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Theory of Entropy Production in Quantum Many-Body Systems

E. Solano-Carrillo and A. J. Millis
Department of Physics, Columbia University, New York, NY 10027, USA

We define the entropy operator as the negative of the logarithm of the density matrix, give a
prescription for extracting its thermodynamically measurable part, and discuss its dynamics. For
an isolated system we derive the first, second and third laws of thermodynamics. For weakly-coupled
subsystems of an isolated system, an expression for the long time limit of the expectation value of
the rate of change of the thermodynamically measurable part of the entropy operator is derived
and interpreted in terms of entropy production and entropy transport terms. The interpretation
is justified by comparison to the known expression for the entropy production in an aged classical
Markovian system with Gaussian fluctuations and by a calculation of the current-induced entropy
production in a conductor with electron-phonon scattering.

I. INTRODUCTION

Attempts to show how nonequilibrium thermodynamic
behavior emerges from the underlying quantum mechan-
ics of individual particles is now being dubbed quan-
tum thermodynamics.! # Several approaches have arisen,
revealing important aspects in this endeavor, such as
how thermal fluctuations and external driving mecha-
nisms affect the stochastic course of nonequilibrium pro-
cesses of small systems,® which has led to fluctuation
theorems® ® going beyond the results from the Kubo lin-
ear response theory, as well as generalized fluctuation-
dissipation relations as studied in isolated quantum sys-
tems after a quench.? '' Other aspects, more in the spirit
of traditional nonequilibrium statistical mechanics,'? in-
clude thermalization in isolated quantum systems,'? 17
and the establishment of steady states in open quan-
tum systems.'® 2% A unified treatment along the lines
of the classical theory of nonequilibrium thermodynam-
ics is of crucial importance for a clear identification of
the quantum-to-classical correspondence and the new
features brought about by fully quantum-mechanical
nonequilibrium behavior.

The remarkable success of the classical theory?® 2% in

the description of macroscopic phenomena in fluids moti-
vates us to ask what are the basic ingredients of this for-
malism that such a unified treatment of quantum thermo-
dynamics must also contain. We remind that the building
blocks of the classical theory are: (i) macroscopic observ-
ables, explicitly defined as a set of thermodynamically
measurable or slowly-varying quantities, (ii) conservation
laws for these variables and, as a foundational pillar, (iii)
an entropy balance equation is established, splitting the
rate of change of entropy as a part which is irreversibly
produced, in accordance with the second law of thermo-
dynamics, and a part which is transported. The validity
of this theory relies on the local equilibrium assumption,
whereby the nonequilibrium thermodynamic entropy is
considered locally as a function of the same extensive
variables as in equilibrium.

Although significant attempts to give a meaning to
entropy out of equilibrium?® have long been known in
quantum statistics,30 34 a complete theory of quantum

entropy production has not been provided yet. The main
problem is how to conceive an adequate quantum entropy
balance equation without assuming local equilibrium.

For an isolated system, there is no entropy to be trans-
ported outside the system and hence the entropy balance
equation reduces to finding the right quantum expression
for entropy whose rate of change is non-negative, accord-
ing to the second law of thermodynamics, this rate then
being the entropy production. Important efforts have
been devoted to obtain such an expression from the den-
sity matrix,'23%36 but the third law of thermodynamics,
involving the vanishing entropy of pure states has not
been satisfactorily established.

On the other hand, for a subsystem of an isolated
system the establishment of a quantum entropy balance
equation has been partially addressed®” 3 by assuming
that the rate of change of an adopted expression for the
nonequilibrium entropy of the subsystem, obtained from
the reduced density matrix, is directly connected, as in
the classical theory, with the rate of change of its energy.
This involves the identification of a microscopic expres-
sion for heat which is not unique** and therefore quite
problematic, but most importantly, does not constitute a
full deviation from the local equilibrium assumption, as
we show later.

The purpose of this paper is to provide a more gen-
eral treatment of quantum entropy production and then
lay the foundation of a unified theory of quantum ther-
modynamics in close correspondence with the classical
theory. We introduce a new thermodynamic entropy op-
erator S; for isolated quantum many-body systems and
show that the rate of change of its expectation value is
non-negative, according to the second law of thermody-
namics. Unlike previous approaches, we establish the
third law of thermodynamics as a well-defined vanishing
of the thermodynamic entropy for pure states.

The quantum entropy balance equation for a given sub-
system of an isolated system is obtained by first study-
ing the time evolution of (9;S;) for the isolated system
from first principles, i.e. from the Liouville-von Neu-
mann equation for the density matrix, using the stan-
dard generalized master equation approach of nonequi-
librium statistical mechanics,**%° and by subsequently



making reasonable assumptions regarding the factoriza-
tion properties of the nonequilibrium probability distri-
bution of microscopic states over the degrees of freedom
of the different subsystems.

We restrict here to weakly-coupled subsystems to show
how our theory is consistent with the classical theory, to
elucidate the manner in which the local equilibrium ap-
proximation can be fully abandoned, and to pave the way
to study cases of strong coupling between subsystems for
which the aforementioned factorization properties of the
probability distribution of microscopic states become the
main subject of study, marking a deep connection with
quantum information theory. A detailed investigation of
a new methodology to approach these cases will be con-
sidered elsewhere.

The pursue of the so outlined research program is es-
sential both for a more fundamental understanding of
nonequilibrium behavior,”® and because entropy produc-
tion is inherent to dissipation so that a good atomic-scale
description may have technological impact, e.g. by en-
abling better control of waste heat and thermoelectric
effects in single-molecule electronics,” ®® guiding the ef-
ficient design of quantum refrigerators®® and quantum
heat machines,?® nanosized photoelectric devices,*® nan-
othermoelectric engines®”°® based on quantum dots, etc.,
which are envisioned as practical applications of quantum
thermodynamics.

It turns out, as we show here with a particular example
of electronic conduction in the presence of phonon modes
playing the role of a reservoir, that our theory gives an
explicit expression for the Joule heating from a calcu-
lation of the steady state electronic entropy production
alone. This represents an important progress since this is
done without calculating the rate of change of the energy
of the electron subsystem.

This paper is organized as follows: in section II we
give a brief review of entropy production and the second
law of thermodynamics as they manifest in phenomeno-
logical thermodynamics. In section IIT we discuss the
local equilibrium assumption from a quantum perspec-
tive, with a derivation of the first law of thermodynamics
from the expression for (0;S;) in this case, which is shown
to hold for quasistatic transformations or slow processes.
This section, which mainly discusses how the foundations
of the classical theory are to be understood quantum-
mechanically, serves as a motivation to introduce the op-
erator 0;S; for general isolated quantum systems of which
possible reservoirs are part of.

