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In recent years, material-induced noise arising from defects has emerged as an impediment to
quantum-limited measurement in systems ranging from microwave qubits to gravity wave interfer-
ometers. As experimental systems push to ever smaller dimensions, extrinsic system properties can
affect its internal material dynamics. In this paper, we identify surprising new regimes of material
physics (defect-phonon and defect-defect dynamics) that are produced by dimensional confinement.
Our models show that a range of tell-tale signatures, encoded in the characteristics of defect-induced
noise, dissipation, and nonlinearity, are profoundly altered by geometry. Building on this insight,
we demonstrate that the magnitude and character of this material-induced noise is transformed in
microscale systems, providing an opportunity to improve the fidelity of quantum measurements.
Moreover, we show that many emerging nano-electromechanical, cavity optomechanical and super-
conducting resonator systems are poised to probe these new regimes of dynamics, in both high and
low field limits, providing a new way to explore the fundamental tenets of glass physics.

I. INTRODUCTION

The demand for ever higher-fidelity quantum measure-
ment and information processing using photonic, mi-
crowave, and phononic excitations has invigorated in-
terest in the quantum origins of noise and decoherence
within materials. As scientists and engineers seek to re-
duce the noise in their quantum systems, they have been
operating at lower and lower temperatures. This strat-
egy minimizes noise induced by thermal fluctuations, but
low temperatures also reveal a fundamental problem: ex-
cess dissipation is produced by low-energy defect centers
[1–4]. These defect centers, termed two-level tunneling-
state systems (TLSs), behave much like atoms, and cou-
ple strongly to electromagnetic (EM) and phononic fields;
the adverse impact of these defects becomes more acute
as temperatures are reduced. While TLS defects are in-
herent to amorphous materials [4, 5], they occur and can
be induced in crystalline media in a number of ways, rais-
ing many questions about their appearance in a range of
new quantum systems [6–41] (e.g. Fig. 1).

Over the past several decades the properties of dense
ensembles of low-energy defects have been extensively
studied in bulk amorphous materials [4, 5]. TLS-based
models of defect physics accurately capture (predict) the
observed phononic, optical and microwave loss and noise
characteristics. To date, it has been appropriate to use
the bulk models of TLS ensembles in the vast major-
ity of systems. However, with the emergence of high-
confinement phononic, nanoelectromechanical (NEMS),
optomechanical, and microwave systems, circumstances
arise where it is no longer appropriate to invoke the many
properties of bulk systems [24, 27, 42–45] (see Fig. 1). As
phonons and EM waves are confined to ever decreasing
volumes, it is unclear how dissipation, noise, and nonlin-
earity will be altered [44].

In this paper we show that the magnitude and char-
acter of noise, dissipation, and nonlinearity arising from
low-energy defects is radically modified at mesoscales,

offering new challenges and opportunities for emerg-
ing NEMS, optomechanical, and superconducting res-
onator technologies (see Fig. 1). In contrast with
bulk systems, TLSs in mesoscale structures interact with
a zoo of hybridized excitations where small mode vol-
umes, dispersion, and changes of the density of states
strongly enhance (or suppress) coupling to the EM and

FIG. 1. Systems where defect-phonon and/or defect-photon
interactions may be dimensionally reduced: a) silica micro-
toroids, b) silicon optomechanical systems, c) superconduct-
ing qubits, and d) nanoelectromechanical systems
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phononic fields. Consequently, appreciable modulation of
TLS-induced noise, dissipation, and nonlinearity can be
achieved by scaling system dimensions [24, 27], opening
a path toward extended coherence times in qubits [27],
high-fidelity quantum information processing, phonon
lasing [46, 47], and new regimes of quantum nonlinearity
[45].

Starting from the established phenomenological model
of low-energy defects [4], we use techniques of quantum
statistical mechanics to characterize the dynamics of in-
dividual TLSs in mesoscale structures. These defects in-
teract with confined EM and phononic fields as well as
other defects. We find that the excited state lifetime for
defects is geometrically reshaped in waveguides and res-
onators, for example, by Purcell enhancement [48, 49] of
emission into slow group velocity or stationary resonator
modes. In addition, we show that key defect dephasing
processes depend sensitively on the system dimension,
being thoroughly suppressed in 1D waveguides (see text
for details). Utilizing the intimate connection between
defect dynamics, noise, and absorption we demonstrate
that large geometric modulation and reshaping of TLS-
induced noise spectra, huge system-dependent changes
in the saturation characteristics of dissipation, and un-
precedented reduction in the fundamental TLS-limited
dissipation floor is achievable with skillful device design.

The paper is organized as follows. In Sec. II we discuss
the variety of systems affected by TLS-induced losses. In
Sec. III we lay the foundations for the theory of defect-
induced noise applicable to reduced dimensional systems.
In Sec IV. defect decay and dephasing rates are discussed,
the acoustic analog of Purcell enhancement is derived and
the phenomenology of spectral diffusion is developed. Re-
sults for defect-induced dissipation are presented. Dis-
sipation in D-dimensional systems, saturation of reso-
nant absorption, and the effects of a gapped phononic
spectrum are discussed. The conditions for dimensional
reduction are discussed topic by topic. In conclusion,
general results and insights of the reduced dimensional
theory are codified.

II. MATERIAL INDUCED NOISE AND
DISSIPATION

The tunneling state model (TSM) of low-energy de-
fects was introduced in the 1970s to explain the anoma-
lous low-temperature properties of the heat capacity of
glasses [1–4, 50]. Since the inception of the TSM, exhaus-
tive studies have established the TLS concept as a cor-
nerstone of glass physics as it provides a tractable model
to describe the low-temperature characteristics of highly
disordered media [4]. Tunneling states are hypothesized
to arise from atoms (or groups of atoms) residing in asym-
metric double-well potentials that are believed to be in-
herent to amorphous materials (see Fig. 2). In recent
years, however, it has been realized that TLSs are ubiq-
uitous: they are induced in crystalline materials by irra-

diation [51], impurities [4, 52, 53], dislocations [24], and
oxidization [6, 8, 10, 11, 18, 21, 27, 29], and they appear
at surfaces and interfaces [9, 10, 17, 18, 20, 26, 27, 29, 38],
making them an important consideration for noise and
dissipation in a variety of quantum systems.

FIG. 2. a) Double-well potential of asymmetry ∆ for a tun-
neling state defect. b) Excited |e〉 and ground |g〉 eigenstates
are gapped by energy E.

Numerous studies have shown that TLSs interact
strongly with phonons [54–56], light, and microwaves [4],
allowing them to absorb and emit EM and acoustic en-
ergy. While an individual TLS typically couples to EM
and acoustic modes at comparable rates, the relaxation of
TLSs is dominated by phonon emission. This is because
the large disparity between the light and sound speeds
makes the phonon density of states (and emission rates)
typically orders of magnitude larger. Hence, through
absorption TLSs act to dissipate coherent excitations,
and through stochastically driven emission (dominated
by phonons) TLSs act as a source of EM and acous-
tic noise, these phenomena being intimately connected
through the fluctuation-dissipation relation.

TLS-induced noise (dissipation) has two signatures:
enhancement at low temperature, and high-power sup-
pression (saturation). These signatures have been ob-
served in an increasing number of mesoscopic and macro-
scopic systems seeking to utilize quantum coherence for
both information processing and metrology. For instance,
TLSs reside in tunnel junctions [6, 8, 19, 21–23, 30], ox-
ide surface layers [10, 11, 18, 27, 29, 40], and at inter-
faces of superconducting circuits [17, 18, 38] and electro-
optomechanical systems [12] (Fig. 1); similarly, they
are found in crystalline bulk acoustic wave resonators
at dislocations and impurities [28, 32–35]. Tunneling-
states are endemic to amorphous systems where they
limit the quality factor of optomechanical microtoroids
[14, 15, 25] and NEMS and micro-electromechanical sys-
tems (MEMS) [9, 24, 36, 37] (see Fig. 1), and they lead to
Brownian motion of mirror coatings that degrades the fi-
nesse of interferometers used for gravity wave astronomy
[57, 58]. Hence, the mastery of defect-physics is essential
to the manipulation of noise and dissipation in meso-
scopic systems, and provides an avenue toward radical
improvements in the performance of cutting-edge tech-
nologies.

As an ancillary outcome, the exploration of defect
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physics in mesoscale systems directly probes the founda-
tions of glass physics [44]. Despite the success of the tun-
neling state concept, the microscopic nature and origin
of TLSs is still unclear [4], and in addition, the TSM can
only explain the apparent universality of many low tem-
perature glass properties [5, 59] as resulting from a fortu-
nate fine tuning. These puzzles have inspired researchers
to look for alternative theories to the TSM [59–63] that
are testable in reduced-dimensional systems [44].

