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We introduce a two-orbital Hamiltonian on a square lattice that contains on-site attractive in-
teractions involving the two eg orbitals. Via a canonical mean-field procedure similar to the one
applied to the well-known negative-U Hubbard model, it is shown that the new model develops
d-wave (B1g) superconductivity with nodes along the diagonal directions of the square Brillouin
zone. This result is also supported by exact diagonalization of the model in a small cluster. The
expectation is that this relatively simple attractive model could be used to address the properties
of multiorbital d-wave superconductors in the same manner that the negative-U Hubbard model is
widely applied to the study of the properties of s-wave single-orbital superconductors. In particular,
we show that by splitting the eg orbitals and working at three-quarters filling, such that the x2− y2

orbital dominates at the Fermi level but the 3z2 − r2 orbital contribution is nonzero, the d-wave
pairing state found here phenomenologically reproduces several properties of the superconducting
state of the high Tc cuprates.

PACS numbers: 71.10.Fd, 74.20.Rp, 74.20.-z

I. INTRODUCTION

Simple model Hamiltonians that can capture the ba-
sic aspects of the electronic collective states observed in
complex materials, such as in the cases of antiferromag-
netism or superconductivity, are crucial to advance the
theoretical understanding of these nontrivial phases and
to interpret and guide experimental efforts. The stan-
dard Hubbard and t − J models have successfully al-
lowed for the study of the properties of antiferromagnetic
compounds in the undoped limit1,2 while the negative-U
Hubbard model is a useful tool for the study of canonical
s-wave superconductors, from the BCS regime in weak
coupling to the realm of Bose-Einstein condensation in
its strong coupling limit.3–5 The discovery of d-wave su-
perconductivity in the high Tc cuprates created the need
for an equivalent simple Hamiltonian to analyze d-wave
condensates.6,7 While it is widely believed that upon dop-
ing both the Hubbard and t−J models develop d-wave su-
perconductivity, this regime is difficult to study because
the signals of superconductivity may be hidden by other
more dominant energy scales such as the superexchange
J . In fact, numerically the evidence for long-range or-
der superconductivity in these models is rather weak in
realistic regimes of couplings. On the contrary, for the
negative U Hubbard model, even in small systems such
as 2×2 lattices, the s-wave pairing tendencies are already
clearly apparent.8,9

For these reasons, several efforts have been devoted to
develop the analogous of the negative-U Hubbard model
but for d-wave superconductors.10–13 The simplest ap-
proach is based on the single orbital case, to keep the
number of degrees of freedom to a minimum. This ra-
tional is based on the fact that one single band, albeit
composed of hybridized oxygen p and copper d orbitals,
does define the Fermi surface of the high Tc cuprates.

However, in this case of a single orbital system, a pair-
ing operator with d-wave symmetry has to locate the
two electrons that form the Cooper pair in two differ-
ent lattice sites, as opposed to the negative-U s-wave
pairing operator that describes a rotationally invariant
pair of electrons with opposite spin on a single lattice
site. While an attractive on-site potential readily allows
the formation of on-site Cooper pairs in the negative-
U Hubbard model, interactions that bonds electrons in
nearest neighbor sites, as required for d-wave pairing,
tend to induce the formation of extended clusters of carri-
ers that eventually leads to phase separation rather than
superconductivity, as argued in previous work.10 By fine
tuning parameters, or including the effects of long-range
Coulomb repulsion, eventually pairing could be stabi-
lized, but these extra interactions lead to models that
are difficult to study. In addition, Hamiltonians where
short range attraction competes with long-range repul-
sion could also form complex structures such as stripes
that may compete with pairing14,15 or D-wave pairing
may arise from dynamical density fluctuations near a
quantum critical point.16 While magnetism is considered
a crucial factor in the mechanism that generates d-wave
pairing in the cuprates,17–19 finding a simple effective
model involving only charge and spin degrees of freedom
that readily displays robust d-wave superconductivity re-
mains elusive.