A transition is made in section IV to the generalized
thermodynamic description of quantum systems. The
second and third law of thermodynamics are established
here for any isolated system, and an entropy balance
equation is derived, splitting (9;S) into entropy produc-
tion and entropy transport terms. In section V, we
show how the theory is consistent with Onsager’s clas-
sical stochastic entropy production in an aged system.
Finally, in section VI we calculate the electronic entropy
production in a simple metal consisting of independent

electrons weakly coupled to phonons in the presence of
an external electric field, deriving the Joule heating, and
we conclude with section VII.

II. ENTROPY PRODUCTION IN
PHENOMENOLOGICAL THERMODYNAMICS

The thermodynamic definition of entropy changes for
any kind of process in a closed system (not interchanging
particles with the reservoirs) was given by Clausius at
the very end of his monumental 1865 paper.®®69 If the
system, which is considered to be in contact with a set of
heat sources at different temperatures T', follows a path
in the space of thermodynamic states, joining the initial
and final arbitrary states A and B, respectively, then the
thermodynamic entropy change in the process is

B
S5 — 81 = Nefy] + /A (dQ/T), (1)

where d( is an infinitesimal amount of heat absorbed
from (or surrendered to) the heat source at temperature
T, and the quantity N¢[y], representing what came to
be known as the “uncompensated heat of Clausius”,%! is
a functional of the process. Clausius defined it in such a
way that

Nel = - 74 aQ/r=- | " (aQ/T), - / " aQ), 0

A B
(2)
where g is an arbitrary reversible path which is “imag-
ined” to bring the system back to its initial state A. He
proved that

Nc[y] >0, (Clausius’ inequality), (3)

for any ~y, which was a generalization of Carnot’s results
for cyclic processes; the equality holding if and only if
v is a reversible path. This is the starting point of all
the discussions found in textbooks of the second law of
thermodynamics,®? and is therefore regarded here as the
fundamental expression for this law.

A classical formulation of nonequilibrium thermody-
namics has been founded?>25 by taking as starting point
(1) written in differential form and generalized to apply
locally in small volume elements, v, of a system

dS = d;S + d.S, (4)

where d;S = dN¢ is the entropy produced, during an in-
finitesimal time interval, due to irreversible processes tak-
ing place inside the volume element, and d.S the entropy
supplied from its surroundings (= dQ/T for a closed ele-
ment). The second law of thermodynamics requires only

that the entropy produced satisfies
d;§ >0, (Clausius’ inequality). (5)

The theory so obtained for the phenomenological entropy
production, s, = d;S/dt, successfully describes slow



processes or phenomena where the decay time of local
perturbations is very short compared to the global relax-
ation time, as in chemical reactions, diffusion processes,
heat conduction, and their cross effects in gases and lig-
uids. However, it requires fundamental modifications for
fast processes?”?® and, in the following, we argue from
a quantum-mechanical perspective why this happens to
be the case, setting the stage and motivating the method
for the subsequent development of our theory.

IIT. LOCAL EQUILIBRIUM AND QUASISTATIC
QUANTUM TRANSFORMATIONS

Consider an isolated macroscopic system, possibly con-
taining a set of particle and heat reservoirs which is di-
vided into macroscopic subsystems. Microscopically, the
total system is defined by the Hamiltonian

—H:Z—Hl+zﬁlm7 (6)
l

<m

where H; is the Hamiltonian of subsystem [, involving
the kinetic energies of the particles comprising the sub-
system as well as the energy of interaction among all
these particles; and Hj, is the Hamiltonian respresent-
ing the interactions among the particles of subsytem [
with those of subsystem m, possibly including hopping
terms allowing particle transfer.

The fundamental assumption of statistical mechanics
is that, since the interaction energy among the parts
scales with their common surface areas, while the en-
ergy of the parts scales with their respective volumes,
we can then remove all Hy,, in (6) from a macroscopic
description of the dynamics and introduce instead a set
of time-dependent parameters {xl/\} embodying macro-
scopic constraints for the subsystem [, that evolve in
time due to changes in the other subsystems. The op-
erator representing macroscopic energy measurements in
this approximation is

=",
l

where the notation in (7) indicates that #; is to be taken
as H, plus an external potential due to the other sub-
systems and represented parametrically. For instance,
a quantum subsystem acted upon by an external electric
field is seen in the description of (6) as having a Coulomb
potential energy (operator) coupling all the charges of the
subsystem with all the charges outside of it which are
sources of this field, while in the approximate descrip-
tion of (7), it is seen as coupled to an external parameter
FE representing the strength of the field. We shall call the
latter the thermodynamic description.

The local equilibrium assumption in the thermody-
namic description is the statement that the macroscopic
state of each part of our system, with a number of par-
ticles operator Nj, a temperature T and a chemical po-
tential py, is an equilibrium state. The local equilibrium

63

with H; = H({z}}), (7)

density matrix of the total system is the factorized Gibbs
state (subsystems macroscopically uncorrelated)

o' = ® 0 = ®€XP[—(¢11 — N = )/Ti),  (8)
l 1

with Q; = Qu(T}, i, {xl)\}) the thermodynamic potential
of subsystem [, introduced so as to normalize the density
matrix, that is, Tr exp[—(H; — wN;)/Ti]) = exp(—Q/T)).
Note that, since the degrees of freedom of different sub-
systems are uncoupled in the thermodynamic description,
all operators H; and N, form a mutually commuting set
and then define a natural basis of common eigenstates
that we represent as {|a)}.

The appearance of this natural set defines a family of
observables acting on the system Hilbert space that, like
H; and N,,, we call thermodynamic; these observables
are diagonal in the basis {|a)}. According to this, H is a
thermodynamic observable, and we denote the set of all
these operators as

T={G:[G.H] =0} 9)

Clearly all constant operators as well as all time-averaged
observables3?%4 belong to this family. With D denot-
ing the projection operator to the subspace spanned by
{|a}{x|}, we can then split an arbitrary observable G in
the convenient form

G=DG+NG=G+G", (10)

where Q = DG is the thermodypamically measurable
part (or thermodynamic part) of GG; the complementary
part being G~ = NG =G —G.