III. THEORY OF
DEFECT-PHONON/DEFECT-PHOTON

INTERACTIONS IN MESOSCOPIC SYSTEMS

At low temperatures tunneling state defects can be
modeled as effective two-level systems with a spin anal-
ogy [1, 3, 4]. The total Hamiltonian H describing the
interaction of TLSs with phonons is given by

H =
∑
q

~Ωqb
†
qbq +

∑
j

1

2
Ejσz,j +Hint +HTLS-TLS.

(1)

The first term on the right-hand side is the free Hamil-
tonian for the confined phonon field where q is a col-
lective phonon mode index, and bq, b†q, and Ωq are the
respective annihilation operator, creation operator, and
angular frequency of the qth phonon mode. The sec-
ond term is the Hamiltonian for the ensemble of non-
interacting TLSs. The sum on j adds the contribution to
the system energy from each defect with respective en-

ergy Ej =
√

∆2
j + ∆2

0j , double-well asymmetry ∆j , tun-

neling strength ∆0j , and where σk,j is the kth-component
of the defect’s Pauli spin operator [4]. The final two
terms, Hint and HTLS-TLS, describe the interactions of
the coupled system, schematically shown in Fig. 3 and
described below. In addition, TLSs interact with the
confined electromagnetic field, but the Hamiltonian for
photons is not included above for compactness.

Perturbations of the double-well potential asymmetry
∆ by elastic strain couple defects and phonons, and EM
coupling is produced by charge transfer connected with
TLS state transitions. These two coupling mechanisms
are described by the interaction Hamiltonian given by

Hint =
∑
j

(
∆0j

Ej
σx,j +

∆j

Ej
σz,j

)
× [dj ·E(rj) + γj : ξ(rj)] (2)

where γj is the jth defect’s deformation potential ten-
sor, quantifying an energy shift induced by strain, and
dj quantifies the defect’s electric dipole coupling [4]. The
respective electric field and strain tensor evaluated at the
position of the defect are denoted by E(rj) and ξ(rj), and

the shorthand γj : ξ is defined by γabj ξab where the Ein-
stein summation convention is used. The strain is defined

FIG. 3. Illustration of system Hamiltonian: a) interaction
of jth defect with qth phonon mode, b) interaction of jth
defect with the EM field, c) defect-defect interactions, and d)
illustration of total coupled system.

as ξab ≡ (∂aub + ∂bua)/2 where ∂a is a spatial derivative
in the ath direction, and ub is the bth component of the
elastic displacement field.

The tensor structure of the deformation potential
can be worked out from the orientation of a defect’s
dipole moment and from the symmetry properties of
the system material [64]. For amorphous media, the
contraction of the deformation potential of an arbi-
trarily oriented TLS and the strain tensor is given by
γ : ξ = γ̃[(1− 2ζ)trξ + 2ζn̂ · ξ · n̂] where tr denotes trace,
and n̂ is a unit vector parallel to the TLS elastic dipole
moment, i.e. n̂ = sin θ(cosφ x̂+sinφ ŷ)+cos θ ẑ where φ
and θ are the azimuthal and polar angles in spherical co-
ordinates [64]. The deformation potential for longitudi-
nal and transverse waves, averaged over all defect orienta-
tions, is given respectively by γ2

` = γ̃2(15−40ζ+32ζ2)/15
and γ2

t = 4γ̃2ζ2/15 (see Fig. 4) [64]. For silica γ` ≈ 1 eV,

and γt ≈ γ`/
√

2 [54–56, 65] which results in two possible
values for the parameter ζ = {0.57, 1.10}, of which we use
ζ = 0.57. It is unknown whether such a form for the de-
formation potential will apply to thin films or microwires
where the bulk system symmetries may be broken.

FIG. 4. Illustration of defect-strain coupling mechanisms. a)
Arbitrarily oriented defect in an undeformed elastic body. b)
Defect in elastic body undergoing compressional motion, in-
duced defect elastic dipole proportional to γ`(n̂). c) Defect
in an elastic body undergoing shear motion, induced defect
elastic dipole proportional to γt(n̂) (see Eqs. 30).

The defect dipole electric coupling has been measured
in dielectric absorption experiments and takes the value
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|d| = 0.3− 3.3 Debye for silica [66]. Hence, for compara-
ble mode volumes photons and phonons couple to defects
with the nearly same strength.

The geometry of a system is encoded in the
mode structure and dispersion of the EM and acous-
tic fields. These effects are elicited by represent-
ing the elastic field as a mode summation u(x) =∑

q

√
~

2Ωq
uq(x)bq + H.c. where uq is the spatial eigen-

function of the qth mode. uq(x) satisfies the time-
harmonic Christoffel equation [67] and the orthonor-
mality relation

∫
d3xρ(x)u∗q(x)uq′(x) = δqq′ where ρ(x)

is the material density. For an isotropic material
µ∇2uq(x) + (λ+ µ)∇∇ · uq(x) = −ρΩ2

quq(x) where λ
and µ are the, generally space-dependent, Lamé coef-
ficients of the system [67]. Likewise, the strain field

can be expressed as ξ =
∑

q

√
~

2Ωq
ξ
q
bq + H.c. where

ξ
q,ab
≡ (∂auq,b + ∂buq,a)/2.

The final term in the Hamiltonian HTLS−TLS charac-
terizes the direct interaction between defects. The static
elastic dipole of a defect sources an elastostatic strain
field, in analogy with the electrostatic dipole field, that
mediates a direct interaction between TLSs given by

HTLS-TLS =
∑
j

∑
i 6=j

1

2
Jijσz,iσz,j . (3)

The defect-defect coupling strength Jij is determined by
separation, relative orientation, and system geometry (to
be discussed in detail below). A subleading ‘flip-flop’
contribution to HTLS-TLS coupling σx,i and σx,j , and the
effects of retardation have been neglected [68], for further
details see Sec. IV C.

With the theory outlined above, describing the inter-
action of defects with confined EM and acoustic excita-
tions (see Fig. 3 b), TLS-induced noise and dissipation in
mesoscale systems can be characterized. Such processes
are often determined by a large ensemble of TLSs, in such
cases the collective influence of the defect bath can be
determined statistically. A given system contains a col-
lection of defects, each having a unique energy, coupling,
orientation, and position. Statistically, these properties
are described by a defect density of states (DDOS) given
by F (∆,∆0) = PD/∆0 [4]. When a large number of de-
fects contribute to an observed process the sum

∑
j(...)

is well-approximated by an ensemble average over defect
properties, i.e.

∑
j(...) = VD

〈∫
d∆d∆0F (∆,∆0)...

〉
V

where angular brackets indicates an average over all
possible TLS positions and orientations, and VD is the
D-dimensional volume of the system. Generally, this
DDOS is position, orientation, and energy dependent,
i.e. PD ≡ PD(r, n̂, E), and has units of inverse energy
inverse D-dimensional volume [1, 3, 4]. A weak energy
dependence of PD ∝ Eµ has long been suspected as the
explanation of the anomalous temperature dependence of
the heat capacity in glass, scaling as T 1+µ (µ ≈ 0.3), and
which recent measurements, directly measuring the dis-
tribution of defects in energy, have confirmed [40]. How-

ever, a constant value of PD (P3 ≈ 5.45 × 1044J/m
3

in
silica [54–56, 65]) is sufficient to qualitatively and quan-
titatively explain many phenomena. It should be kept in
mind that the distribution of TLS energies, positions and
orientations may not be uniform in mesoscopic and/or
anisotropic systems. Alternative theories to the TSM at-
tribute the approximately uniform energy dependence of
the DDOS to the nature of defect-defect interactions in
bulk systems [44, 59–63], the behavior of the DDOS is
unknown in reduced dimensional systems where defect-
defect interactions are modified [44]. It’s unknown to
what extent crystalline materials may exhibit anisotropy,
but systems constructed from materials such as silicon
will inevitably have native oxide layers [69] that will con-
centrate tunneling states at surfaces.

IV. DEFECT-PHONON AND
DEFECT-PHOTON INTERACTIONS IN

MESOSCALE SYSTEMS

The size and geometry of emerging quantum systems
impact the nature of interactions between defects and
the EM and acoustic fields, leading to striking transfor-
mations of defect dynamics. The interplay of confine-
ment, coherence, and temperature lead to large changes
in defect decay- (T−1

1 ) and dephasing-rates (T−1
2 ), and

consequently, noise and dissipation induced by defects is
drastically altered as well. In the following sections we
discuss each of these aforementioned processes, and how
they are modified in mesoscale systems.

A. Defect decay in confined systems

Defect decay is strongly impacted in mesoscale systems
where resonant interactions, contained in Hint, allow an
excited TLS to emit into a number of dispersive, slow-
group velocity, or resonator modes. In confined struc-
tures the number and nature of these defect decay chan-
nels sensitively depends on geometry. This phenomenon
is characterized by an excited state decay rate T−1

1 given
by

T−1
1 (E) =

∑
q

π∆2
0

ΩqE2
|γ : ξ

q
(r)|2 coth

(
~Ωq

2kBT

)
δ(E−~Ωq)

(4)
that is computed with Eq. (1) and Fermi’s golden rule
(see Appendix A), where T is the temperature of the
phonon field. Equivalently, Eq. (4) can be expressed
in terms of the phonon density of states (DOS) g(Ω) by
noting that

∑
q ≡

∫∞
0
dΩ g(Ω).

