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It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM)
insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM
spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction
between the excited AFM modes and the AFM lattice, and, depending on the excitation conditions,
can be either attenuated or enhanced. When the phase difference between the excited evanescent
modes is close to π/2, there is an optimum AFM thickness for which the output spin current reaches
a maximum, that can significantly exceed the magnitude of the input spin current. The spin current
transfer through the AFM depends on the ambient temperature and increases substantially when
temperature approaches the Neel temperature of the AFM layer.

I. INTRODUCTION

Progress in modern spintronics critically depends on
finding novel media that can serve as effective conduits
of spin angular momentum over large distances with min-
imum losses1–3. The mechanism of spin transfer is rea-
sonably well-understood in ferromagnetic (FM) metals4,5

and insulators3,4,6–9, but there are only very few theoret-
ical papers describing spin current in antiferromagnets
(AFM) (see, e.g.,10).

The recent experiments11–13 have demonstrated that
a thin layer of a dielectric AFM (NiO, CoO) could ef-
fectively conduct spin current. The transfer of spin cur-
rent was studied in the FM/AFM/Pt trilayer structure
(see Fig. 1). The FM layer driven in ferromagnetic reso-
nance (FMR) excited spin current in a thin layer of AFM,
which was detected in the adjacent Pt film using the in-
verse spin Hall effect (ISHE). It was also found in13 that
the spin current through the AFM depends on the am-
bient temperature and goes through a maximum near
the Neel temperature TN . The most intriguing feature
of the experiments was the fact that for a certain opti-
mum thickness of the AFM layer (∼ 5 nm) the detected
spin current had a maximum11,12, which could be even
higher than in the absence of the AFM spacer12. The
spin current transfer in the reversed geometry, when the
spin current flows from the Pt layer driven by DC cur-
rent through the AFM spacer into a microwave-driven
FM material has been reported recently in14.

The experiments11–14 posed a fundamental question of
the mechanism of the apparently rather effective spin
current transfer through an AFM dielectric. A possi-
ble mechanism of the spin transfer through an easy-axis

AFM has been recently proposed in10. However, this
uniaxial model can not explain the non-monotonous de-
pendence of the transmitted spin current on the AFM
layer thickness and the apparent “amplification” of the
spin current seen in the experiments11,12 performed with
the bi-axial NiO AFM layer15.

In our current work, we propose a possible mecha-

FIG. 1. Sketch of the model of spin current transfer through
an AFM insulator based on the experiment11. The FM layer
excites spin wave excitations in the AFM layer. The output
spin current (at the AFM/Pt interface) is detected by the Pt
layer through the inverse spin Hall effect (ISHE).

nism of spin current transfer through anisotropic AFM
dielectrics, which may explain all the peculiarities of the
experiments11,12,14. Namely, we show that the spin cur-
rent can be effectively carried by the driven evanescent

spin wave excitations, having frequencies that are much
lower than the frequency of the AFM resonance. We
demonstrate that the angular momentum exchange be-
tween the spin subsystem and the AFM lattice plays a
crucial role in the process of spin current transfer, and
may lead to the enhancement of the spin current by the
angular momentum influx from the crystal lattice of the
AFM.

II. SPIN DYNAMICS IN THE AFM

DIELECTRICS

We consider a model of a simple AFM having two mag-
netic sublattices with the partial saturation magnetiza-
tion Ms. The distribution of the magnetizations of each
sublattice can be described by the vectors M1 and M2,
|M1| = |M1| =Ms. We use a conventional approach for
describing the AFM dynamics by introducing the vectors
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of antiferromagnetism (l) and magnetism (m)16–19:

l = (M1 −M2)/(2Ms), m = (M1 +M2)/(2Ms). (1)

Assuming that all the magnetic fields are smaller then
the exchange field Hex and neglecting the bias magnetic
field, that is used to saturate the FM layer, the effective
AFM Lagrangian can be written as16,18,19:

L = µ
[

(∂l/∂t)2 − c2 (∂l/∂y)2
]

− Wa − Wsδ(y). (2)