The thermodynamic observables must have the char-
acteristic of being slowly-varying quantities.®> 8 This is
quantified in our theory by introducing a geometric mea-
sure, A, of how approximate is the thermodynamic de-
scription. For this, let us introduce for an arbitrary ob-
servable B the hermitian operator

Cup = —ilA,B] with AeT, (11)

and consider the simple geometry induced by the Hilbert-
Schmidt norm [|[C gl = (Tr Tz Cap)'/?. Tt is trivially
seen that

ICxoll = [ICgoll =0, (12)
and by using the Jacobi identity for commutators, to-
gether with [G, H] = 0, coming from (9), we can write

1C51l = 1€ I, (13)

where we identify G = C’g g when the parameters repre-
senting external constraints are fixed in time. Therefore,
if Cypy tend to the null operator in the norm, i.e. if we
have A — 0 with

A = Y| Cunll® = 20" Y (ea — car)’ || HI) [,
ao’

(14)



where H|a) = £4|c) and &g is the smallest characteristic
energy in the system (making A dimensionless); then we
conclude, by using (12), (13) as well as the continuity
of the norm, that the quality of slow variation can be
expressed as

1G] = 1116, 71| = O(A). (15)

The condition A — 0 is physically realized when the
thermodynamic limit is taken for all the subsystems com-
prising the total system, since in this limit (H) and ()
tend to be indistinguishable for arbitrary states.

We now give the steps that constitute our general
method in the next section. Given the density matrix
pr of the total system, we define the entropy operator as
the negative of its logarithm, S; = —In p; and, from this
and the aforementioned discussion, the thermodynamic
entropy operator as S; = DS;. Since in the local equilib-
rium approximation the density matrix p, = p* is already
diagonal in the basis {|a)}, we have in this case

—uNi =), (16)

where we have used the commutativity of all H, and N,
to express In ¢" = ), In gj. We are interested in thermo-
dynamic entropy changes as the main observable, then
the next step is an expression for (9;S;), which we get by
first differentiating (16)

A 1 A A N
dS' =3 7 [t — duuNi = judN; = d
! - (17)
= = (Fl = i = ).

Since Ql is a function of i, T; and of the external param-
eters, %» implicit in ’H,l, we can differentiate the normal-

ization relation Tr exp|—(H; — juNy)/T1] = exp(—S4 /T})
after variations in these argurAnents to get, after noting
that (G;) = Tro"G; = Tr ]G, for a local operator G
acting on the [-th subsystem,

dI;

(N)dp — (< 1) — (NG — ),

(18)
with F! = —(9H,;/9z}) being the average force exerted
by subsystem [ on its surroundings to get the displace-
ments drl. Taking expectation value of (17) and substi-
tuting (18) we conclude that the average rate of change of

the total thermodynamic entropy is in this case additive,
(dS*) = >",(dS}), with

sy = Z Fldzh —

Ty (dSF) = (dHa) — m(dND) + ) Fideh,  (19)
A

We have arrived in this way to the first law of thermo-
dynamics, through a line of reasoning originally due to
Gibbs,% generalized here to the quantum case.

Note that for an arbitrary observable G', the iden-
tity (dG/dt) = 90(G) /0t holds whenever the density ma-
trix used to calculate the expectation value satisfies the
Liouville-von Neumann equation, as is easily proved by
changing to the Heisenberg picture within the expecta-
tion value operation, where dG/dt = G /ot — i|G, H],
with @ depending explicitly on time in the Schrédinger
picture via the external parameters, and using the known
identity Tr A[B,C] = TrC[A, B]. Therefore, as long
as the local equilibrium density matrix p* satisﬁes the
Liouville-von Neumann equation, we can commute the
operation (dG) = 9(G) and write (19) as the usual form
of the first law of thermodynamics.

The equivalence of (19) with the usual form of the first
law of thermodynamics

11 0,(S)) = (M) — 5t<M>+ZF,l\ B, (20)
A

then requires that p" satisfies the Liouville-von Neumann
equation 7 0;9" = [H, 0*], where we use the symbol 9, as
a shorthand notation for 9/9t. For this to be the case, it
is necessary from (15) that

10:6"]] = O(A), (21)

since p" is expressed in terms of thermodynamic observ-
ables. When the thermodynamic limit is taken for each
subsystem, we have A — 0, and then the parameters :Cé\
should vary with time so slowly that the state 0" can be
interpreted as “moving” in a locus of equilibrium states,
so that ||0;0"|] — 0 in (21). These are precisely the qua-
sistatic (or reversible) transformations for which the first
law involving thermodynamic entropy changes applies,
hence the superindex “r” standing for reversible, and the
systematic omission of the time subindex in the vanables.
Note that in this case, the quantity N¢[v] in (1) vanishes
for any v = {2} (t),Y\,l and t € [ta,tp]}.

A nonzero entropy production appears instead when
the subsystems are macroscopic at the atomic scale, but
compared to the size of the total system, they are small
volume elements, dv;. In this case, an entropy balance
equation may be obtained from (20), by using the rela-
tions

m o(H
DI DEL L T REY
m A
” N
DI D I L)
m A

which state that the average macroscopic energy and
number of particles of a given subsystem can only change
by transport to other subsystems, defining the corre-
sponding currents J,l{m and J/l(/” in terms of quantities
proportional to the particle velocities, with an appropri-
ate microscopic account for the heat currents, plus terms
allowing the technical possiblity of a creation or destruc-
tion of particles induced by the variation of the external




constrainsts. Substituting these in (20) we get

oS =23 [i«% ) + FL | i

T, Bzvl)\
. l z (24)
T Z (JHm - :“lJ/(/n) = sy, — Pouy,

the first term in the first equality being the entropy pro-
duction term, Ils,,, and the second one the entropy trans-
port term, ®s,,. Results consistent with the classical
theory are obtained when particle creation or destruc-
tion is not observed macroscopically, in which case (22)
and (23) are just the usual conservation laws (continuity
equations) and the entropy production in the subsystem
reduces to the well-known sum of products of thermody-
namic forces times the rate of change of their conjugate
external parameters

1
50, = 7 Z Flo,2h, (classical). (25)
X

The presentation given here can be straightforwardly
generalized by considering local equilibrium Gibbs en-
sembles more general than (8), that is, by augmenting the
thermodynamic entropy operator (16) with terms pro-
portional to the components of the macroscopic linear
and angular momentum operators of each subsystem,%
with (22) and (23) expanded to include the conservation
laws of their respective expectation values.