In contrast to the result derived from the standard
TSM [4], the excited state lifetime given in Eq. (4) de-
pends upon the position and orientation of the defect,
and the mode structure and dispersion of the acoustic
field. Such differences are critical to correctly compute
T1 in mesoscale systems. However, when the density is
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spatially uniform a simplification of the decay rate is ob-
tained by averaging Eq. (4) over TLS positions and ori-
entations using the identity

〈|γ : ξ
q
(rj)|2〉V =

1

VD

Ω2
q

ρD

∑
η

γ2
η

v2
η

eqη, (5)

where ρD is the D-dimensional material density (e.g.
mass per unit area for D = 2), and eqη is the fraction
of energy of the qth acoustic mode in the η-component
of the acoustic field (see Appendix B). For example, for
plane waves in infinite D-dimensional systems, the frac-
tions eqη equal one when the qth mode is η-polarized and
zero otherwise, but in compact systems arbitrary modes
involve the hybridization of compressional and shear mo-
tions, and generally have highly dispersive properties.

Using Eq. (5) the spatial and orientation averaged
value of T−1

1 is given by

〈T−1
1 (E)〉V =

1

VD

∑
q,η

π∆2
0

~ρDE
γ2
η

v2
η

eqη coth

(
E

2kBT

)
× δ(E − ~Ωq) (6)

≈ 1

VD

∑
q

π∆2
0

~ρDE
γ2
`

v2
`

coth

(
E

2kBT

)
× δ(E − ~Ωq)

≈ 1

VD
g(E/~)

π∆2
0

~2ρDE

γ2
`

v2
`

coth

(
E

2kBT

)
.

The second line follows for materials that satisfy
(γ`/v`)

2 ≈ (γt/vt)
2 (e.g. silica [64, 70]) where the iden-

tity eq`+eqt = 1 is used to evaluate the sum on η, and the
third line, expressed in terms of the phonon DOS g(Ω),
follows from the second. When applicable, this approxi-
mation greatly simplifies the calculation of the decay rate
in complex structures because the acoustic eigenfunctions
uq(x) are not needed; only the dispersion properties of
each acoustic mode are required.

B. Defect decay in mesoscopic systems

Confined structures support a hierarchy of modes, all
but a few of which are cutoff above a system-specific
frequency Ωco (e.g. Fig. 5). Defects can emit into all
phonon modes at energy E, matching its gap (see Fig.
2). The decay of a defect is dimensionally reduced when
the E < ~Ωco; in other words, when the emitted phonon
wavelength, λη, is much smaller than one or more sys-
tem dimensions. In this limit, illustrated schematically in
Fig 5a, the direction of spontaneously emitted phonons
is reduced to one of the system’s symmetry directions.
This form of dimensional reduction can occur for long
wavelength phonons in membranes, microwires, or mi-
crotoroids. Despite the reduction in the number of decay
channels, the decay rate can be enhanced in mesoscale
systems by dispersion and confinement.

FIG. 5. Conditions for dimensional reduction: a) relevant
phonon frequencies less than cutoff Ωco (yellow region), e.g.
E/~, frequency of emitted phonons in defect decay, and/or
ωth = kBT/~ thermal frequency, b) mean separation between
thermally active defects Λ greater than one or more system
dimension.

1. Geometric enhancement of defect decay in idealized bulk
systems

To draw out the qualitative changes to defect decay
as the system dimension is reduced we first consider ide-
alized bulk D-dimensional systems (D > 1). We define
these systems as the lower-dimensional equivalent an in-
finite 3D bulk; they support non-dispersive plane waves
that propagate along the system’s symmetry directions.
For such systems at low temperatures (kBT � ~ωD
where ωD is the Debye frequency) the sum over phonon

modes is given by
∑

q =
∫ ωD

0
dΩ
∑
η

VD
(2π)D

SD−1
ΩD−1

vDη
,

where SD is the D-dimensional unit-hypersphere surface
area, ρD is the D-dimensional density, and the acoustic
modes are η-polarized plane-waves with respective sound
velocity vη. After averaging over TLS positions and ori-
entations we find the decay rate

〈
T−1

1 (E)
〉
V

=
∑
η

γ2
η

vD+2
η

πSD−1

(2π)D
ED−2∆2

0

~D+1ρD
coth

(
E

2kBT

)
(7)

≡
∑
η

Γ
(D)
1,η .

We relate the density in a D-dimensional system ρD to
the bulk density by the formula ρD = ρL3−D where
L characterizes the size of the compact dimension(s)
(e.g. L2 is the cross-sectional area of a 1D waveg-
uide), and from hereon we drop the explicit label D for
D = 3. Thus, the relative magnitude of T−1

1 for in-
finite D-dimensional systems (D > 1) is captured by

Γ
(D)
1,η ∝ SD−1(λη/L)3−D, showing that the decay rate

is geometrically enhanced as the system dimension is re-
duced since λη � L.

The results above give the qualitative behavior for the
defect decay in mesoscale systems when the phonon fre-
quency is much less than Ωco. However, in the next sec-
tion we show that the behavior of T1 varies dramatically
from Eq. (7) in compact systems that support dispersive
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flexural modes, or when the relevant phonon frequencies
exceed Ωco.

2. Enhancement of defect decay in waveguides due to
dispersion and van-Hove singularities

Defect decay is enhanced by emission into dispersive
and slow group velocity phonon modes. To see this con-
sider an arbitrary translationally invariant system of fi-
nite cross section. The phonon mode index q in such
a system is given by {m, q} where m = (m1,m2) are
indices labeling the eigenfunctions describing the elas-
tic field along the cross section of the waveguide, and q
represents the wavevector of the phonon for propagation
along the waveguide. Hence, the sum in Eq. (4) can be
written

∑
q =

∑
m

`
2π

∫
dq where ` is the system length

(see Fig. 6), and where it should be understood that
the mode sum should be cut off so that the number of
acoustic modes is finite. Equation 4 is then evaluated by
noting that Ωq is Ωm(q) (see Fig. 6 for the case of a cylin-
der), the eigenfrequency of the mth mode evaluated at
q, and using the delta function identity δ(E−~Ωm(q)) =∑
j δ(q−qmj)|~(∂Ωm(qmj)/∂q)|−1. The wavevectors qmj

are given by all solutions to E = ~Ωm(qmj); for most
modes there is one solution qmj , but backwards propa-
gating modes (negative group velocity) occur frequently
in guided acoustic wave systems and it’s possible for such
modes to contribute to the decay rate at two values of
the wavevector (for example, see the gray points h & i
in Fig. 6). Using this identity the integral over q in the
mode sum can be directly performed to give

〈T−1
1 (E)〉V =

1

A

∑
m,j,η

∆2
0

~2ρ|vmj
g |E

γ2
η

v2
η

emj,η coth

(
E

2kBT

)

≈ 1

A

∑
m,j

∆2
0

~2ρ|vmj
g |E

γ2
`

v2
`

coth

(
E

2kBT

)
(8)

where A is the waveguide’s cross-sectional area, the la-
bel {mj} is short for {m, qmj}, and vmj

g is the group
velocity of the mth mode evaluated at qmj . The second
line applies to systems where (γ`/v`)

2 ≈ (γt/vt)
2, in this

approximation the phonon DOS is given by

g(Ω)=
∑
m

`

π

(
θ(Ω−Ωminm )

|vm+
g (Ω)|

+
θ(Ωcom−Ω)θ(Ω−Ωminm )

|vm−g (Ω)|

)
(9)

where Ωcom is the cutoff for the mth phonon mode (e.g.
points a, b, d, e & g of Fig. 6), Ωminm is the minimum
frequency of the mth dispersion curve (e.g. points b, c,
d, f & g of Fig. 6), and v±g is the group velocity in the
region where it is positive (+) and where it is negative (-
). Notice the divergences (van-Hove singularities) in the
DOS for frequencies where the group-velocity vanishes
(e.g. points a, b, c, d, e, f & g in Fig. 6).