Here µ = Ms/(γ
2Hex), γ is the gyromagnetic ratio, c

is the speed of the AFM spin waves (c ≃ 33 km/s in

NiO), and Wa = Msl · (Ĥa · l) is the energy of the
anisotropy, defined by the matrix of the anisotropy fields
Ĥ
a = diag(Ha

1 , H
a
2 , 0) with the diagonal (j, j) compo-

nents Ha
j = 2Msβj (βj is the anisotropy constant along

the j-th axis). The equilibrium direction of the AFM
vector l0 = e3 lies along the e3 axis.
The exchange coupling between the FM and AFM lay-

ers is modeled in Eq. (2) by the surface energy termWs =
Es [(mFM·m) + α(mFM · l)], where Es is the surface en-
ergy density, mFM is the unit vector of FM layer magne-
tization. We assumed that the net magnetization of the
AFM at the FM/AFM interface layer could be partially
non-compensated, and this “non-compensation” is char-
acterized by a dimensionless parameter α (0 < α < 1),
see also Appendix.
The dynamical equation for the AFM vector l follows

from the Lagrangian Eq. (2) and can be written as

∂2l/∂t2 +∆ω ∂l/∂t− c2 ∂2l/∂y2 + Ω̂ · l = f(t)δ(y), (3)

where ∆ω is the phenomenological damping parameter
equal to the AFM resonance linewidth (∆ω/2π ≈ 69GHz
for NiO20). Note, that the damping-related decay length
λG = 2c/∆ω ≈ 150 nm is much larger than the typical
AFM thickness. Therefore, below we shall neglect damp-
ing except in Fig. 4, where the comparison of AFM spin
currents in conservative and damped cases is presented.
The matrix Ω̂ = diag(ω2

1 , ω
2
2 , 0), and ωj = γ

√

HexHa
j ,

j = 1, 2, are the frequencies of the AFM resonance.
In the case of NiO the two AFM resonance frequen-
cies are substantially different: ω1/2π ≃ 240 GHz and
ω2/2π ≃ 1.1 THz15. We shall show below that the differ-
ence between the AFM resonance frequencies is crucially
important for the spin current transfer through the AFM.
The driving force in Eq. (3) f(t) = −(δWs/δl)/(2µ),

localized at the FM/AFM interface, describes AFM ex-
citation by the precessing FM magnetization. In the
absence of this term Eq. (3) describes two branches of
the eigen-excitations of the AFM with dispersion rela-

tions ωj(k) =
√

ω2
j + c2k2. These propagating AFM

spin waves have minimum frequencies ωj which are much
higher than the excitation frequency (9.65 GHz in Ref.11)
and, therefore, can not be responsible for the spin current
transfer.
The presence of the FM layer, however, qualitatively

changes the situation, as the driving force f(t) excites

evanescent AFM spin wave modes at the frequency of
the FM layer resonance (FMR), that is well below any of
the AFMR frequencies ωj . The profiles of the evanescent
AFM modes can be easily found from Eq. (3):

lj(t, y) = ej

[

Aje
−y/λj +Bje

y/λj

]

e−iωt+c.c., j = 1, 2,

(4)
where ω is the excitation frequency,

λj = c
/

√

ω2
j − ω2 (5)

is the penetration depth for the j-th evanescent mode,
and complex coefficients Aj , Bj are determined by the
boundary conditions at the FM/AFM and AFM/Pt in-
terfaces. The interfacial driving force f(t)δ(y) excites the
AFM vector l(t, y = 0) at the FM/AFM interface:

l(t, y = 0) = e3 +
[

(a1e1 + a2e2) e
−iωt + c.c.

]

. (6)

The complex amplitudes a1 and a2 depend on the vector
structure of the magnetization precession in the FM layer
(see Appendix for details), which opens a way to experi-
mentally control the input spin current in the AFM, and
to directly verify our theoretical predictions. Thus, if the
FM layer is magnetized along one of the AFM anisotropy
axes e1,2, the microwave magnetization component along
that axis will be zero and the corresponding complex am-
plitude a1,2 in Eq. (6) will vanish. On the other hand, if
the FM layer is magnetized along the AFM equilibrium
axis e3, both amplitudes a1 and a2 will be non-zero with
the phase shift φ = arg(a1/a2) ≈ π/2 between them.