Note that we have kept the superindex “r” (although
not strictly with its original connotation) in (24) because,
even though the thermodynamic limit is not taken for
each susbsytem, which would make A — 0 and the pro-
cesses necessarily quasistatic, the fact that the volume
elements, dv;, are macroscopic at the atomic scale still
implies that A is very small and hence, from (21), that
the variations 0;p" should correspondingly be very small
in the norm. As mentioned in section II, we then see
why the classical theory works well for slow processes,
i.e. those for which the time to get relaxation to equilib-
rium within each volume element is much shorter than
the time to get equilibrium among them.

The discussion in this section elucidates the problems
with the local equilibrium assumption and previous the-
ories of entropy production, which rely on expressions of
the type (20) together with conservation laws, like (22)
and (23), as in the classical theory. As we have made
explicit, developing a theory of entropy production from
(20) inherently assumes that the correlations among the
subsystems of a large isolated system are negligible for
all times, and using (22) in this theory takes for granted
that an appropriate mechanical description of the micro-
scopics of heat currents have been univocally achieved.

We now propose a way to derive an entropy balance
equation for the subsystems of a general isolated sys-
tem from first principles, starting from the Liouville-von
Neumann equation for the density matrix of the isolated
system, which does not rely on the above assumptions.

IV. MASTER EQUATION FOR THE
THERMODYNAMIC ENTROPY OPERATOR

We generalize the thermodynamic description to in-
clude subsystems which are not distinguished by spatial
boundaries and which are not necessarily macroscopic at
the atomic scale. The key point to borrow from ther-
modynamics is the existence of the thermodynamic basis
{|a}} and the interpretation of thermodynamic observ-
ables as those which are diagonal in this basis. That is,
we consider an isolated quantum system (containing pos-
sible reservoirs) which has a Hamiltonian H representing
the energy of uncoupled subsystems, as before, and study
the dynamics when the perturbation, V', mixing the de-
grees of freedom of the different subsystems, or a set of
them, is turned on.

_ The Hamiltonian of the total system is then given by
H = H 4V, and the situations of interest include phe-
nomena such as quantum quenches,'3'7 or the response
to applied fields.#?43:64 After preparation of the system
in an initial statistical state of the form

po = exp(—So), (26)

with Sy an arbitrary (in general unbounded) hermitian
operator with [S’O,V] # 0, the nonequilibrium state is
described by the evolved density matrix p;, and we define
the entropy operator S; by

pr =exp(=S;), or S =—Inp, (27)

which can always be written since the density matrix is
positive-definite. This exponential representation of the
density matrix is not new; it is a generalized form*37°
of the nonequilibrium statistical operator introduced by
Zubarev,?>33 and obtained for the case of steady states
by Hershfield”'.

As discussed in the previous section, our new thermo-
dynamic entropy operator, S = —DIn p;, is obtained
from S; by projecting to the space of operators diag-
onal in the basis {|a)} of eigenstates of H. We now
establish the second law of thermodynamics for nonequi-
librium transformations of the total system. For this,
we consider for simplicity the specific situation of initial
states diagonal in the thermodynamic basis, e.g. those
of local equilibrium form as in (8), for which S5 = 0
or S‘O = 5‘0. These initial states are usually assumed in
practice3m647! e o in transport problems.

Let us denote the diagonal (or thermodynamic) part
of the density matrix of the system as

0t = Dpy. (28)

The occupation probability of the state |a) is obtained
by taking matrix elements Py, = (a|g¢|e). The proof
now follows in steps by first using a corollary to Klein’s
inequality,”® which states that for any concave function
f(z) we have

Tr f(6:) > Tr f(pr)- (29)



By choosing the concave function f(z) = —zIn(z), we
easily get

—Tr o:In(9¢) > =Tr pelnp,  or  Sgz > Suny, (30)

where we have denoted Sy = — Za Po.iIn Py, as the
diagonal entropy!®3>73™ and S,y is the well-known
von Neumann entropy. Using the time-invariance of
Sy under the unitary evolution of the isolated system
together with the fact that the initial state is diagonal,
so that Sq.0 = Syn.0, then (30) implies!®35

Sd;t > Sd;O' (31)

We use this result and the Husimi-Mori lemma, 307

which states that for any convez function g(x) and state
|t) we have

(Wlg(pe)l) = g({W]pe|)), (32)

to show that, if we choose the convex function g(z) =
—1In(z) so that —(a|Inj;la) > —In Py, the thermody-
namic entropy satisfies

8= (8i) = =3 Palalnpila) > Sue > S0, (33)

where Sy = Sq;0 = Sun;0 by the assumption of the initial
diagonal state. For our isolated system for which there
is no entropy to be transported outside of its boundaries,
this proves that S; satisfies the second law of thermody-
namics.

Note that, by splitting p: = 0+ + p;” and using the
convenient resolvent representation of the logarithm of
an operator sum’°

N . o0 1 1
1A+B:/ d< - _ > 34
A+ B)= [ de( g ) B0

we can expand the thermodynamic entropy as

St = Sd;t

1 Poy Pg.t}
+ - . In ==
Z {(Pﬁ;t - Pa;t) (Pﬁ;t - Pa;t)2 Pa;t

o, B(#a)
< (el g~ 18)1* + O™ 1)),

(35)

with S — Sg > 0 due to (33); therefore the thermody-
namic entropy, unlike the diagonal entropy, is able to cap-
ture entropy increasing processes due to quantum corre-
lations or entanglement among the different subsystems,
that are encapsulated in the off-diagonal elements of the
density matrix. When these quantum correlations are
negligible which, as discussed in section III, is the case
when each subsystem is macroscopic, the diagonal en-
tropy becomes the thermodynamic entropy according to
(35), and due to the quasistatic (or slow) nature of the
global transformations involved in this case, the ther-
modynamic basis may be referred to as the adiabatic
basis.13:76

The thermodynamic entropy, unlike the diagonal and
von-Neumann entropies, satisfies the third law of thermo-
dynamics in a transparent way. The third law states that
the thermodynamic entropy at zero temperature must be
zero. The standard argument is that at zero tempera-
ture any physical state is pure. For an arbitrary pure
state [1), there is always an orthonormal basis of Hilbert
space which has this state as one of its elements (con-
struct it via the Gram-Schmidt procedure starting from
[t))). Denote this basis, {|¢r)}, and order its elements
such that |¢) = [¢1). We take this basis as the reference
for “diagonal”. With this we then have for the diagonal
and von-Neumann entropies

Sa(¥) = Sun(yp) == > PInP,

—1-In(1) = > 0-In(0),

r#1

(36)

where P, is the probability that the system be found in
state [¢,.). Eq. (36) is usually understood to be zero,”
although it is clearly an undetermined quantity since,
taken at face value, —0 - In(0) =0 - co.