A similar computation for the defect decay rate in a
2D waveguide can be done. The dispersive properties of

FIG. 6. Left: Dispersion relations for compressional (red),
torsional (blue) and flexural (black) phonon modes in a cylin-
der. Excitations with zero group velocity are indicated by red
points a-g. The branches with points a & c and e & f are two
examples of modes that have wavevector regions with negative
group velocity. The dashed gray line indicates a phonon en-
ergy supporting two defect decay channels at the gray points
h & i for a single mode. Inset: System geometry and four
fundamental modes without cutoff (two degenerate flexural
modes). Right: Phonon density of states in a cylinder (gray)
and idealized 1D system (gray dashed). Red arrows indicate
frequencies supporting zero group velocity excitations.

acoustic modes in a planar structure is qualitatively sim-
ilar to a cylinder’s shown in Fig. 6, with the exception
that q = {m,k} where m is a single index labeling the
eigenfunctions describing the acoustic field normal to the
plane, and k is the phonon wavevector in the plane. Us-
ing the delta function identity above with E = ~Ωm(kmj)
the decay rate is given by

〈T−1
1 (E)〉V =

1

L

∑
m,j,η

∆2
0

2~2ρvmjp |vmjg |
γ2
η

v2
η

emj,η coth

(
E

2kBT

)

≈ 1

L

∑
m,j

∆2
0

2~2ρvmjp |vmjg |
γ2
`

v2
`

coth

(
E

2kBT

)
,

(10)

where L is the plane thickness, and vmjp and vmjg are the
respective phase and group velocities of the mth mode
evaluated at |kmj | (see Appendix A). The second line
above, where (γ`/v`)

2 ≈ (γt/vt)
2, gives

g(Ω)=
∑
m

AΩ

vmp (Ω)

(
θ(Ω−Ωminm )

|vm+
g (Ω)|

+
θ(Ωcom−Ω)θ(Ω−Ωminm )

|vm−g (Ω)|

)
,

(11)

the phonon DOS in planar waveguides, where the con-
vention of Eq. (9) is used.

All but a few modes in guided-wave systems are cut
off at some finite frequency Ωco (e.g. see Fig. 6), and for

defect energies E � ~Ωco (or equivalently λ � L,
√
A),

T−1
1 is partially described by the results of the previous

section. For systems that support flexural modes, how-
ever, a more thorough treatment is necessary and Eq. (8)
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and 10 must be used. To see how T−1
1 is modified in re-

duced dimensional systems that support flexural modes
we compute the defect decay rate for cylindrical (T−1

1,cyl.)

and planar (T−1
1,pla.) waveguides for E � ~Ωco and with

stress-free boundary conditions on the acoustic modes.
This calculation gives

〈T−1
1,cyl.〉V

〈T−1
1,pla.〉V

}
≈ Ωqγ

2
`

~ρv2
`

coth
~Ωq

2kBT


1
A

(
1
vB

+ 1
vt

+
√

2
vBΩqR

)
Ωq

L

(
1
v2pl

+ 1
v2t

+
√

3
ΩqvplL

)
(12)

where vB ≡
√
Y/ρ and vpl ≡ vB(1 − ν2)−1/2 are the

bar and plate velocity [67] (Y is Young’s modulus and ν
is the Poisson ratio), and R is the cylinder radius. The
first two terms on the right hand side above represent
the contribution to T−1

1 from the fundamental compres-
sional (symmetric Lamb wave) and fundamental torsional
(shear-horizontal) modes of the cylinder (plate) (Fig. 6).
Well below cutoff these modes are nondispersive and their
dependence on frequency, temperature, and geometry is
captured by Eq. (7) (see Inset Fig. 6). The last term(s)
on the right hand side of Eq. (12) arises from defect de-
cay into the fundamental flexural mode (anti-symmetric
Lamb wave) for the cylinder (plate) (see Inset Fig. 6).
These dispersive modes depend on the system geometry
and dominate defect decay into other channels.

Also in contrast with bulk systems, a large change in
the decay rate occurs for quasi-1D and quasi-2D systems
when the energy E & ~Ωco. For such energies the de-
cay rate can be dramatically enhanced by emission into
higher order phonon modes with small group velocity.
Equivalently, this enhancement can be interpreted as the
result of van-Hove singularities in the phonon DOS (Fig.
6 & Fig. 7). Since defect decay into a given channel scales
with v−1

g , emission into slow group velocity modes can
be very large and dominate over other decay processes.
Such slow group velocity modes are essentially standing
waves transverse to the symmetry direction, and behave
similarly to resonator modes. Hence, this enhancement
is similar to the Purcell effect [48, 49].

The effect of emission into flexural and slow group ve-
locity modes on the defect decay rate is illustrated in Fig.
7 by comparing T−1

1 for an idealized 1D system, a dimen-
sionally reduced cylinder supporting flexural modes (de-
scribed by Eq. (12)), and a cylinder including all higher
order modes. Figure 7 shows that T−1

1 is dominated by
emission into flexural modes at low frequencies, and once
E > ~Ωco a large jump in the decay rate is observed at
each frequency where slow group velocity excitations are
supported.

3. Acoustic Purcell enhanced defect decay in resonators

Defect decay is strongly modified in high-quality acous-
tic resonators. In such systems the spectrum of acoustic
modes becomes discrete, radically modifying the phonon

FIG. 7. a) Illustration of coupling/dynamics leading to defect
decay in a waveguide. b) Defect decay in a silica cylinder
(R = 100 nm) as a function of defect frequency f = E/(2π~)
computed using the idealized 1D model (green dotted) Eq.
(7), Eq. (12) for a dimensionally reduced cylinder supporting
flexural modes (green dashed), and Eq. (8) including higher
order modes. Red arrows denote frequencies where modes
with zero group velocity are supported (see red points of Fig.
6). The following parameters are used: ρ = 2202 kg/m3, v` =
5944 m/s, vt = 3764 m/s (and throughout the remainder of
the paper), T =10 mK, and (γ`/v`)

2 ≈ (γt/vt)
2 is assumed.

DOS and leading to Purcell enhancement of the defect
spontaneous emission rate [48, 49].

To understand the acoustic cavity system a golden rule
derivation of the decay rate can be carried out that ac-
counts for the coupling of a defect to a discrete set of lossy
phonon modes (see Appendix A). However, if defect-
induced losses are the only source of acoustic dissipation
in the system then the validity of this treatment requires
that the number of defects interacting with a given mode
is much greater than 1, i.e. P~T−1

2 V � 1. In the limit
where P~T−1

2 V . 1 the composite system will undergo
Rabi oscillation (discussed in Appendix C).

The TLS position- and orientation-averaged decay rate
for a defect in a cavity is given by

〈
T−1

1,cav(~ω)
〉
V

=
1

VD

∑
qη

2Ω2
q∆2

0

~3ρDω

γ2
η

v2
η

eqη coth

(
~ω

2kBT

)
× Γq

(ω2 − Ω2
q)2 + ω2Γ2

q

(13)

where Γq is the decay rate of the qth phonon mode. A
few remarks are necessary regarding Eq. (13). With-
out the adoption of an explicit cutoff, either given by
the defect size or the Debye frequency, the sum in the
defect decay rate above diverges. Consequently, Eq.
(13) has a potentially large cutoff-dependent contribu-
tion. Such a cutoff dependence occurs in the theoretical
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treatment of spontaneous emission of atoms embedded
in absorbing dielectrics where it is attributed to non-
radiative decay through the near field [71]. The cutoff-
dependent component of Eq. (13) is contained entirely
in
〈
T−1

1,cav(~ω = 0)
〉
V

which suggests that it is the elastic
analog of non-radiative decay. It is necessary to con-
sider the nature of phonon decay in a given system to
determine whether the cutoff-dependent term should be
retained (see Appendix A).

FIG. 8. a) Illustration of coupling/dynamics leading to de-
fect decay in a resonator. b) Decay defect decay as a function
of f = E/(2π~) in a 3D bulk (blue) and a 4 µm cubic sil-
ica resonator (red). The resonator is defined with periodic
boundary conditions applied across parallel faces. The zero
energy contribution to Eq. (13) has been subtracted, and T =
5 mK.

To interpret this result it is useful to categorize the
defects in the cavity system into two classes: resonant
defects have energies within the linewidth of the cavity’s
acoustic resonances, and all remaining defects are deemed
non-resonant. Eq. (13) predicts highly suppressed decay
for non-resonant defects as compared to a bulk medium,
whereas the decay rate of resonant defects is enhanced.
In a high-finesse acoustic cavity the decay rate for a reso-
nant defect with E ≈ ~Ωq is dominated by a single term
in the sum over modes in Eq. (13) (assuming nondegener-
acy) where the Lorentzian factor reduces to ∼ 2/πΓq. A
relationship between the decay rate for defects in a bulk
system and resonant defects in a cavity can be derived by
expressing Eq. (13) in terms of the phonon wavelength
and acoustic quality factor Qq ≡ Ωq/Γq giving

〈
T−1

1,cav(~Ωq)
〉
V
≈
∑
η

1

2π2

λ3
η

V
QqeqηΓ1,η (14)

for D = 3. The prefactor (λ3
η/2π

2V )Qqeqη gives the
acoustic analog of Purcell enhancement, and indicates
that for low order modes, where λ3

η ∼ V , that the decay

rate for resonant defects is dramatically increased by a
factor Qq.