The discovery of high Tc superconductivity in the iron-
based pnictides and selenides has provided a novel play-
ground to investigate the potentially crucial role played
by having many simultaneously active degrees of free-
dom involved in the mechanism of superconductivity.20,21

While there are indications of either s- or d-wave symme-
try in the superconducting order parameter of represen-
tative members of this family of compounds, it is clear
that the orbital degree of freedom must be included in the
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theoretical description. In fact, at least three d-orbitals
contribute to determine the Fermi surfaces. When these
orbital degrees of freedom are included, it is sometimes
forgotten that they themselves contribute to determine
the symmetry of the order parameters. In fact, the pair-
ing operators for the pnictides are classified according to
both their spatial and orbital symmetry properties.22–25

The key observation in this publication is that the ad-
dition of the orbital degree of freedom allows for the
possibility of developing on-site pairing operators whose
symmetry is non trivial, namely non s-wave. More specif-
ically, in this publication we will explicitly show that an
on-site pairing operator with d-wave (B1g) symmetry can
be constructed for a two-orbital system with hybridized
bands on a square lattice. Moreover, we show that on-
site inter-orbital pairing tendencies can be generated via
an on-site interorbital attraction and an effectively an-
tiferromagnetic “Hund coupling” term. The strength of
the attraction and effective Hund coupling is tuned with a
single parameter V which in turn determines the strength
of the superconducting order. We believe that the weak
coupling regime of this model will allow for the study of
the properties of generic d-wave superconductors in the
same manner that the BCS limit can be studied with
the negative U Hubbard model, while the strong cou-
pling limit will unveil a novel unexplored regime where a
Bose condensation of d-wave pairs dominates. In other
words, all the fruitful investigations carried out in the
past for the negative U Hubbard model can be now revis-
ited employing a novel model with robust d-wave pairing,
without the complication of phase separation, opening a
broad avenue of research.

The paper is organized as follows: in Section II the
Hamiltonian for the new multiorbital d-wave model is
presented. A mean-field study of the Hamiltonian is per-
formed in Section III. Section IV is devoted to the exact
diagonalization of the model in a small cluster and the
calculation of the d-wave and s-wave pairing correlations.
A final discussion of the main results is presented in Sec-
tion V.

II. THE MD MODEL

The tight-binding term of the multiorbital d-wave
model (dubbed the MD model) introduced here results
from applying the Slater-Koster26 method to the x2 − y2

and 3z2 − r2 d-orbitals using a square lattice. It is well
known that these are the two orbitals of relevance in the
colossal magnetoresistive manganites.27 Also several au-
thors have considered these two same orbitals to model
the cuprates: despite the fact that only one band of
mostly x2−y2 character determines the Fermi surface, in
practice this band is at least weakly hybridized with the
3z2 − r2 orbital.28–32 Using the Slater-Koster formalism

we obtain

HTB = −
∑

i,ν̂,α,α′,σ

(tα,α′c†i,α,σci+ν̂,α′,σ + h.c.)

−µ
∑

i,α

ni,α + δ
∑

i

ni,2, (1)

where c†i,α,σ creates an electron at site i, orbital α, and

with spin projection σ. The orbital label α = 1 (2) in-
dicates the x2 − y2 (3z2 − r2) orbital. ν̂ is a unit vector
that takes the values x̂ or ŷ. The hoppings are given by
t1,1 = t1, t2,2 = t2, and t1,2 = τνt3 where τx̂ = 1 and
τŷ = −1 (note that this last sign difference is crucial to
obtain the d-wave pairing). While the actual amplitudes
ti depend on the overlap of integrals, it is customary to
consider them as free parameters that are chosen to re-
produce the shape of the Fermi surface of the system
to be studied.33 µ is the chemical potential and ni,α is
the number operator. The parameter δ breaks the en-
ergy degeneracy between the eg orbitals, as it occurs in
the cuprates. The tight-binding portion of the Hamilto-
nian can be written in momentum-space via the Fourier

transform c†j,α,σ = 1√
N

∑

k e
−ik.jc†k,α,σ becoming

HTB =
∑

k,σ

[T 11
k c†k,1,σck,1,σ + T 22

k c†k,2,σck,2,σ +

+(T 12
k c†k,1,σck,2,σ + h.c.)], (2)

with

T 11
k = −2t1(cos kx + cos ky)− µ, (3)