The thermodynamic entropy of pure states is well-
defined and readily vanishes. In order to show this, we
denote the density matrices (projectors) p, = |1} {1y,
with 3 p, = 1. We can then write

npy = =3, 160) = = 302, (3, 160" fu. (37)

Using this, we can compute the thermodynamic entropy
of the state |¢) as

S@) == (el DIn(pr)[hr) = — ([ In(p1)[1). (38)

T

This clearly vanishes exactly since [¢)) = |¢1) is orthog-
onal to all |1,1) involved in the last equality of (37).
This establishes the third law of thermodynamics.

We are after an entropy balance equation for the sub-
systems, so we need an equation of motion for S; and a
procedure to get from this one for each subsystems, as in
the previous section. This can be obtained by first not-
ing that the usual unitary evolution of the density matrix
implies that S; also satisfies the Liouville-von Neumann
equation” satisfied by p,. We have

i0,5; = [H,8;] = LS,. (39)

This allows us to follow exactly the same procedure origi-
nally used with the density matrix*®4? to derive an equa-
tion of motion for its diagonal part, ¢;, the so-called
Nakajima-Zwanzig generalized master equation. That is,
we split the entropy operator into a diagonal and non-
diagonal part, with respect to the eigenbasis of H, as
Si =& + 577, and obtain an equation of motion for the
diagonal part using Zwanzig’s integral®

t
i0,8; = DLS; + DLe "NESy — / drK. 8-, (40)
0



where the memory kernel is defined as””
K, =DLe "™NINL. (41)

Now, it is easy to verify that DLD = 0 for any
Hamiltonian,”” therefore the first term in (40) vanishes
and, with our initial diagonal states implying 5~0~ = 0,
we are left with the integro-differential equation

t
0,8 = — / drK. S, (42)
0

Although an exact solution for (42), as well as for the
similar equation satisfied by ¢;, can easily be found by a
Laplace transformation followed by an inversion

1 c+ioco est
== ds
2mi

3+K5‘§°’ with ¢ >0, (43)

where K is the Laplace transform of the memory kernel,
obtained from (41) as

1

K,=DL ——
s+ iNL

NL, (44)
we restrict here, for the sake of a clear presentation and
for comparison with the classical results, to the Born-
Markov approximation for weakly coupled subsystems,
leaving a more general discussion for another publication.
This approximation, which is justified in the limit of very
weak coupling potentials, V', and very long times (Van
Hove limit”® ) amounts to neglecting memory effects in
(42). In practice, this works for times after any transient
effect or prethermalization plateau®’ ®2 of the isolated
system has passed. We then have in this limit

S, = — lim K, S, (45)

s—0t

where K, and S‘t, after being expanded in powers of V,
are truncated up to the lowest orders, for which the well-
known identity for the resolvent operator expansion

(A+B)'=Aa"1-A"'B(A+B), (46)

is very useful. Taking expectation value of (45), and
noting that for a diagonal operator G we have (G); =
Tr p;:G = Tr 0:G, the average rate of change of the ther-

modynamic entropy in the Born-Markov limit is then
Pa
Py

(0:St) =Y PaWaa In

ao’

(47)

with the transition rates Wae = 2m0(ca — o) |Vaa! |2
calculated in the lowest order in the coupling potential
using Fermi’s golden rule. Here, we have derived the
transition rates from (44) and (45), by using the repre-
sentation of the delta function®?

1
li = . 4
sg(l)l+ Re s +iw mo(w) (48)

7

Moreover, Py = <a|@§0)|a) is the occupation probabil-
ity of the state |a) in its lowest-order approximation,*®
which also satisfies the Born-Markov limit of the gener-
alized master equation, that is, the transport (or Pauli)
equation

8tPa :Z(Pa’wa/a_PaWaa’)- (49)
The right hand side of (47) can be rearranged to yield
the quantum version, in the Born-Markov limit, of the
entropy balance equation. We find

(8,8;) =11 — @, (50)

where the average rate of entropy produced in the system
is interpreted as8* 38

1
II= 5 Z (PaWaa/ _Pa/Wa’a)l

a,o’

Pa Waa’

n—2_2 = (51
Pa’Wa’a ( )

and the average entropy flux to the surroundings as

1 Weaer
¢ = > (PaWaa = ParWara)In Z";

a,o’

(52)

Of course, the latter must be zero for an isolated sys-
tem since a global entropy current finds nowhere to go in
this case. The vanishing of this quantity is clearly seen
from the symmetry of the transition rates Weyos under
the interchange of indices, resulting from the hermiticity
of the perturbation V. A nonvanishing entropy current
is obtained however when we consider the local entropy
production in a subsystem of a larger system, as in the
electrical conduction problem of section VI.

Note that IT is a sum of terms of the form (z—y) In(z/y)
so is always non-negative. It vanishes for reversible trans-
formations (local equilibrium) or in equilibrium due to
detailed balance, Py, Waa' = P., Wq/a, this being a sta-
tistical statement of the second law of thermodynamics in
the Clausius form. The outlined method is the one that
we shall follow in section VI for the electrical conduction
problem to derive an entropy balance equation for the
electronic subsystem in the Born-Markov limit, based on
the transport equation for the total electrons + phonons
+ field system, without any need to invoke expressions
like (20) together with extra conservation laws.

One of the advantages of our approach, besides be-
ing grounded on fundamental facts regarding the nature
of thermodynamic observables is that, as opposed to ac-
tively studied relative-entropy formulations®” 3? of quan-
tum entropy production, it can be generalized to initial
states with correlations among the subsystems, i.e. not
of the local equilibrium form. This is very important
since the neglection of correlations in the state of an iso-
lated system is inconsistent with the specification of its
energy.®? We have safely ignored this fact in our present
discussion because the consideration of a nonvanishing
second term in (40), due to S5” # 0, only adds the term

1 ctioo est 1 N
L S
s+iNL™’

D
omi ). SR,

(53)



to the solution (43). However, it is easily seen that ex-
pressions containing S’(j contribute higher order terms
in the weak coupling expansion embodied in the Born-
Markov limit and then are negligible; the same happens*®
for the contributions coming from p§’ in the Born-Markov
limit of the generalized master equation for 9;. There-
fore, our formalism has room to study memory effects and
strong correlations in the initial state by only straightfor-
ward modifications. These memory effects are the ones
responsible for heat transport depending on the path
of thermodynamic states in phenomenological thermo-
dynamics.