4. Defect decay through photon emission

In many scenarios defect relaxation is dominated by
decay through phonon emission. However, in high-
quality EM waveguides or resonators defect decay via
photon emission may become important. In such cases
the defect decay rate can be obtained from the results of
the preceding sections by the replacement

〈|γ : ξ
q
(rj)|2〉V →Ω2

q〈|d ·Eq(rj)|2〉V =
Ω2

q|d|2

3VDε0εeff
q

.

(15)

Above, Eq is an orthonormal eigenfunction of Maxwell’s
equations satisfying ∇×∇×Eq(x) = ε(x)(Ωq/c)

2Eq(x)
and

∫
V em d

3x ε0ε(x)E∗q(x)Eq′(x) = δqq′ , ε0 and ε(x)
are the free space and relative permittivity, and c is the
speed of light in vacuum. V em is the EM mode volume
which is generally different from the volume containing
the defects V , e.g. this occurs in hollow EM resonators
or waveguides that contain oxide surface layers or small
dielectric samples. εeff

q is an effective permittivity defined

as (εeff
q )−1 ≡ ε0

∫
V
d3x |Eq(x)|2 (note the spatial integral

is over V ). For systems where V � Vem εeff
q ∼ ε(Vem/V )

where ε is the relative permittivity of the region not con-
taining defects.

C. Defect dephasing in mesoscale systems

The nature of defect dephasing depends sensitively on
the interplay of geometry and defect concentration. De-
phasing is in part the result of resonant processes (as
described above) but it is often dominated by perturba-
tions of a defect’s energy originating from defect-defect
interactions mediated by the elastic field [68]. In general,
these interactions are described by HTLS-TLS, as well as
an additional ‘flip-flop’ contribution that permits a di-
rect transfer of energy between two mutually-resonant
defects. However, with energies distributed over a wide
range, TLSs do not have an innate energy scale, unlike
atoms and nitrogen-vacancy centers, and hence, the num-
ber of mutually resonant TLSs at a given energy is in-
significant compared to the total sum of defects. For this
reason, ‘flip-flop’ interactions do not significantly con-
tribute to dephasing, and the interaction Hamiltonian
HTLS-TLS can be used to estimate T2.

Defect dephasing mediated by direct defect interac-
tions can be understood by adding HTLS-TLS to the
Hamiltonian for the non-interacting defects. Some rear-
rangement shows that the defect energy can be redefined
as

E′j = Ej +
∑
i6=j

Jijσz,i, (16)
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which is shifted by an amount determined by the config-
uration of all remaining TLSs in the system. E′i becomes
a function of time when the ith defect’s neighbors un-
dergo dynamical spin flips. Hence, the collective oscilla-
tion of an ensemble of defects with energy E′, excited by
a strong monochromatic acoustic pulse, dephases in time
when the energy of each defect in the ensemble randomly
hops from its initial value as it’s neighbors undergo spin
flips induced by thermal fluctuations.

This process of ‘spectral diffusion’ arises from ther-
mally active defects, with E < kBT and a concentra-
tion n ∼ P (kBT )kBT , that can absorb and emit thermal
phonons. Defects with E � kBT are frozen in their
ground state, and thus contribute a time-independent
shift to the defect energy. The concentration of thermally
active defects defines a spectral diffusion length scale Λ ∼
[P (kBT )kBT ]−1/3. For example, Λ ≈ 237 nm( 10mK

T )1/3

for silica [65]. When one or more system dimensions is
much smaller than Λ spectral diffusion is dimensionally
reduced (see Fig. 5); a scenario achievable with standard
fabrication and cryogenic capabilities. This dimensional
reduction is accounted for in the coupling parameter Jij
whose magnitude is set by the system dimension and the
separation between the ith and jth defects rij ≡ |ri−rj |.

Direct interactions between defects are mediated by
the static strain field (the elastic equivalent of the elec-
trostatic dipole field). In 3D systems the coupling be-
tween defects scales as Jij ∝ r−3

ij (for more details see

the Appendix of [68]). In 2D Jij falls off as r−2
ij , en-

hancing defect-defect interactions, but surprisingly, the
coupling is completely local in idealized 1D systems scal-
ing as Jij ∝ δ(rij).

To understand the true spatial scaling of Jij in a non-
idealized 1D system we derived an approximate expres-
sion for the static elastic strain field in a microwire with
a finite cross-section. In such a system the strain field
is represented as an infinite sum of eigenfunctions (e.g.
Bessel functions) that describe the dependence of the
elastic field perpendicular to the symmetry direction [44].
The dependence of the strain field along its symmetry di-
rection scales as e−

x
R |z−z

′| where x is a pure number, e.g.
a Bessel function zero, R represents the system ‘radius’,
and |z− z′| is the separation along the wire between two
defects. The parameter x and the separation |z−z′| have
minimum values respectively of order 1 and Λ. There-
fore, the static strain field in a non-idealized 1D system
is exponentially suppressed in the limit that Λ/R � 1,
yielding the coupling Jij ∼ x

2ρ1R
e−

x
R rij [44], and reduces

to idealized result Jij ∝ δ(rij) in the R→ 0 limit.
A qualitative understanding of spectral diffusion in re-

duced dimensional systems is obtained from the depen-
dence of Jij on rij by following the treatment of Black
and Halperin [68] and Phillips [4]. The root-mean square
variation of the energy of a given defect due to spin flips
of its neighbors ∆E is estimated by replacing rij with Λ
in E′i−Ei (appearing in Jij of Eq. (16)). The dephasing
time-scale arising from spectral diffusion, the time for de-
fects excited by a monochromatic pulse to begin oscillate

out of phase, is approximately given by T
′

2 ∼ ~/∆E

1

T
′
2

∼


1
~ρCrmsP (kBT )kBT D = 3
1

~ρ2C
(2)
rms[P (kBT )kBT ]2/3 D = 2

x
~ρ1RC

(1)
rms exp{− x

R [P (kBT )kBT ]−1/3} D = 1

(17)

where C
(D)
rms , of order γ2/v2, is defined by the tensor struc-

ture of the static strain field [68]. Recalling the definition
ρD = ρL3−D, the results above show that the increase in

the defect-defect coupling enhances T ′
−1
2 by Λ/L over

the 3D result in planar systems. In contrast, the inter-
action between defects is effectively local in 1D systems,
leading to the exponential suppression of spectral diffu-
sion. However, since defect dephasing is also augmented
by resonant phonon processes the total dephasing rate is

given by T−1
2 = 1

2T
−1
1 + T

′−1
2 , meaning that 2T1 and T2

are equal in 1D systems.

Defect dephasing has been measured in phonon echo
experiments, finding T2 ≈ 14 − 20 µs for 0.68 - 1.2 GHz
phonons at 20 mK in silica [55, 72, 73]. In the remainder
of the paper we use the measured value of T2 = 14 µs (for
all D) and extrapolate to other temperatures using Eq.
(17). However, this extrapolation overestimates the late
time value of T2 since the phonon echo experiments in
[55, 72, 73] were performed in the short time limit before
the dephasing rate reached its steady-state value [68].

D. Defect-driven noise in mesoscale systems

In this section we investigate geometry-, dimension,
and scale-induced transformations of radio frequency
(RF) noise generated by defects. Such noise has been
identified as a key limitation in a number of quan-
tum systems [6–8, 10, 17, 18, 20, 26, 27, 29, 38] and
is generated when a defect’s electric dipole moment

Pj(t) ≡ dj

(
∆0j

Ej
σx,j +

∆j

Ej
σz,j

)
is stochastically driven

by a thermal bath of phonons. This physics is phe-
nomenologically described by the Bloch equations with
defect relaxation- and dephasing-rates as inputs. The
power spectrum of these dipole fluctuations characterizes
the electromagnetic noise arising from defects, and can
be computed from the Fourier transform of the two-time
dipole correlation function given by

Sij(ω) =

∫ ∞
−∞

dτ eiωτ 〈δPi(t)δPj(t− τ)〉 (18)

where δPj ≡ Pj − 〈Pj〉 and 〈..〉 denotes expectation
value.

We approximate the power spectrum of a single de-
fect’s dipole fluctuations with the quantum regression
theorem (QRT) [74], a tractable method to obtain a cor-
relation function that is consistent with the Pauli oper-
ator algebra and statistical mechanics. Such a computa-
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tion (see Appendix D) gives

Sij(ω) = δijdd

[
∆2

0

E2

(
pe(E)

2T2

1 + T 2
2 (E/~ + ω)2

(19)

+ pg(E)
2T2

1 + T 2
2 (E/~− ω)2

)
+

∆2

E2
sech2(E/2kBT )

2T1

1 + T 2
1 ω

2

]
,

where pe(E) (pg(E)) is the probability for a defect of
energy E to be in the excited (ground) state [75, 76].

There are two physical mechanisms leading to the
noise: resonant and relaxation processes respectively con-
tributing Sresij (ω) and Srelij (ω) to the power spectrum.

