rs = 4.0 and 114 electrons in 485 orbitals. The HF+GW

result is scaled down by a factor of 1.5 and a linewidth broadening of

η = 0.8 eV is used in all calculations. (b) Comparison of the spectral

functions of the k = (0, 0, 0) state in the thermodynamic limit (solid

curves) and the 114 electron system (dashed curves) from LDA+GW

(blue curves) and LDA+GW+C (green curves). (c) Complete basis

set limit quasiparticle energies as a function of wave vector for the

114 electron system (symbols) and quadratic fits (dashed curves).

At higher binding energies, the CCSD spectral function ex-

hibits a rather complex satellite structure, however two ma-

jor regions of spectral weight can be identified near −12 eV

and −18 eV. In contrast, both the HF+GW and the LDA+GW

spectral functions exhibit only a single, prominent satellite

peak. Lundqvist and co-authors49,50 assigned this peak to

a novel excited state, the plasmaron, but it has recently be-

come clear that this prediction by GW is spurious. Vertex-

corrected time-dependent MBPT approaches, such as the

GW+C method, do not predict such a state and instead yield

a satellite structure that consists of an infinite series of peaks

corresponding to the “shake-up” of one or more plasmons.6,32

Notably, the major peaks in the CCSD spectral function are

separated by roughly 6 eV corresponding to the classical

plasma frequency of 5.9 eV in an electron gas with rs = 4.0.

Comparing the LDA+GW+C result to CCSD in Fig. 2(a), we

find a qualitatively similar spectrum. However, at least at this

system size, the CCSD spectral function has a stronger quasi-

particle peak, a larger spectral width, and significantly more

fine-structure than the GW+C spectral function.

To assess remaining errors of the 114 electron system rela-

tive to the thermodynamic limit, we compare the k = (0, 0, 0)

spectral functions of the UEG with 114 electrons with the

results fully converged to the thermodynamic limit for the

LDA+GW and the LDA+GW+C methods. Fig. 2(b) shows

good qualitative agreement between the two sets of spectral

functions for this class of methods.

Finally, Fig. 2(c) shows the quasiparticle energies as func-

tion of the electron wave vector, i.e. the energy disper-

sion relation, for the 114 electron system with results ex-

trapolated to the complete basis set limit51. The inferred

bandwidths are 2.96 eV for CCSD, 3.79 eV for HF+GW,

2.77 eV for LDA+GW, and 2.56 eV for LDA+GWxc; self-

consistency treated within the quasiparticle self-consistent

GW scheme gives only a minor bandwidth narrowing com-

pared to LDA+G0W0.15 While DFT-LDA gives a bandwidth

of 3.13 eV, HF predicts a value of 7.29 eV, significantly larger

than any other method. The failure of HF to describe metallic

systems is well-documented and results from the absence of

screening.

The bandwidth of simple metals, and in particular sodium,

has been the subject of a decades-long debate. Plummer

and co-workers52,53 carried out angle-resolved photoemission

experiments on sodium and reported a bandwidth of 2.5–

2.65 eV, significantly smaller than the free-electron and DFT-

LDA value of ∼3.1 eV, and even the LDA+GW value of

∼2.8 eV.1 Interestingly, the experimental result agrees quite

well with the bandwidth from a LDA+GWxc calculation,11,31

which contains vertex corrections for the dielectric function;

however, including vertex corrections also in the self-energy

increases the bandwidth again.54–56 As an alternative explana-

tion, Shung and Mahan57,58 suggested that the measured band-

width results from many-body effects in combination with

final-state effects and an interference between surface and

bulk photoemission. The close agreement seen here between

the quasiparticle dispersion of LDA+GW and CCSD – espe-

cially the larger bandwidth of CCSD – suggests that the theo-

retical description of the quasiparticle peak positions may be

adequate already and supports Shung and Mahan’s thesis that

the remaining discrepancy in the observed bandwidth is due

to final-state and interference effects.

V. CONCLUSION

We have demonstrated the first application of coupled-

cluster techniques to the computation of spectra in condensed

phase systems, using the uniform electron gas as a model

system. For finite uniform electron gas models of various

sizes we find that coupled-cluster, even at the singles and dou-

bles level (CCSD), provides improvement over GW and even

GW-plus-cumulant theory. Interestingly, while the latter ex-

hibits good accuracy for large systems (producing reasonable

plasmon-like satellite structures), the former is significantly

more accurate for small systems; CCSD naturally interpolates

between these two limits. In conclusion, by providing a sys-

tematic framework that goes beyond the diagrammatic content

of the GW approximation, coupled-cluster theories represent a

very promising, new direction in the search for more accurate

methods to compute the spectra of real materials.

Note added. Since the submission of this article, two rel-

evant articles have been published: Spencer and Thom have
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applied a stochastic implementation of CCSDT to the 14-

electron UEG for rs ≤ 259 and Bhaskaran-Nair et al. have

calculated the CCSD Green’s function for small molecules at

a few frequency values.60
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González, and R. W. Godby, Phys. Rev. B 76, 155106 (2007).
57 K. W. K. Shung and G. D. Mahan, Phys. Rev. Lett. 57, 1076

(1986).
58 K. W. K. Shung, B. E. Sernelius, and G. D. Mahan, Phys. Rev. B

36, 4499 (1987).
59 J. S. Spencer and A. J. W. Thom, J. Chem. Phys. 144, 084108

(2016).
60 K. Bhaskaran-Nair, K. Kowalski, and W. A. Shelton, J. Chem.

Phys. 144, 144101 (2016).
61 V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens,

and R. J. Bartlett, J. Chem. Phys. 128, 194104 (2008).
62 J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, A. A. Auer,

R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J.

Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Hu-

ber, T.-C. Jagau, D. Jonsson, J. Jusełius, K. Klein, W. J. Laud-

erdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O’Neill,

D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann,

W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang,

and J. D. Watts, “CFOUR, Coupled-Cluster techniques for Com-

putational Chemistry, a quantum-chemical program package with

the integral packages MOLECULE (J. Almlöf and P. R. Taylor),
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