T 22
k = −2t2(cos kx + cos ky) + δ − µ, (4)

T 12
k = 2t3(cos kx − cos ky). (5)

While indeed the hoppings ti could be adjusted to re-
produce the shape of a particular Fermi surface, to sim-
plify the calculations we adopt the values

t1 =
3t0
4

, (6)

t2 =
t0
4
, (7)

and

t3 = −
√
3t0
8

, (8)

so that all the hoppings ti can be expressed in terms of
one single parameter t0 (again, note that the hopping t3
also has a sign difference between the x and y directions,
crucial tor d-wave pairing). The tight-binding dispersion,
with the energy in units of t0, is shown in panel (a) of
Fig. 1 for the non-hybridized special case where t3 = 0.
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In this case, the band with the larger (smaller) band-
width has pure x2 − y2 (3z2 − r2) character and it is
indicated with a red (blue) line in the figure. The band
dispersion for the hybridized case (nonzero t3), that will
be our main focus with regards to the existence of d-
wave pairing, is shown in panel (b) of Fig. 1. The colors
indicate the mixture of the two orbitals in each of the
bands. It can be observed that this orbital mixing is the
strongest along the Γ − X direction where a gap sepa-
rates the bands that otherwise would cross as shown in
the non-hybridized case. On the other hand, along the
diagonal of the Brillouin zone, M−Γ, there is no gap and
the two bands still cross each other regardless of the value
of t3. The bandwidth is W = 6t0 as long as |δ| ≤ 3t0.
Note that we have selected δ = −t0 and we have chosen
a chemical potential µ, indicated by a dashed line in the
figures, that fixes the electronic density to three electrons
per site, which means that the lower band is filled and the
upper band is half-filled with an overall electronic density
〈n〉 = 1.5. It is clear that one band plays the dominant
role to determine the Fermi surface shape shown in panel
(c) for the hybridized case. The colors indicate that this
Fermi surface is mostly of dx2−y2 character, as in the case
of the real cuprates, and the orbital mixing is maximized
along the Γ − X and Γ − Y directions while it is zero
along the diagonals.
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FIG. 1: (color online) Band dispersion for the tight-binding
term of the MD model discussed here: (a) is the non-
hybridized case (t3 = 0) and (b) the hybridized case (t3 =
−
√
3t0/8); the dashed line indicates the chemical potential

position that leads to 〈n〉 = 1.5; (c) Fermi surface correspond-
ing to the tight-binding Hamiltonian of panel (b). In panels
(a), (b), and (c) the colors indicate the orbital composition
of the bands, with the scale ranging from 0 (blue, denoting
3z2 − r2) to 1 (red, denoting x2 − y2). Panel (d) contains the
orbital composition of the band that determines the Fermi
surface of panel (c): the red (blue) circles indicate the weight
of the x2 − y2 (3z2 − r2) orbital.

The Hamiltonian must transform as the A1g represen-
tation of the C4v group of the square lattice. Then, since
cos kx − cos ky transforms like B1g in Eq. 5, the product

of operators c†k,1,σck,2,σ also has to transform like B1g.
In fact, Eq. 2 can be rewritten as

HTB(k) =
∑

k,σ

Ψ†
k,σξkΨk,σ, (9)

where Ψ†
k,σ = (c†k,1,σ, c

†
k,2,σ) and

ξk = ǫkσ0 + γkσ1 + δkσ3, (10)

with σi the Pauli matrices and

ǫk =
(T 11

k + T 22
k )

2
= −(t1 + t2)(cos kx + cos ky) +

δ

2
− µ,

(11)

δk =
(T 11

k − T 22
k )

2
= −(t1−t2)(cos kx+cos ky)−

δ

2
, (12)

and

γk = T 12
k = 2t3(cos kx − cos ky). (13)