Sresij (ω) is made up of the terms proportional to ∆2
0 in Eq.

(19) and arises primarily from spin flips of defects asso-
ciated with the absorption and emission of phonons with
energies matching the defect energy. Whereas, Srelij (ω) is

given by the term proportional to ∆2 in Eq. (19) and
arises from a stochastic modulation of the defect energy
levels by phonons leading the defects to reradiate.

Although we find a system-independent functional
form for the power spectrum, quantitative and qualita-
tive changes in the defect-induced noise result from the
dependence of the defect relaxation and dephasing rates
on the system size and geometry. To highlight the con-
trasting behavior of noise in mesoscale systems we con-
sider noise from a single defect in a resonator, and the
noise from an ensemble of defects in idealized bulk sys-
tems and resonators.

1. Acoustic Purcell modulation of noise from a defect in a
resonator

Next, we examine the EM power spectrum of a single
defect that interacts strongly with an acoustic resonator.
Note that the active defect is one of coupled ensemble of
defects, as diagrammed in Fig 9. The noise from a sin-
gle defect in this resonator is strongly affected by Purcell
enhancement. Since T2 6 2T1 Eq. (19) shows that the
magnitude of the noise at low-frequencies is set by T1,
and therefore a sharp contrast in the magnitude of the
power spectrum will occur for defects that are on- and
off-resonance with an acoustic mode of a high-quality res-
onator. This modulation is illustrated in Fig. 9 where
the dipole power spectrum for two defects in a resonator
is compared: one defect is resonant, and the other is frac-
tionally detuned by −4% from the fundamental acoustic
mode. Figure 9 shows that this small fractional detun-
ing (−82 MHz) produces shifts in the magnitude of the
low-frequency noise of nearly 5 orders of magnitude. This
result may point toward new techniques to engineer noise
in quantum information systems. Recently, strain tuning
of TLS frequencies, of order 100 MHz, has been demon-
strated in qubits [30], suggesting that a large modulation
of the RF noise from TLSs could be achieved in quan-

tum information systems formed into high quality acous-
tic resonators.

FIG. 9. a) Illustration of coupling/dynamics of defect-induced
RF noise in a resonator. b) Power spectrum of dipole fluctu-
ations of a single defect on-resonance (red-dashed line) and
−0.04 = ∆Ω/Ω1 fractionally detuned from (red line) a 2
µm cubic silica resonator’s fundamental acoustic mode at fre-
quency Ω1 = (2π)1.882 GHz. Periodic boundary conditions
are applied to each face, the Q of the fundamental mode is
taken to be 1882, and the temperature is 10 mK. The power
spectrum for the same defects in 3D bulk is displayed in blue
for comparison (blue-dashed, resonance frequency) and (blue
line, detuned frequency

2. Geometric modification of the noise from defect
ensembles in bulk systems

Geometric modifications of defect dynamics reshapes
the noise from ensembles of defects in reduced dimen-
sional systems. To examine the qualitative features of
such reshaping, we consider the power spectrum aris-
ing from an ensemble of defects in idealized bulk sys-
tems of various dimensions. When a large number of
defects contribute to the RF noise the total power spec-
trum can be computed from the ensemble average of Eq.
(19) over the defect properties Stot(ω) =

∑
i Sii(ω) ≈

VD
〈∫

d∆d∆0F (∆,∆0)Sii(ω)
〉
V
. This approximation is

valid in the weak coupling limit when the fluctuations of
any two defects is uncorrelated to leading order.

First, we analyze the noise arising from resonant ab-
sorption Srestot (ω). To compute the defect ensemble aver-
age, we take F (∆,∆0) = PD(E)/∆0 for simplicity, but
note that a variety of power spectra are obtained by us-
ing more general DDOS [76]. After a change of variables
to ‘polar’ coordinates, i.e. ∆ = E cosφ and ∆0 = E sinφ
recalling E =

√
∆2 + ∆2

0, and evaluating the φ-integral,
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Srestot (ω) is given by

Srestot (ω) ≈2|d|2

3
I VD

∫ ∞
0

dE
〈PD(E)〉V pg(E)T2

1 + (ω − E/~)2T 2
2

≈π~|d|
2

3
I VD 〈PD(~ω)〉V pg(~ω). (20)

Here I is the 3× 3 identity matrix, a negligible contribu-
tion from the anti-resonant term has been dropped and
the second line holds for ωT2 � 1. This result shows that
the noise arising from resonant processes scales with en-
ergy dependence of the DDOS (since pg varies between
0.5 and 1) and the system size.

The relaxation component of the total power spectrum
is given by

Sreltot(ω) ≈ 2|d|2

3
I VD

〈∫
d∆d∆0

PD(E)

∆0

∆2

E2
sech2

(
E

2kBT

)
× T1

1 + T 2
1 ω

2

〉
V

. (21)

Noting that T1 takes a minimum value, T1,min, when
∆0 = E, a change of variables to (E, φ), and ex-
pressing T1 as T1,minE

2/∆2
0 allows the φ-integral to be

done analytically. The resulting expression is compli-
cated so we present the resulting power spectrum in the
high- and low-frequency limits. For high frequencies, i.e.
ωT1,min(kBT )� 1, the idealized bulk system power spec-
trum due to relaxation processes reduces to

Sreltot(ω) ≈ 2|d|2I VDPD(kBT )

9ω2

∑
η

γ2
η

vD+2
η

πSD−1

(2π)D

× (2kBT )D+1

~D+1ρD
ID+µ (22)

where Im ≡
∫∞

0
dy ym sech2 y coth y, and the DDOS is

proportional to Eµ (as discussed in Sec. III). Up to pure
numerical factors, the noise from Eq. (22) is enhanced for
D < 3 by a factor (λth/L)3−D where λth = 2π~vη/(kBT )
is the thermal wavelength, see Fig. 10.

At low frequencies relaxation absorption results in 1/f -
noise given by

Sreltot(ω) ≈π|d|
2I VD
3ω

PD(kBT )kBTcµ (23)

where cµ =
∫∞

0
dy yµ sech2 y. Since the product of VDPD

is independent of D, the low-frequency behavior of the
noise is universal (see Fig. 10).

3. Thermal suppression of noise from defect ensembles in
resonators

In this section, we illustrate how the power spectrum
from an ensemble of defects in a resonator is exponen-
tially suppressed at low temperatures. In resonators,

FIG. 10. a) Illustration of coupled system leading to RF noise.
b) Power spectrum for dipole fluctuations from an ensemble
of defects in 1, 2 and 3D. The compact dimension(s) and
the temperature are respectively taken to be 50 nm and 10
mK (ωth = 208 MHz). The volume of each systems is fixed
to (10 µm)3 so that each system possesses the same number
of defects. We adopt a uniform DDOS, given in Sec II., and
adopt the defect properties of silica to compute the ensemble
average.

Srestot (ω) is well-approximated by Eq. (20), but, in con-
trast the noise from relaxation absorption depends sen-
sitively on the phonon DOS. For realistic values of the
acoustic mode decay rate the high-frequency limit ap-
plies over a broad range of frequencies, allowing a Taylor
expansion in large ωT1 to be taken in the integrand of
Eq. (21). Given T1 for defects in an acoustic resonator
the integral in Eq. (21) is approximately given by

Sreltot,cav(ω) ≈ 4π|d|2I VD
9ω2

∑
q

〈
PD(~Ωq)|γ : ξ

q
(r)|2

〉
V

Ωq sinh
(

~Ωq

kBT

) .

(24)

Unlike bulk systems, possessing a continuum of phonon
modes to thermally drive defect fluctuations, resonators
have a gapped, discrete spectrum where Langevin forc-
ing is concentrated near cavity resonances. As a con-
sequence, the thermo-mechanical motion driving defect
noise can be frozen out at low temperatures (i.e. kBT <
~Ω1, where Ω1 is the frequency of the resonator’s fun-
damental mode) leading to exponential suppression of
Sreltot,cav(ω). This suppression is illustrated in Fig. 11
where the power spectral density from an ensemble of
defects in a cubic resonator made of silica is compared to
a bulk system. The frequency of the fundamental mode,
Ω1 = (2π)3.7 GHz, was chosen to be much larger than
the thermal frequency ωth = 208 MHz (for T = 10 mK)
in order to freeze out the resonator’s thermo-mechanical
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motion and exponentially suppress the noise.

FIG. 11. Power spectrum per unit volume from a defect en-
semble in a 3D bulk (blue) and resonator (red) system at 10
mK. Material properties of silica are used and periodic bound-
ary conditions are implemented on a cube of side L = 1 µm
to model the resonator.