V. RELATION WITH CLASSICAL
STOCHASTIC THERMODYNAMICS

We now show that our result, (47), is consistent with
the result for the average rate of change of the thermody-
namic entropy obtained in Onsager’s classical theory. We
consider an isolated macroscopic system which has been
left alone for a very long time (aged system). The classi-
cal thermodynamic state is described by a set of exten-
sive variables, such as energy, mass, electric charge, etc.,
which randomly fluctuate about their equilibrium values
and whose values define the classical state of the system.
This state is represented by the symbol a; (shifted to
vanish in equilibrium), whose successive values in time
describe a stationary stochastic process.

It can be shown that, if the fluctuations follow a Gaus-
sian process, which can be argued to be the case if the
extensive variables are algebraic sums of very many in-
dependent (weakly coupled) “microscopic” quantities so
that the central limit theorem can be invoked and, if in
addition the process is Markovian, then the joint proba-
bility distribution,

Q(a/, At, a//) — Pa/Pa/a// (At), (54)

for observing the values ay = a’ and a;» = a” at the
respective times separated by an interval At =t — ¢/,
with Pyrq (At) the corresponding conditional probability
to make a transition between these states, is given by
Onsager’s principle,”® 92 which we write as®?

+

21119(01/, At, a”) = Sa/ —+ Sa// —+ </
t

dr 3) , (55)
' min
where the path of integration is the trajectory, a,, which
makes the integral a minimum, subject to the conditions
ay = a' and a;r = a”’. Clearly, if we take the limit
At — 0, the integral tends to Sg'At, where S,/ is the
entropy production rate in the state a’, whose entropy
is related to the probability distribution, P/, by Boltz-
mann’s principle. Subtracting the time-reversed expres-
sion of Onsager’s principle from (55) we get, in the limit
At — 0, the alternative form

Qa’, At,a”)

n Qa”, —At,a’)

1 . .
= 5(8ar +San)rt, (56)

We now average (56) over the joint distribution (54),
which is expanded up to linear order in At by writing
the transition probabilities to go from a’ to a” after a
time At as

Pa/a// (At) = 5a’a” —|— Wa/aNAt = Pa/’a’(_At); (57)
the last equality being the statement of Onsager’s mi-
croscopic reversibility,’®?* and leading to the symmetry
of the transition rates, Wy -, under the interchange of
indices. This symmetry allows to write the averaged left-
hand side of (56) as At Za/a” Pa/ Wa/a// hl(Pa//Pa//) and
the right-hand side as At )", PaSqs Therefore, by rec-
ognizing the latter sum as (S), we get the expression

. Py
= Pa’ a'a 1 5
(S) =Y PaWararIn e (58)

a'’

a'a'

which gives the desired link with our theory, by compar-
ing with (47). We remark that (56) is of the same form?

PAt(U) o

as Gallavotti and Cohen fluctuation theorem,”® if we read
(1/2)(Sar + Sar), as a realization of the random number
o = (1/2)(Sa, + Sa,,), representing the average entropy
production in going from a to ay» during a time interval
At along the stochastic trajectory of states; and translate
the joint probability, Q(a’, +At, a”), to have the state re-
alizations a = a’ and a = a”, in a forward (+At) or
backward (—At) evolution, to the corresponding proba-
bilities Pa;(£0) to have the realization, (1/2)(Sa+Sar),
of o or its time-reversed value.

VI. ENTROPY PRODUCTION IN
ELECTRICAL CONDUCTION

We next apply the formalism to a model of indepen-
dent electrons coupled to phonons in the presence of an
electric field. We are interested in the average rate of en-
tropy produced in the electronic system and transported
to the phonons in the steady state. The picture is then
that of a large system divided into three subsystems, the
electrons, the phonons, and the sources of the field. In
the thermodynamic description we parametrize, as usual,
the coupling to the latter by introducing E; and forget-
ting about the structure of this subsystem.

The Hamiltonian of the total system is then

ﬁ: ﬁcl+ﬁph+ﬁcl—ph+ﬁ}7;tv (60)

where f[el = Zk €L ézék is the kinetic energy opera-
tor for the electrons, which are assumed to be free ex-
cept for their interaction with the field and the phonons,
the energy operator of the phonon subsystem is Hpp =



> Wa a}ag, and the electron-phonon interaction is bilin-
ear in electron operators and linear in phonon operators

Hopn = Y M, el éx (g +a" ), (61)
qkk’

with M}, representing the strength of the coupling. The
generalization to multiple electronic bands and multiple
phonon branches is straightforward and does not change
the results. Finally, Hp. represents the effects of the
applied electric field, E;, and can be written in first-
quantized notation as Hp; = —e E; - Ze x., where @,
is the displacement of electron e from some arbitrarily
chosen reference position.

Up to time t = 0 we have a collection of electrons in
local equilibrium with the lattice vibrations of a metal
at a temperature 7', and no applied electric electric field,
i.e. By = 0. The initial state is then of the form

po = 2" exp[—(Ho — pNu) /), (62)

where Z = Z.Zpy is the grand partition function, Nel is
the operator for the total number of electrons, and Hy is
the Hamiltonian of the uncoupled subsystems

7:[O = I;[el + ﬁpha (63)

whose eigenstates, constituing the thermodynamic basis,
are

lo) = ning - mg - )[N1Na -+ Ng -+ +) = [n; N), (64)

which represent the number of electrons, {nx}, and
phonons, {N,}, in each single-particle state.

The electric field is turned on at time ¢t = 0% to a con-
stant value, i.e. E; = E fort > 0, and the subsystems are
subsequently coupled. In the notation of section IV we
then have in the generalized thermodynamic description

H=Ho+ Hp, V = Hel—ph' (65)
Note that V is the coupling which fully mixes the de-
grees of freedom of the different subsystems (like the Hy,,
in section IIT), which need not be separated by spatial
boundaries. We now explain with some detail how the
perturbation scheme developed in section IV applies to
the present case. However, we only need to concentrate
on how the transport equation is obtained in the Born-
Markov limit, since this suffices to get the average rate
of entropy production.

The idea is then to first derive the transport equa-
tion for the total system from the Liouville-von Neumann
equation; we do it much in the same spirit as Kohn and
Luttinger®® did for elastic electronic scattering and gen-
eralized by Argyres®” to inelastic scattering. Having this
transport equation, the average rate of change of the to-
tal thermodynamic entropy in the Born-Markov limit is

(00St) = = (01Pa)In P, (66)

(a7

as can easily be verified by using (49) in (47). By proceed-
ing with the transport or quantum Boltzmann equation
for the electronic subsystem, we obtain a simple expres-
sion for the electronic entropy production.