The expressions above establish that the orbital matrix
σ1 transforms like B1g, while σ0 and σ3 transform like
A1g.
The orbital composition of the band that determines

the Fermi surface is displayed in Fig. 1 (d) as a function
of the angle φ, which is 0 when kF is along the x axis
and π/2 when it is along the y axis. The B1g character
of the hybridization becomes clear since at φ = π/4 the
band is not hybridized, namely it consist of a pure x2−y2

orbital. This means that a pairing operator of the form

∆
(D)†
i = c†i,1,↑c

†
i,2,↓ − c†i,1,↓c

†
i,2,↑, (14)

will transform as B1g and, therefore, it is a d-wave pairing
operator.
The next step is to construct an interaction term to

be added to the Hamiltonian that would favor d-wave
pairing. Based on the symmetry considerations above,
this term can be written as

Hint = −V
∑

i

∆
(D)†
i ∆

(D)
i , (15)

by analogy with the attraction that leads to s-wave pair-

ing (−U
∑

i ni,↑ni,↓ = −U
∑

i ∆
(S)†
i ∆

(S)
i with ∆

(S)
i =

ci,↓ci,↑) in the negative-U Hubbard model. Expanding

Eq. 15 in terms of the c†i,α,σ operators it can be shown
that

Hint = 2V
∑

i

Si,1 · Si,2 −
V

2

∑

i

ni,1ni,2, (16)

where Si,α = 1
2

∑

σ,β c
†
i,α,γσ

γ,βci,α,β and ni,α =
∑

σ c
†
i,α,σci,α,σ. Notice that these are precisely two of
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the terms that are already present in the interaction por-
tion of the standard (repulsive) multiorbital Hubbard
model, but now with couplings of opposite signs (quali-
tatively similar as to how the sign of U is reversed in the
one-orbital Hubbard model to induce s-wave pairing).34

Thus, an intuitive view of the interaction term introduced
here is that it promotes spin singlet formation via an in-
terorbital spin antiferromagnetic coupling (i.e. the op-
posite of the canonical Hund’s rule coupling that is fer-
romagnetic) as well as promoting pairing via an interor-
bital electronic attraction, the latter being similar to the
intraorbital electronic attraction of the negative-U Hub-
bard model. The total Hamiltonian for the multiorbital
d-wave model is then

HMD = HTB +Hint. (17)

As in the case of the negative-U Hubbard model, the at-
tractive interactions that appear in Hint should be under-
stood as effective interactions that mimic the net effect
of the (often complex) actual physical mechanism that
causes the attraction in the d-wave channel. This real
pairing mechanism may involve the spin, orbital, and/or
lattice, and our model is an effective-model representa-
tion of those physical processes.

III. MEAN FIELD STUDY

As in the case of the negative-U Hubbard model, a sim-
ple mean-field approximation is here expected to capture
the essence of the ground state of the new proposed d-
wave model. The interacting term Hint in momentum
space is given by

Hint = −V

N

∑

k,k′,σ,σ′

σσ′c†k,1,σc
†
−k,2,−σc−k′,2,σ′ck′,1,−σ′ .

(18)
Introducing the standard mean-field expectation val-

ues bk′=〈c−k′,−α,↓ck′,α,↑〉 and b†k = 〈c†k,α,↑c
†
−k,−α,↓〉

and performing the substitution c†k,α,↑c
†
−k,−α,↓ = b†k +

(c†k,α,↑c
†
−k,−α,↓ − b†k) (and an analogous substitution for

the product of annihilation operators), the mean-field re-
sults are obtained. As usual, the fluctuations around the

average given by (c†k,α,↑c
†
−k,−α,↓ − b†k) are assumed to be

small. The resulting mean-field Hamiltonian is given by

HMF =
∑

k

Ψ†
kHkΨk +

∑

k

(T 11
k + T 22

k ) + 2V∆2N, (19)

where the generalized Nambu spinor is Ψk =

(ck,1,↑, ck,2,↑, c
†
−k,1,↓, c

†
−k,2,↓)

T , while Hk is a 4 × 4 ma-
trix given by

Hk =

(

ξk −V∆σ1

−V∆σ1 −ξk

)

, (20)

where we have defined ∆ = 〈c†k,α,↑c
†
−k,−α,↓〉 =

〈c−k′,−α,↓ck′,α,↑〉.