III. SPIN CURRENT THROUGH THE AFM

LAYER

At the AFM/Pt interface (y = d) we adopt a simple
form of the boundary conditions that were used previ-
ously for the description of spin current at the AFM/Pt21

and FM/Pt22 interfaces:

P (y = d) = β cL(y = d), (7)

where P is the current of the e3-component of the spin
angular momentum and L is the corresponding angular
momentum density inside the AFM:

P = 2µc2e3 · [∂l/∂y × l], L = −2Msγ
−1

e3 ·m, (8)

and β is a dimensionless constant having magnitude in
the range from 0 to 1 and being physically determined by
the spin mixing conductance at the AFM/Pt interface22.
The case β = 0 corresponds to the conservative situation
of a complete absence of the angular momentum flux,
while the case β = 1 describes a “transparent” bound-
ary, when the angular momentum freely moves across the
AFM/Pt boundary without any reflection.
Using Eqs. (8), the boundary conditions Eq. (7) can

be rewritten as explicit conditions on the vector of anti-
ferromagnetism l as β ∂l/∂t = −c ∂l/∂y. This equation
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FIG. 2. Spatial distribution of the spin current P (y) inside
the AFM layer for different phase shifts φ between the two
evanescent AFM spin wave modes calculated from Eq. (9).

and Eq. (6) allow one to find all four coefficients Aj , Bj
in Eq. (4), and one can find the explicit expression for
the spin current P (y) inside the AFM layer:

P (y) = 4µc2|a1a2|Re
[

Q(y)e−iφ
]

, (9)

where

Q(y) =
(e−y/λ1 + q1e

y/λ1)(e−y/λ2 − q∗2e
y/λ2)

(1 + q1)(1 + q∗2)λ2

− (e−y/λ1 − q1e
y/λ1)(e−y/λ2 + q∗2e

y/λ2)

(1 + q1)(1 + q∗2)λ1
. (10)

Here qj = e2iψj−2d/λj and ψj = arctan(βωλj/c) ≈
βω/ωj. Eq. (9) is the central result of this paper that
allows one to find the spin current carried by the evanes-
cent spin wave modes in an AFM layer.
Now we shall analyze the main features of the spin

current transfer through an AFM dielectric that are de-
scribed by Eq. (9). First, one can see that the spin cur-
rent P is proportional to the product |a1a2| of the ampli-
tudes of both excited evanescent spin wave modes, and
this current is completely absent if only one of the modes
is excited. This is explained by the fact that each of the
modes Eq. (4) is linearly polarized, and, therefore, can
not alone carry any angular momentum.
Second, the spin current in the AFM layer depends

on the position y inside the AFM layer, i.e., it is not
conserved. This is a direct consequence of the assumed
bi-axial anisotropy of the AFM material, which allows
for the transfer of the angular momentum between the
spin sub-system and the crystal lattice of the AFM layer.
This effect is a magnetic analogue of the optical effect
of birefringence23, where the spin angular momentum of
light is dynamically changed during its propagation in a
birefringent medium.
In the case of a uniaxial anisotropy10 (λ1 = λ2 = λ)

Eq. (9) can be simplified to

P =
16µc2

λ

Im(q)

|1 + q|2 |a1a2| sinφ, (11)

and the spin current is conserved across the whole AFM
layer.
Eq. (9) can also be simplified in the case of a semi-

infinite AFM layer, in which caseBj = 0 and q1 = q2 = 0:

P =
4µc2(λ1 − λ2)

λ1λ2
|a1a2| cosφ e−y/λeff . (12)

In such a case the spin current decays monotonically in-
side the AFM layer with the effective penetration depth
λeff = λ1λ2/ (λ1 + λ2) ≃ 5 nm for NiO.
Another peculiarity of Eq. (9) and Eq. (11) is that the

spin current P depends on the phase shift φ between the
two excited evanescent AFM spin wave modes l1 and l2:

P ∝ cos(φ− Φ(y)), (13)

where Φ(y) = arg(Q(y)). The maximum spin current at
a given position y inside the AFM layer is achieved at
φ = Φ(y). Since the AFM phase shift Φ(y), in general,
depends on the position y inside the AFM layer, for any
particular thickness d of the AFM layer it is possible to
choose the excitation phase shift φ that would maximize
the output spin current P (y = d), while the input spin
current P (y → 0) could be quite low. In such a case the
additional angular momentum is taken from the crystal
lattice of the AFM. This shows that, in principle, the
AFM dielectrics can serve as “amplifiers” of a spin cur-
rent.
Fig. 2 shows the spatial profiles of the spin current

density in a relatively thick AFM layer (thickness d =
20 nm). This dependence is drastically different for dif-
ferent phase shifts φ between the excited evanescent spin
wave modes. While for φ < π/2 the spin current expo-
nentially and monotonically decays inside the AFM layer
(dashed blue line in Fig. 2), for φ > π/2 (solid black line
in Fig. 2) it initially increases at relatively small y due
to the angular momentum flow from the AFM crystal
lattice to its spin subsystem. At larger values of y, the
spin current decays exponentially due to the decay of the
excited evanescent spin wave modes.
Fig. 3 demonstrates the dependences of the spin cur-

rent on the phase shift φ at both interfaces FM/AFM
(input spin current) and AFM/Pt (output spin current).
It is clear from Fig. 3 that the output spin current is
shifted by ∼ π/2 relative to the input spin current, and,
for the phase shift φ ≈ π/2, the output spin current could
have a maximum magnitude when the input spin current
is almost completely absent. This means, that at such a
value of the phase shift between the evanescent spin wave
modes practically all the output spin current is generated
as a result of interaction between the magnetic subsys-
tem of the AFM layer and its crystal lattice. Thus, the
AFM layer acts as a source of the spin current. On the
other hand, at the phase shift of φ ≈ 0 or φ ≈ π, the
situation is opposite, as the input spin current is practi-
cally lost inside the AFM, and the AFM layer acts as a
spin current sink.
Thus, we showed, that a thin layer of AFM, driven

by a constant flow of microwave energy from the FM
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FIG. 3. Dependence of the input (dashed blue line) and out-
put (solid red line) spin currents through the AFM layer on
the phase shift φ between the modes.

d (nm)

FIG. 4. Spin current transfer factor of the AFM layer as a
function of the AFM layer thickness for different values of the
spin mixing conductance parameter β. The lines show the
case of zero damping (∆ω = 0), while the circles correspond
to the AFMR linewidth of ∆ω/2π = 69 GHz20.

layer, is able to transform the angular momentum of a
crystal lattice into the spin current and vice versa. The
described transfer of the angular momentum from the
lattice to the spin system has a simple analog not only
as a birefringence in optics, but also in mechanics: a me-
chanical oscillator which consists of a mass suspended
on two perpendicular springs with different stiffness at-
tached to a fixed rectangular frame. The displacement of
the mass from its equilibrium position in the frame cen-
ter along the direction of one of the orthogonal springs
results in the linearly polarized oscillations along this di-
rection, without any transfer of the angular momentum
from the frame to the oscillating mass. In contrast, the
linear displacement of the mass in a diagonal direction
results in the rotation of the mass around its equilibrium
position, and the angular momentum necessary for this
rotation is taken from the frame (see animations in Suppl.
Mater.).

The ratio of the output spin current to the input one
(the spin current transfer factor) is shown in Fig. 4 for

different values of the constant β, i.e., for the different
values of the spin mixing conductance at the AFM/Pt
interface. This dependence has a sharp maximum at the
thickness of a few nanometers, where the input current
is rather low, and the AFM layer acts as a source of a
spin current. With the further increase of the AFM layer
thickness the transfer ratio is exponentially decreasing,
while the position of the maximum shifts to the right
with the increase of the spin mixing conductance at the
AFM/Pt interface. As one can see from Fig. 4, the pres-
ence of the damping has little influence on the spin cur-
rent, because the spatial decay of the amplitudes due to
the evanescent character of the modes l1,2 is dominant.