For the purpose of the present discussion, it suffices to
work with the Liouville-von Neumann equation to first
order in the electric field. That is, with p; = po + p1.
and pi,; linear in the electric field, we write

iatﬁl;t = [7:[0 + ‘77 ﬁl;t] + [‘HFa pAO]u (67)

where p1,0 = 0. The Laplace transform of this equation,
with p1,s = fooo e 5t p1,, reads

18015 = (Lo + Lv)[)l;s + SilLF[)o. (68)

With ¢1,s = Dpr,s and pii, = Np1s, we separate this
equation into a diagonal and a non-diagonal part, ob-
taining, respectively, the coupled algebraic equations

is01;s = DLy pYi, + s 'DLppo, (69)
lis + N (Lo + Lv)] pTis = NLy b1,s + s~ '"N'Lppo. (70)

Solving for p7, in (70) and substituting the result in (69)
we get a decoupled equation for g;.5, which in the lowest
Born approximation for the electron-phonon scattering
reads

1
is01,s = DLy ————+N1Ly 1.5 +s 'DLrpy. (71
01;s VZS+N£0 V O1;s FPo ( )
From this, the transport equation for the total system
easily arises in the Born-Markov limit by taking the
Laplace inverse and neglecting memory terms. In terms
of the occupation probabilities Py = (a|d¢|ar) we get

1 .
8tPa = ;(LFPO)Q + ;(Pa/Wa/a — PaWaa') (72)

with the transition rates induced by the electron-phonon
coupling Wae = 276(e0 — o )| (| Herpn| @) [2. We have
then derived the transport equation for the total system,
in terms of which the average rate of change of the total
thermodynamic entropy can be calculated, in the Born-
Markov limit, using (66).

To proceed with the calculation of the entropy produc-
tion of the electronic subsystem, we note that

Po = PS'PRMCR", (73)

where P¢! is the probability that the electrons are in the

Fock state |n) regardless of the state of the phonons, P]{’,h
is the probability that the phonons are in the Fock state
|N) regardless of the state of the electrons, and xfllj'\?h is
the conditional probability that the total system is in the
state |a) in (64), given that the electron and phonon sub-

systems are in states |n) and |N), respectively, without
“knowing” about each other. Clearly, Xfll}\l,)h is a function
of the electron-phonon coupling strength, and can then
be expanded in a power series of it

el-ph(

l-ph I-ph(2
XaN = 14Xy S

Ve )



In the lowest Born approximation for the electron-
phonon scattering, the electron and phonon subsystems
are uncorrelated, i.e. Xfﬂj\?h = 1, which is the usual Born-
Oppenheimer approximation, and then by substituting
(72) and (73) into (66), the average rate of change of the
thermodynamic entropy of the total system turns out to

be additive. For the electronic subsystem we have

(0:St)er = = > (0: P In P, (75)

n

where the normalization condition ) P}\’,h = 1 has been
used. Here, the transport equation for the electronic sub-
system is obtained from (72) by summing over N

1
Pl == (Lrppo)nnn Pl — P ),
y P izN:( Fo) N,N"';(n n )

(76)
where we have defined the phonon-averaged reduced
transition rates I',,,, as

an/ = Z P]P\)]h Z WnN,n’N/- (77)
N N’

We can still go further and use the assumed statistical
independence of the electrons to factorize their probabil-
ity distribution into the probabilities of the one-electron
states

P’SI - pnlpnz o 'pnk R (78)

where py,, is the probability that the one-electron state
with quantum number k has occupation ni = 0,1. Sub-
stituting this in (75) we obtain an additive contribution
to the average rate of change of the thermodynamic en-
tropy of the electronic subsystem

OSa = = 3 (O npu, = — Y (01 fi) o 2

femg 3 Jr
(79)
where in the last equality we identify the nonequilibrium
one-electron distribution as fr = an NEPn), = Dnp=1

and use an/ Pn,, = 1 to express pp,—o = 1 — fr. The
transport equation for fj is obtained by multiplying (76)
by ni and summing over all n. To this end, note that

Z WEkk' nk(l — nk/)
K,k (kR (80)

J —

which is obtain by using (61) explicitly, where the one-
electron transition rate from state k to state &’ is

i =20 3 ML [N (wg)d (e — e — w,)
q
=+ [1 + ]\_/'(wq)} 6 (Ek’ — €k + wq) ) (81)

with N(w,) = Y n P}\),h<N|d:§dq|N> the average num-
ber of phonons in the single-particle state with quantum
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number g. We assume that the phonon subsystem can be
kept in equilibrium at temperature T' (hence the depen-
dence of N on wq only), no matter the nonequilibrium
state of the electrons, as is the case for a good enough
heat reservoir.

That the phonons can be considered as a heat reservoir
in the Born-Oppenheimer approximation can be seen by
looking at the transport equation for the phonon subsys-
tem, obtained from (72) by summing over n

aPY = (PRION N — PR ONN), (82)
Nl

where we have defined the electron-averaged reduced
transition rates as

@NN/ :ZPSIZWnN,n’N" (83)

Here we observe the important fact that the contribution
from the first term of (72) vanishes due to the null value
of the trace of the commutator [Hp, jo] in the subspace
of electrons. This allows the existence of a steady state
solution of (82) for which detailed balance holds, which
is then an equilibrium solution. In any case, the assump-
tion that the phonons are in equilibrium is not necessary
for the following derivation of the electronic entropy pro-
duction, as N(w,) in (81) can be replaced by the more
complicated average obtained by using the nonequilib-
rium solution of (82), not investigated here.