Similarly as for the case of magnetic order in the mul-
tiorbital Hubbard model,35 here we found that a finite
value of the attractive coupling strength V is needed
to stabilize a nontrivial solution with a nonzero gap36

(this is different from the case of the negative-U Hub-
bard model where a non-trivial solution occurs for any
|U | > 0 at any density). More specifically, we have found
numerically that a non-trivial solution appears for V > t0
which is clearly still in the weak coupling regime since
the bandwidth is W = 6t0. In panel (a) of Fig. 2 the
mean-field energy as a function of the gap parameter ∆
is presented parametric with V at the electronic density
〈n〉 = 1.5. The particular value of ∆ that provides the
minimum mean-field energy is indicated for each value of
the attraction. The reason why pairing does not become
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FIG. 2: (color online) (a) Mean-field energy vs. the gap pa-
rameter ∆ parametric with the strength of the attraction V ,
at 〈n〉 = 1.5. The value of ∆ that minimizes the energy in
each case is indicated with the dashed lines; (b) Band struc-
ture along the directions Γ−X −M −Γ using the mean-field
approximation for the HMD model for the cases V = 2 (thin
orange lines) and V = 0 (black line), with the continuous
lines denoting the tight binding dispersion and the dashed
lines the replicas mean-field “shadow” bands. The ellipses in-
dicate the gaps that open below and above the FS due to the
orbital mixing, the black rectangle shows the gap at the FS,
and the magenta rectangle shows the d-wave node at the FS;
(c) Detail corresponding to the black and magenta rectangles
in panel (b).

stabilized with an infinitesimal attraction is due to the
fact that if Eq. 20 is written in the base in which ξk is
diagonal, the 2× 2 blocks B = −V∆σ1 become

B =

(

Vintra Vinter

Vinter −Vintra

)

, (21)

where Vintra = 2V∆ukvk is the effective intraband pair-
ing and Vinter = V∆(u2

k − v2k) is the effective interband
pairing and uk and vk are the elements of the unitarian
matrix U that performs the change of base transforma-
tion and satisfy u2

k + v2k = 137. The intraband poten-
tials have opposite signs in each band. In addition, when
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|kx| = |ky| the matrix ξk is diagonal, since the orbitals are
not hybridized along this line, and uk = 1 while vk = 0.
In this case, the 4 eigenvalues of Eq. 20 are given by

λ = ±T 22
k ±

√

(T 22
k )2 + V 2∆2. (22)

Since at the FS (see panel (d) of Fig. 1) u2
k − v2k is al-

ways larger than 0 it is clear that Vinter never vanishes
preventing the existence of a pure intraband attraction
that would allow for the stabilization of a gap for any
non-zero value of the attraction V .

As in the case of multi-orbital magnetism gaps in the
band structure appear not only at the Fermi surface (FS),
but also at lower energies inside the Fermi sea. The
mean-field band structure for the case of V = 2 is in-
dicated by the red lines in panel (b) of Fig. 2 while the
continuous (dashed) black lines denote the (“shadow”)
band dispersion in the non-interacting case. It can be
observed that the interorbital attraction opens a gap at
the FS, as indicated by the black rectangle along the
Γ −X direction and shown in detail in panel (c) of the
figure. However, a node remains along the diagonal di-
rectionM−Γ, as highlighted by the magenta rectangle in
panel (b) and detailed in panel (c) of the figure. Strictly
speaking, Eq. 22 shows that at the node there is a small
gap given by 2(T 22

k −
√

(T 22
k )2 + V 2∆2) which is negligi-

ble for small values of V , as in Fig. 2, but eventually the
node will be removed in the strong coupling limit38.
The internal gaps that appear both above and below

the FS due to the interorbital interaction are indicated
with ellipses. Notice that the gap along the FS is modu-
lated by a function f(kx, ky) with nodes for |kx| = |ky|,
which arises from the matrix elements of the change of
base matrix that transforms the system from the orbital
to the band representation38.