IV. ENERGY EFFICIENCY OF THE SPIN

TRANSFER

It is obvious, that, besides the spin transfer through
the AFM dielectric, there is also a flux of energy through
the AFM layer. This flux of energy Π can be found from
the Lagrangian Eq. (2) by applying the Noether theorem,
and has the following form:

Π = 8
µc3ω2

β

∑

i=1,2

a2i
(c2/β2 − ω2λ2i ) (1 + cosh 2d/λi)

(14)

As one can see from Eq. (14), the flux of energy does
not depend on both the spatial coordinate y inside the
AFM and the phase shift φ between the excited evanes-
cent AFM modes. Therefore, the FM layer is a source
and Pt layer is a receiver of the energy coming from the
FM layer, and this flux of energy is not transformed in-
side the AFM layer (besides negligible Gilbert damping,
see Fig. 4.).
At the same time,the situation with the spin current

is quite different. Due to the anisotropy of the AFM
layer the angular momentum is not conserved inside the
magnetic subsystem of the AFM layer, and, therefore,
there appears a flux of angular momentum between the
spin subsystem and the lattice of the AFM.
Therefore, as it was discussed above, at certain param-

eters of the spin dynamics in the AFM it is possible to
create a flux of angular momentum from the lattice into
the spin subsystem. In this case it is possible to get the
output spin current that is larger than the input one, but,
obviously, the flux of energy at the output will never be
larger than at the input.
The efficiency of the spin transfer through the AFM

layer can be characterized by the ratio of the spin current
at the output of the AFM layer to the energy losses of
the FM layer. Thus, we can introduce the value Seff =
ωP |y=d/Π, which is defined as the ratio of the transferred
angular momentum to the energy flux, and, therefore,
can be interpreted as ”effective spin” of the spin transfer.
As one can see, the energy flux is the sum of the en-

ergies of both evanescent AFM modes, and has the form
Π = A1a

2
1 +A2a

2
2, while the spin current depends on the
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product of the modes’ amplitudes P = C|a1a2|. Thus,
the effective spin has a maximum, and the value of this
maximum is Seff = C/2

√
A1A2. Maximizing this value

with respect to the phase shift φ between the excited
evanescent AFM modes one can obtain the maximum ef-
ficiency of the spin transfer Smax

eff = 1, which is the same
as for propagating spin waves in ferromagnetic materials.
Physically, the difference in the behavior of the energy

and the spin flux originates from the symmetries of the
Lagrangian (2). The flux of energy is defined by the in-
finitesimal shifts of the Lagrangian in time, which are
symmetric in the absence of damping, resulting in the
energy conservation. In contrast, the flux of the angular
momentum is determined by the infinitesimal rotations
of the Lagrangian (2). Obviously, the operation of rota-
tion does not transform the system to itself in the case
of a bi-axial anisotropy, and, therefore, the angular mo-
mentum in the spin system of an anisotropic AFM is not
conserved.

V. ISHE VOLTAGE IN PT LAYER

Using Eq. (9), we estimated the ISHE voltage for an
FM/AFM/Pt structure (and, in particular, for the NiFe/
NiO/Pt structure) with the AFM layer having thickness
d, that is smaller than the penetration depths λj of both
evanescent AFM modes. To find the amplitudes a1 and
a2 of the evanescent modes, we adopt a simple model,
where we assume, that the precession of the magnetiza-
tion in the FM layer excites spin dynamics of the AFM,
see Appendix. Following24, the ISHE voltage can be writ-
ten as

VISHE = ρΘSHw

(

2e

~

)

λPt
dPt

tanh

(

dPt
2λPt

)