The transport equation for the one-electron distribu-
tion is then found to be, from (76)

atfk = % Z ng (LFﬁO)nN,nN+Z Nk (Pg}rn’n_Pglrnn/)
nN nn’

(84)

This is just the quantum Boltzmann equation. To write

it in the familiar form we first note that, by writing He

in first-quantized form and using the well-known formula

[@e F(Be)] = iV, f(Be) we have Ly = i(e/T)E - oo,

where © = Y _(pe/m) =, vkézék is the velocity oper-

ator of all electrons, with vy = Vier the band velocity.
Therefore, the first term in (84) is

1 E
(O fro) avite = 7 %v:nk(LFﬁo)nN,nN = % - Tr (R 0po),
=cE v fy(1 - f)/T = —cE -V f,
(85)
where f = Tr(fypo) is the equilibrium Fermi-Dirac one-

electron distribution. The second term in (84) can be
written, using (80), as

(6tfk)coll = an (Ps}l—‘n’n - Psll—‘nn’)u

nn’

= ZPslnk Z wk’k”(l — nk’)nk” (86)

kl/,]i}”

— E P,‘jlnk E wk/kunk/(l—nku).
n

k/,k}//



Therefore, by noting that ng(1 — ny) = 0 and using (78)
we see that the terms which do not cancel in the above
sums are

(O fr)con = Z[fk’ wirk (1= fi) = fiowirr (1= fir)]-
k/

(87)
We have thus arrived to the familiar form of the quan-
tum Boltzmann equation by substituting (85) and (87)
into (84). With this, we can rewrite the average rate of
change of the thermodynamic entropy of the electronic
subsystem, from (79), as

<at‘§t>el = Hel - (I)elu (88)

which is the entropy balance equation for the electronic
subsystem, with the average electronic entropy produc-
tion rate

I = %Z [frr wirk (L= fr) = fre wirr (1= f1)]
kk’
o o JEwwk (L= Ji) (89)

frwpr (1= fr)’

which, similar to (51), is a sum of terms of the form
(x —y)In(z/y) and then satisfies the second law of ther-
modynamics; and the entropy flux from the electrons to
the phonons is

D = % ; [frr wrene (1= fi) = frwrn (1= fi)]In ZZ:
+ zk:(atfk)drift In 1i—kfk (90)

In the steady state the left-hand side of (88) is exactly
zero and then all the entropy produced in the electronic
system is transported to the phonons. We now want
to show that this steady-state entropy flux toward the
lattice vibrations gives the expression of the well-known
Joule heating.

We need a solution, fr = f2 + 0fk, of the quantum
Boltzmann equation which, to linear order in the electric
field strength, we write formally as

fe=> Wik FE—;”%‘S/ 1=f)|, ()
k/

where the linearized collision operator W, has matrix el-
ements

OkL!
Wik = [Rwgp + Wik (1 - f,?) — i: ) (92)
The quasiparticle relaxation time 75 is given by
1
E:Z[flg’wk’k+wkk’(1_flg’)]v (93)
k/

and becomes equal to the momentum relaxation time if
the transition rates wyy are independent of the angle
between k and k.
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We now expand (89). Because both the logarithm and
the prefactor vanish in equilibrium the leading contribu-
tion is O(5f)2. The term from expanding the logarithm
is easily seen to be

ofw  Ofk
=1 RO=£)

while the term coming from the prefactor is

Wit 0 frr — Wi k0 fre. (94)

Combining these equations with (91) yields

eF - v ocE?
I = E Ofr, = —, (95)
- T T

where, in the last equality, we recognize the electric cur-
rent as e(v) = >, evidfy = oFE | with o the electric
conductivity. Thus we see that to leading order in the
electron-phonon coupling and the electric field, and on
the assumption that the phonons act as a reservoir, the
electronic entropy production predicted by our formula
is exactly the result expected from the Joule heating,
TIl, = oE?, implied by the electric field. Therefore,
as desired, we have arrived at an expression of energy
dissipation from a first-principle calculation of entropy
production, not the other way around, as in previous ap-
proaches.

We remark that the results for the entropy produc-
tion presented here are beyond the linear response the-
ory. This is because, even when starting from the linear
in the electric field correction to the density matrix, p1.+
(see Eq. (67)), we derived the leading contribution to the
electronic entropy production which is quadratic in the
electric field. This is in contrast to past approaches?396
for the calculation of the Joule heating, which requires
going to the second order in the electric field contribution
to the density matrix po.; for the calculation of the rate
of change of the energy of the electrons. A field-theoretic
approach?®99 for the calculation of higher order terms
in the entropy production, beyond the Born-Markov ap-
proximation will be treated elsewhere.

It is illustrative to evaluate the result explicitly, assum-
ing e.g. dispersionless optical phonons w,; = wg. With
|MJ,, |> = M 64 5k, and assuming a degenerate electron
system (i.e. T < ep) we obtain

(e?E?/3mrmM) D,
DéF*wo + D€F+w0

Iy = (er/T)sinh(wo/T),  (96)

with D, the electron density of states. In this case, the
entropy production becomes large at low temperatures
due to an increase in the conductivity (phonons not ther-
mally activated and then scarcity of scattering centers),
and hence in the Joule heating; this is expected when the
only scattering mechanism is from optical phonons.
Finally, we would like to point out the connection of the
result (95) with the discussion in section III concerning



the foundations of the classical theory. With only the
action of one of the subsystems (the sources of the E-
field) treated parametrically, with the three spatial com-
ponents of the field Fy playing the role of the external
parameters to the electronic subsystem, we can define an
operator F\ = OHp/OFE) for the force exerted on the
electrons upon variation of the field and write

T, = ZFAatE)\ =0 ZF)\EA - Z(atFA)E)\
A A A (97)
zatﬁF—l—e'f;-E:eﬁ~E,

where Hp = —e ZMB E,22, and to get the last equality
we use O Hp = O,H = 0, since the total system is iso-
lated. Taking expectation value of (97), the last equality
is just (95) and the form of the first equality is reminis-

cent of the classical expression (25).

We then see that, although in the present discussion
the subsystems are not separated by spatial boundaries
(the essence of the generalized thermodynamic descrip-
tion) and there is no local equilibrium at all times: the
phonons remain in equilibrium, as implied by the as-
sumption that they constitute a good heat reservoir, but
the electrons attain a nonequilibrium steady state; the
common feature with the discussion in section III is the
complete factorization of the probability distribution of
the system over the degrees of freedom of the different
subsystems (uncorrelated subsystems), here manifested
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as the Born-Oppenheimer approximation. An appropri-
ate account of the quantum correlations between subsys-
tems is therefore the key to purely quantum thermody-
namic behavior.

VII. CONCLUSION

We have developed a theory for the entropy production
in quantum many-body systems by introducing an en-
tropy operator and calculating the average rate of change
of its thermodynamically measurable part. We show that
the laws of thermodynamics are satisfied exactly within
our formalism. In the Born-Markov approximation which
describes the physics of weakly-coupled subsystems of
an isolated system in the long-time limit, the theory re-
produces the entropy balance equation which is funda-
mental in classical nonequilibrium thermodynamics and
the Joule heating contribution to the entropy produc-
tion expected in a standard conductor. Applications to
other systems as well as generalizations beyond the weak-
coupling limit will be presented elsewhere.
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