-4

-3

-2

-1

 0

 1

 2

 3

Γ X Μ Γ

 E
-µ

V=2.0

-0.3

 0

 0.3

X

FIG. 3: (color online) The spectral function A(k, ω) along the
directions Γ−X−M −Γ in the mean-field approximation for
the HMD model, working at V = 2. The inset highlights the
weak intensity “shadow” spectral weight below and above the
gaps opened by the attraction V .

We have also calculated the spectral function A(k, ω)
for the case of V = 2. This mean-field spectral weight is
shown in Fig. 3. It can be observed that at the locations
of the gaps, namely at the FS but also below and above
that FS, the spectral weight is reduced and “shadow”
spectral weight appears across the gap. In other words,
the single peak in the spectral function now splits into
two. Notice that the opening of gaps located away from
the FS is an effect caused by the interorbital interaction
and it could explain the puzzling result recently observed
in some iron superconductors where a superconducting
gap appears in a band that is below the Fermi surface.39

IV. EXACT DIAGONALIZATION USING 2×2

CLUSTERS

It is well-known that the tendencies towards s-wave
pairing are clear in the negative-U Hubbard model even
already in a rather small 2 × 2 cluster.9 For this rea-
son, we found useful to perform an exact diagonalization
of the novel MD model in this small cluster size (be-
cause the number of degrees of freedom now includes
the orbital, this is the largest non-tilted square cluster
that can be fully diagonalized exactly). Working in sub-
spaces with a fixed number of particles ranging from 0
to 16 we found the ground state energies and studied
their behavior varying the chemical potential µ for sev-
eral values of the attraction V . In Fig. 4 the squares
indicate the zero-momentum Fourier transform of the d-
wave pairing correlation functions 〈∆(D)

i ∆
(D)†
i+r 〉 for the

case N = 12, namely 〈n〉 = 1.5 in the 2 × 2 cluster as a
function of the attraction V . For comparison, the circles
indicate the results for the s-wave pairing operator in the
negative-U Hubbard model as a function of |U | given by

the k = 0 Fourier transform of 〈∆(S)
U (i)∆

(S)†
U (i+r)〉 with

∆
(S)†
U (i) = c†i,↑c

†
i,↓. In both models, the pairing operators

expectation values rapidly increase with the attraction,
but in the inset it can be noticed that in the negative-U
model the pairing monotonously increases with |U | while
in the MD model there is a jump at V ≈ 0.7 with a
monotonous increase only afterwards. This behavior is
in qualitative agreement with the mean-field result indi-
cating that the superconducting state is stabilized only
at a finite value of V of order unity. For comparison the
onsite intraorbital s-wave pairing correlations for the MD

model using the pairing operator ∆
(S)†
i =

∑

α c†i,α,↑c
†
i,α,↓

were also calculated (see diamonds in the figure). Clearly,
there is no pairing in the s-wave channel, as expected.

Additional evidence of pairing in the MD model is ob-
tained by studying the behavior of the ground state en-
ergy varying the chemical potential. In Fig. 5 the ground
state energies for the states with even (odd) number of
particles are indicated with a straight (dashed) line. As
in the negative-U Hubbard model, only states with even

number of particles are stable, indicating that the sys-
tem displays pairing tendencies at all densities. The in-
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FIG. 4: (color online) Exact diagonalization results using 2×2
clusters. Shown is the Fourier transform at momentum zero,
D(0), of the d-wave pairing correlations for the MD model
(with 〈n〉 = 1.5 i.e. N=12) vs. the on-site attraction strength
V (squares). The diamonds denote S(0), the Fourier trans-
form of the on-site s-wave pairing correlations. For compar-
ison, S(0) for the negative U Hubbard model is also shown
varying the strength of the attraction U (circles). The inset
shows D(0) for the MD model and S(0) for the negative-U
Hubbard model in the weak coupling regime.

set shows in more detail that all states with even number
of particles can be stabilized with an adequate chemi-
cal potential tuning suggesting that the system does not
have phase separation40, a problem previously observed
in proposed d-wave models involving nearest-neighbor at-
traction, as opposed to the on-site attractions used here.
We have also verified explicitly, by inspection of the wave
functions, that the relative symmetry between all the N -
even ground states is B1g,

41 as expected.