Pd, (15)

where ρ is the resistivity of the Pt, w = 5mm is the
distance between the probe electrodes attached to the
Pt layer, dPt = 10nm is the thickness of the Pt layer,
ΘSH = 0.05 is the spin Hall angle in Pt, λPt = 7.7nm is
the spin diffusion length in Pt, e is the electron charge
and ~ is the Planck constant.
It is important to note, that the value of the inter-

face exchange integral Js and, correspondingly, the value
of the surface energy density Es strongly depend on the
method of fabrication of the sample, and, therefore, can
be measured only in an experiment performed for a par-
ticular sample. To give a reasonable numerical example,
below we take the value of Es to be Es = 3.3 ·10−3J/m2,
which was measured for the NiFe/NiO interface in25.
For the given parameters, taking the angle of magneti-

zation precession in the FM layer – sin θ = 0.01 (see A.5),
we obtain VISHE = 40mV for the uncompensated AFM
boundary (α = 1) and VISHE = 4nV for the compensated

one (α = 0). The first value is close to the ISHE voltage
measured in Ref.11. A partial interfacial magnetization
of the antiferromagnetic NiO in that case was confirmed
by the XRD scan performed in11. The calculated ISHE

voltage for the compensated AFM is closer to the exper-
imental value obtained in Ref.12.
The reason for such a small magnitude of the ISHE

voltage in the case of a compensated AFM interface is ob-
vious. Since the dynamic magnetization m in the ”com-
pensated” case is γHex/ω times smaller than the mag-
nitude of the AFM vector l, the energy of the exchange
couplingWs at the FM/AFM interface in Eq.(2) is rather
small.

VI. DISCUSSION

The above presented results were obtained for the pa-
rameters of a bulk NiO sample at low temperature. How-
ever, it is well known that such important parameters of
AFM substances as the anisotropy constants and Neel
temperature in thin AFM films could be substantially
smaller than in bulk crystals (see, e.g.,26). Thus, the
penetration depths of the evanescent spin wave modes
Eq. (5), determined at a given driving frequency ω by
the AFM anisotropy constants, would significantly de-
pend on the thickness and the temperature of the AFM
layer. Particularly, with the increase of temperature the
AFMR frequencies ωj would decrease, and would ap-
proach zero at the Neel temperature20. In accordance
with Eq. (5), this means that the penetration depth of the
evanescent AFM spin wave modes will increase substan-
tially when the temperature approaches the Neel temper-
ature of the AFM layer. This increase of the spin current
transferred through the AFM layer is clearly seen in the
experiments13.
In conclusion, we demonstrated that the spin current

can be effectively transmitted through thin dielectric
AFM layers by a pair of externally excited evanescent
AFM spin wave modes. In the case of AFM materials
with bi-axial anisotropy the transfer of angular momen-
tum between the spin subsystem and the crystal lattice
of the AFM can lead to the enhancement or decrease of
the transmitted spin current, depending on the phase re-
lation between the excited evanescent spin wave modes.
Our results explain all the qualitative features of the re-
cent experiments11–14, in particular, the existence of an
optimum thickness of the AFM layer, for which the out-
put current could reach a maximum value which is higher
than the spin current magnitude in the absence of the
AFM spacer, and the increase of the transmitted spin
current at the temperatures close to the Neel tempera-
ture of the AFM layer.
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Appendix: AFM dynamics driven by the

magnetization precession in and adjacent FM layer

FM FM

S
~

Compensated Uncompensated

S
~

S
~

S
~

a) b)

FIG. 5. Two types of FM/AFM interface: a) totally com-
pensated AFM boundary with zero magnetization, b) totally
uncompansated AFM boundary.

Let us consider the excitation of dynamics in an AFM
layer by the processes happening at the FM/AFM inter-
face. Let us assume, that the magnetic coupling between
the FM and AFM is of the exchange origin, and, there-
fore, is strongly localized at the AFM/FM interface. The
spins existing at the AFM boundary can belong either to
two different sublattices of the AFM, as shown in Fig. 5
a), or to the same sublattice (see Fig. 5 b). In the first
case the AFM has no static magnetization at the inter-
face and will be called below a compensated AFM, while

in the second case, the boundary of the AFM is magne-
tized, and such AFM will be called uncompensated.