4. Scaling of frequency noise from strongly-interacting
defects in reduced dimensions

The previous sections focused on RF noise generated
by ensembles of weakly coupled defects. However, re-
cent measurements suggest that strongly interacting de-
fects are an important source of frequency noise in su-
perconducting circuits [38]. These measurements are ex-
plained by a generalized tunneling state theory proposed
by Faoro and Ioffe [41] which predicts a frequency noise
power spectrum Sν(ω) proportional to T2/ω at low field

intensities, and proportional to
√
T2/T1[

√
Pω]−1 at high

RF power P [41]. Given the dependence of Sν(ω) on T1

and T2 the frequency-noise arising from strongly inter-
acting defects is sensitive to the system geometry. The
qualitative behavior of the power spectrum can be de-
rived at low intensities by using the scaling of the power
spectrum with T2 for D 6 3

Sν(ω) ∝ 1

ω

 ρT−1−µ D = 3
ρ2T

−2(1+µ)/3 D = 2
T1 D = 1

(25)

where T2 = 2T1 has been used in the 1D case, and
the spectral diffusion length Λ ∼ [P (kBT )kBT ]−1/3

(P (E) ∝ Eµ), relevant for a nonuniform distribution of
defect energies, has been used. By accounting for the
energy dependence of the DDOS measured by Skacel et
al. [40], this theory [41] correctly predicts the observed

low-temperature enhancement of the 1/f -noise observed
in superconducting resonators [38].

Similarly, the scaling of Sν(ω) at high field intensity is
given by

Sν(ω) ∝ 1

ω
√
P


√

ρ
T1
T−(1+µ)/2 D = 3√

ρ2
T1
T−(1+µ)/3 D = 2

1 D = 1,

(26)

indicating that Sν(ω) is enhanced with lower tempera-
ture, and is suppressed as the system dimension is low-
ered. These results show that the temperature scaling
of noise generated by strongly interacting defects has a
unique dimension-dependent fingerprint, and that noise
could be dramatically reshaped, through its dependence
on T1, in systems possessing a non-trivial phonon DOS.

This concludes our discussion of defect-induced noise.
In the following sections we explore linear and nonlinear
absorption of EM and acoustic waves mediated by TLSs.

E. Defect-induced dissipation in mesoscale systems

Defects contribute a large source of dissipation in a
number of mesoscopic optomechanical [14–16, 25], quan-
tum information [6, 8, 10, 11], NEMS, and MEMS
[9, 12, 24, 28, 32–36] devices. As these systems push to
ever-smaller sizes, changes in defect dynamics, the disper-
sion of acoustic modes, and the phonon DOS transform
the character of defect-induced dissipation. In this sec-
tion we investigate this transformation by showing how
resonant and relaxation absorption, the two processes by
which TLSs dissipate EM and acoustic waves, are deter-
mined by extrinsic system properties.

1. Geometric, dispersive, and Purcell enhancement of the
nonlinear properties of resonant absorption

Dissipation occurs via resonant absorption when a
ground state defect absorbs a phonon or photon with
energy matching its gap and then spontaneously reradi-
ates in a random direction. Alternatively, amplification
occurs when a phonon or photon incident on an excited
defect elicits a decay via stimulated emission. Hence,
resonant absorption scales with the difference of proba-
bilities for a resonant defect to be in the ground vs. the
excited state pg(E)− pe(E).

When the EM and acoustic fields are weak, the de-
fects remain in thermal equilibrium, and pg(E)−pe(E) =
tanh(E/2kBT ) for a defect at temperature T . In this
limit, the dissipation rate for phonons (top) and photons
(bottom) can be computed with Fermi’s golden rule, giv-
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ing the inverse quality factor (i.e. loss tangent)

1
Qac.

res,q
1

Qem
res,q

}
= πPD(~Ωq)


∑
η

γ2
ηeqη
ρDv2η
|d|2

3ε0εeffq

 tanh

(
~Ωq

2kBT

)
,

(27)
where a uniform density of defect positions and orien-
tations has been assumed. This result shows a general
characteristic of resonant absorption; namely, it saturates
when pg(E) − pe(E) ≈ 0, in this case at high tempera-
tures. In addition, Eq. 27, valid for confined fields, is
reminiscent of the prediction made by the standard TSM,
and only gives a small numerical correction to the dissi-
pation for systems differing from 3D bulk. However, this
fortunate correspondence breaks down at high acoustic
or EM intensities.

As the intensity of the acoustic or EM field is raised, a
point will be reached where the mean-free-time between
defect-phonon or defect-photon interactions is equal to
the defect’s upper state lifetime. This critical intensity
Jc is met when the power incident on a defect is roughly

one quanta per excited state lifetime Jc ∼ ~Ωq

σT1
where

σ is the cross section for the absorption of a phonon or
photon by a ground state defect. The cross section σ can
be obtained from Fermi’s golden rule, giving the follow-
ing expression for the acoustic Jac.

c and EM Jem
c critical

intensities

Jac.
c

Jem
c

}
∼

{
ρv3

γ2

3ε0
√
εc

|d|2

}
~2

2T1T2
. (28)

At intensities exceeding Jc incident phonons or pho-
tons begin to probe an excited defect before it returns to
the ground state, allowing the defect to decay through
stimulated emission and in turn to amplify the phonon
or photon beam. Hence, at high-intensities absorption
and amplification compensate one another, and resonant
absorption is saturated. Equation 28 shows that this sat-
uration scale is set by the defect dynamics, and therefore,
the nonlinearity of resonant absorption is shaped by the
extrinsic properties of the system.

In the high intensity regime, perturbation theory is no
longer adequate to describe acoustic and EM dissipation,
and the Bloch equations of the coupled system must be
employed to describe resonant absorption (see Appendix
E). For an idealized D-dimensional system resonant ab-
sorption for plane-wave acoustic (top) or EM (bottom)
modes of angular frequency Ωq and polarization η is char-
acterized by the inverse quality factor

1
Qac.

res,q
1

Qem
res,q

}
=
PD(~Ωq)

4

∫
dϕ


γ2
η(n̂)

ρv2η
d2η(n̂)

3ε0ε

 tanh
(

~Ωq

2kBT

)
√

1 + J
Jc(n̂)

(29)

where J and Jc(n̂) is the intensity and orientation-
dependent critical intensity for the acoustic or EM field,
i.e. the acoustic intensity is Jac. ≡ (~ρv3

η/Ωq)|ξ
q
βq|2

and the EM intensity is Jem = ε0
√
εc~Ωq|Eqαq|2 (βq

and αq being the amplitude for the qth phonon and pho-
ton mode, respectively). The orientation-dependent de-
formation potential for coupling to η-polarized acoustic
plane waves is given by

γ`(n̂) = γ̃(1− 2ζ sin2 θ) (30)

γt,1(n̂) = γ̃(2ζ sin θ cos θ cosφ)

γt,2(n̂) = γ̃(2ζ sin θ cos θ sinφ),

and dη(n̂) is given by
√

3|d| cos θ where the z-axis of the
dipole orientation coordinate system has been chosen to
align with electric field.

∫
dϕ is an integral over solid

angle, and PD(~Ωq) is the spatial average of the DDOS.
The spatial averaging is simplified for idealized bulk sys-
tems because of the spatial-independence of T1 and the
modulus of the acoustic and EM spatial eigenfunctions.

The exact form of Jc matches well with the result an-
ticipated from the basic timescale arguments that led to
Eq. (28)

Jac.
c (n̂)
Jem
c (n̂)

}
=


ρDv

3
η

γ2
η(n̂)

3ε0
√
εc

d2η(n̂)

 ~2

2T1,minT2
, (31)

but we emphasize that the D-dimensional forms of T1,min

and T2 must be used. The standard TSM prediction
for the damping factor 1/Qres,q at high-intensity can
be obtained from Eq. (29) by taking γη(n̂) → γη and
dη(n̂)→ dη in the critical intensity of Eq. (31).

Equation 29 has a similar functional form to resonant
absorption in the strong field regime given by the stan-
dard tunneling state model [4]. However, striking differ-
ences arise from the dependence of the critical intensity
on T1 and T2, and hence the distinct physics of resonant
absorption in idealized bulk systems is largely charac-
terized by a dimensional modification of the magnitude,
temperature and frequency dependence of Jc.

The behavior of resonant absorption is nontrivial in
mesoscale systems possessing flexural, slow-group veloc-
ity, or standing wave modes. We show that the critical
intensity is enhanced at low frequencies due to flexural
modes, sharply increases near van-Hove singularities in
the phonon DOS, and is Purcell enhanced in resonators
(see Figs. 12-14). Moreover, the spatial dependence of
the energy density may have poor overlap in systems with
an anisotropic DDOS, such as those constructed from
crystalline media where defects are concentrated on sur-
faces and at interfaces. In such mesoscale systems reso-
nant acoustic absorption is characterized by the quality
factor

1

Qac.
res,q

=

〈
πVDPD

Ω2
q

|γ : ξ
q
|2 tanh

(
~Ωq

2kBT

)
√

1 + Jave
Jac.c (n̂,r)

〉
V

. (32)

For arbitrary guided traveling waves the critical intensity
is given by

Jac.c (n̂, r) =
(~Ωq)2vg

2T1,minT2|γ : ξ
q
(r)|2V

(33)
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which depends on defect orientation and position. In
contrast to idealized bulk systems Jac.c (n̂, r) scales with
the group velocity vg of the driven mode, suggesting
that the nonlinearity of the system may be engineer-
able. For resonators Jave/J

ac.
c (n̂, r) should be taken to

Eave/Eac.c (n̂, r), the ratio of average mode energy density
to the critical mode energy density, in Eq. (32) defined
by EaveV = ~Ωq|βq|2 and Eac.c (n̂, r) = Jac.c (n̂, r)/vg. The
loss tangent for the EM field in an arbitrary structure can
be obtained from Eq. (32) by taking |γ : ξ

q
| → Ωq|d·Eq|.