V. DISCUSSION

In this publication, we have presented a two-orbital
Hamiltonian HMD with on-site attraction that can gener-
ate d-wave superconductivity due to the non-trivial sym-
metry of the overlap integrals between hybridized orbitals
that form the bands at the Fermi surface. In particular,
this minimum model for d-wave pairing contains two eg
orbitals on a square lattice. Via a canonical mean-field
calculation, we have shown that this model, with an at-
tractive on-site interorbital interaction and an effective
antiferromagnetic Hund interaction, indeed supports d-
wave superconductivity if the orbitals x2−y2 and 3z2−r2

are non-degenerate. In multiorbital materials, it is possi-
ble that interorbital pairing occurs at the Fermi surface.
Moreover, it was shown that the interorbital attraction
also opens gaps away from the Fermi surface, a phe-
nomenon already experimentally observed, but not yet
explained, in the pnictides.39 In addition, in analogy with
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FIG. 5: (color online) Exact diagonalization results corre-
sponding to a 2 × 2 cluster. Shown are the lowest energy
levels for each possible value of N as a function of the chem-
ical potential for the MD model. The inset allows to see that
the states with N = 14, 12, and 10 can be stabilized as ground
states by the chemical potential for V = 2.

the well known negative-U Hubbard model, that despite
the local attraction can be used to study phenomenolog-
ically BCS superconductors with extended pairs in real
space, it is expected that this new simple model could be
applied to the phenomenological study of the properties
of d-wave superconductors because the on-site character
of the interactions in the MD model readily stabilizes the
d-wave superconducting state without phase separation
tendencies. This is to be contrasted with more physi-
cally realistic, but far more challenging, models in which
d-wave pairing is expected to result from a fine tuning
of the competition between long-range Coulomb repul-
sion and a short-range attraction induced by antiferro-
magnetism. In this context complex extended structures,
such as stripes or inhomogeneous states, can be formed
as observed both in the cuprates and in the colossal mag-
netoresistive manganites,14,27 and they tend to compete
with uniform superconductivity.

Similarly as the negative U one-orbital Hubbard model
can be deduced from the Holstein model with electron-
phonon interactions under appropriate approximations,
it would be desirable to couple electrons in a multior-
bital context to bosonic degrees of freedom, representing
either phonons or magnons, and find out what effective
electronic toy model is found by “integrating out” the
bosons. We conjecture that the model proposed here
may be at least part of that resulting effective model.

It is important to remark that the symmetry of the
pairing order parameter in the MD model can be changed
by modifying the lattice geometry or the orbitals in-
volved. For example, if the dxz and dyz orbitals are con-
sidered, still using a square lattice, the symmetry of the
on-site order parameter becomes B2g, i.e., with nodes
along the x and y axes of the Brillouin zone.23,24 Also
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note that while we have focused on electronic density
〈n〉 = 1.5 in order to ensure a single band FS, the d-wave
state is stabilized for all other densities as it is the case
in the negative-U Hubbard model. The addition of hop-
pings beyond nearest-neighbor sites to the tight-binding
portion of the Hamiltonian can be used to fine-tune the
shape of any desired Fermi surface, as long as the hop-
pings are compatible with the constraints imposed by the
Slater-Koster analysis. Finally, using different forms of
the tight-binding portion of the Hamiltonian to study
the properties of d-wave superconductors would allow to
establish what non-trivial properties of d-wave supercon-

ductors are universal and which ones are merely material
dependent.
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