The exchange coupling between the FM and AFM lay-
ers creates an additional term in the energy of the AFM.
In the case of a compensated AFM the additional energy

is expressed as ∆E =
∑

Js

(

S̃ · S1 − S̃ · S2

)

, where Js

is the interface exchange integral, S̃ is the FM spin at
the interface, and the summation is taken over the whole
FM/AFM interface.

After the transition to a continuum limit and taking
into account the relation Eq. (1) in the main text of
the paper, one can write the additional term in the La-
grangian Eq. (2) as Es(mFM ·m)δ(y), where mFM is
the unit vector defining the magnetization direction in
the FM layer, Es is the density of the surface exchange
energy describing FM/AFM coupling, and Es is propor-
tional to the exchange integral Js: Es ∝ Js .

Considering the case of an uncompensated boundary
of the AFM, one can find the additional coupling en-
ergy as ∆E =

∑

2JsS̃ · S1, which leads to the term
Es[mFM·(m+l)]δ(y). Usually, the AFM boundary is par-
tially uncompensated, and we introduce the phenomeno-
logical parameter α ∈ [0..1], which describes the degree of
the AFM non-compensation at the FM/AFM interface.
Using the well-known expression for the AFM magne-

tization [16,18,19]:

m =
1

γHex
[l× ∂l

∂t
] (A.1)

it is easy to obtain the Lagrange equations describing the
spin dynamics inside the AFM:

2µ

{

[l× ∂2l

∂t2
]− c2[l× ∂2l

∂x2
]

}

− [l× ∂Wa

∂l
] =

= Esδ(y)

{

α[l ×mFM] +

[

l× 1

γHex

(

2

[

∂l

∂t
×mFM

]

+

[

l× ∂mFM

∂t

])]}

(A.2)

Since vector l in the ground state is directed along the
vector e3, we can, in the case of a negligibly small dis-
sipation, write the dynamic equations for only two com-

ponents l1 and l2 of the vector l. These equations have
the form analogous to the form of the dynamic equation
(3) in the main text of the paper:

∂2l1
∂t2

− c2
∂2l1
∂y2

+ ω2
1l1 =

Esδ(y)

2µ

[

α(mFM · e1) +
1

γHex

[

2
∂l2
∂t

(mFM · l) + l2

(

∂mFM

∂t
· l
)]

−
(

∂mFM

∂t
· e2

)]

(A.3)

∂2l2
∂t2

− c2
∂2l2
∂y2

+ ω2
2l2 =

Esδ(y)

2µ

[

α(mFM · e2)−
1

γHex

[

2
∂l1
∂t

(mFM · l) + l1

(

∂mFM

∂t
· l
)]

−
(

∂mFM

∂t
· e1

)]

(A.4)

The above equations are the equations describing dy- namics of an oscillatory system driven by an external
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force f(t)δ(y), where f(t) are the right-hand-side parts of
the above equations.
We consider the harmonic driving force and, therefore,

mFM ∝ e−iωt. In this case, when ω < ω1, ω2 the solu-
tions of these equations are the evanescent modes that
exponentially decay with the increase of the coordinate y
inside the AFM. These solutions are given explicitly by
Eq. (4) in the main paper.
To obtain the values of the amplitudes a1 and a2 in

the Eq. (6) we consider a generic case, when the mag-
netization in the FM layer is parallel to the AFM vector
mFM = e3. Then, the precessing magnetization in the
FM layer can be expressed as:

mFM·e1 = sin θ sinωt
mFM·e2 = sin θ cosωt,

(A.5)

where θ is the magnetization precession angle in the FM.
In this case, the amplitudes a1 and a2 of the two evanes-
cent modes l1, l2 have the form:

|a1| = γ
Es
2Ms

|ω + αγHex|
c
√

ω2
1 − ω2

sin θ, (A.6)

|a2| = γ
Es
2Ms

| − ω + αγHex|
c
√

ω2
2 − ω2

sin θ, (A.7)

and the phase shift is φ = π/2.
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