FIG. 12. Critical intensity at 10 mK in a silica cylinder
(green), resonator (red), and 3D bulk as a function of fre-
quency computed using Eqs. 6, 33, and 17. The cylinder
exhibits enhancements of the critical intensity at van-Hove
singularities a) and at low frequencies b) where T−1

1 is domi-
nated by emission into flexural modes. The critical intensity
is Purcell enhanced in the resonator. Deformation potential
and sound velocity for longitudinal waves and |d| = 1.3 Debye
and ε = 2.08 were used in Eq. (28).

To illustrate the transformation of the nonlinear be-
havior of resonant absorption in mesoscale systems, the
critical intensity for a silica microwire, resonator, and
3D bulk system are compared as a function of frequency
in Fig. 12. For simplicity, the orientation- and spatial-
averaged defect decay rate is used in Eq. (33), |γ : ξ

q
|2

is replaced with 〈|γ : ξ
q
|2〉V , and the resonator is mod-

eled by using periodic boundary conditions (which is why
an intensity can be defined). The wire radius and tem-
perature are chosen so that T2 is dimensionally reduced.
Above Ωco the critical intensity for resonant absorption
in the cylinder exhibits sharp enhancements at van-Hove

singularities in the phonon DOS (Fig. 12 a), and the
critical intensity in the resonator is Purcell enhanced at
resonator mode frequencies. At low frequencies the crit-
ical intensity in the microwire is enhanced by dispersive
flexural modes (Fig. 12 b).

2. Geometric, dispersive, and DOS transformations of
relaxation absorption

In this section we discuss the transformation of re-
laxation absorption by reduced dimensionality, phonon
dispersion, and confinement. Relaxation absorption is
a non-resonant source of dissipation that occurs when
phonons or photons modulate TLS energy levels. In this
process, defects are driven in and out of thermal equi-
librium with their environment leading them to absorb
energy from phonons or photons and release it to the
environment in an irreversible fashion. Unlike resonant
absorption, relaxation absorption is not saturable, and
thus it sets the minimum level of dissipation that can be
achieved in a system containing defects. We show that
this form of dissipation is enhanced in many mesoscale
systems by dispersion and confinement, but in contrast,
it is exponentially suppressed in resonators at low tem-
peratures.

We begin this discussion of relaxation absorption by
stating the result for the quality factor Qrel,q for an ar-
bitrary system (see Appendix F)

1
Qac.

rel,q
1

Qem
rel,q

}
=

VD
Ω2

qkBT

∫
d∆d∆0

∆2

∆0E2
sech2

(
E

2kBT

)
×
〈
PD(E)

{ |γ : ξ
q
|2

Ω2
q|d ·Eq|2

}
ΩqT1

1 + Ω2
qT

2
1

〉
V

(34)

which accounts for the mode structure of the field, the po-
sition and orientation of all defects, and modifications of
the phonon DOS. Notice that the relative contribution of
defects of different energies to this process is determined
by the factor sech2 (E/2kBT ), and therefore the contri-
bution from TLSs, and also phonons, with E > kBT is
exponentially suppressed. Hence, this process is dimen-
sionally reduced when the frequency of thermal phonons,
ωth (∼ 208 MHz(T/10 mK)), is much less than a struc-
ture’s cutoff frequency Ωco (e.g. see Figs. 5 & 6).

To understand the qualitative behavior of relaxation
absorption as the system dimension is lowered we con-
sider idealized bulk D-dimensional systems. To gain
more insight from Eq. (34) we consider ranges of pa-
rameters where Qrel,q can be approximated. When
ΩqT1,min(E < kBT ) � 1 the integrand of Eq. (34) can
be Taylor expanded for small 1/(ΩqT1) and the integrals
can be done analytically. This calculation results in the
asymptotic form Qrel,q for η-polarized phonons and pho-
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tons of frequency Ωq given by

1
Qac.

rel,q
1

Qem
rel,q

}
≈ PD(kBT )

3ΩqρD~D+1

πSD−12D+1+µ

(2π)D

×
∑
η′


[γ4]ηη′

ρDv2η
[d2γ2]ηη′

ε0ε

 ID+µ

vD+2
η′

(kBT )D (35)

where [γ4]ηη′ ≡ (4π)−1
∫
dϕ γ2

η(n̂)γ2
η′(n̂), [d2γ2]ηη′ ≡

(4π)−1
∫
dϕ d2

η(n̂′)γ2
η′(n̂) = |d|2γ2

η′/3. Here we do not
assume that a defect’s electric dipole and deformation
potential are parallel, i.e. n̂′ 6= n̂ [77], and PD(E) ∝ Eµ.
The familiar result from the standard TSM is obtained
by ignoring the angle dependence of the deformation po-
tential, taking D = 3, and assuming a constant DDOS,
i.e. µ = 0 [4]. Up to a pure numerical prefactor, Eq.
(35) shows that relaxation absorption is geometrically en-
hanced by a factor (L/λth)D in lower dimensional bulk
systems. We also point out that the results of Eq. (35)
agree with recent measurements of dissipation, attributed
to phonon-mediated relaxation, of quasi-1D NEMS oscil-
lators exhibiting a linear temperature scaling [24].

In the low-frequency limit where
ΩqT1,min(E = kBT )� 1 relaxation absorption re-
duces to a universal value that is independent of the
system dimension. This can be seen by converting
the integration in Eq. (34) to ‘polar’ coordinates, i.e.
(∆,∆0) → (E, φ), the φ integral can be done directly.
Subsequently, a Taylor expansion in small ΩqT1,min may
be performed resulting in

1
Qac.

rel,q
1

Qem
rel,q

}
= πPD(kBT )2µ−1cµ


γ2
η

ρDv2η
|d|2

3ε0εeffq

 . (36)

Thus, in the low-frequency limit, the temperature scaling
of 1/Qrel,q is given by P (kBT ) ∝ Tµ which provides an
indirect window on the energy dependence of the DDOS.
Also, it is interesting to note that Eq. (36) with the
measured value of µ ≈ 0.3 leads to a low-temperature
scaling of the mechanical dissipation in agreement with
observations in quartz BAW resonators, and a variety
of NEMS and MEMS that operate in the low-frequency
limit [9, 33]. However, such a scaling can be explained by
relaxation absorption associated with overdamped flexu-
ral modes in the high-temperature limit [42]. These re-
sults point to an interesting direction for further study.

Acoustic waveguides often support dispersive flexu-
ral modes without cutoff. In such systems the reduced
dimensional behavior of relaxation absorption contrasts
with the results of Eq. (35). In waveguides, the disper-
sion of each phonon branch can lead to dramatic changes
in the DOS of the phonon bath, and in turn modify the
temperature scaling and magnitude of acoustic and EM
dissipation. To explore these effects with maximum sim-
plicity, we compute 1/Qrel,q for waveguides in the high-
frequency limit using the spatial and orientation aver-
aged value of T1 in Eq. (34), and consider systems where

(γ`/v`)
2 ≈ (γt/vt)

2. With these approximations and us-
ing Eq. (6) we find

1
Qac.

rel,q
1

Qem
rel,q

}
≈
∫ ∞
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dE
2πP (E)E

3~2ΩqρkBTV
g(E/~)
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`

v2
`

×
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γ2
` /ρv

2
`

|d|2/3ε0ε
eff
q

}
csch

(
E

kBT

)
(37)

where the identity 2csch(x) = sech2(x/2) coth(x/2) has
been used. The phonon DOS g(Ω) for 1D and 2D sys-
tems is given by Eqs. 9 and 11.

When kBT � ~Ωco, the behavior of waveguides dif-
fers from the idealized bulk systems. To see this consider
a cylindrical waveguide of radius R where only the four
cylinder modes without cutoff contribute to Eq. (34)
(Fig. 6). The effect of the compressional and torsional
mode is accurately predicted by Eq. (35), but in contrast,
the magnitude and temperature scaling of relaxation ab-
sorption from flexural modes differs substantially from
bulk systems. To see this consider small wavevectors, i.e.
Rq � 1, where the dispersion relation for flexural modes
in a cylinder is given by Ω ≈ vBRq2/2 [78]. In this limit
the inverse quality factor resulting from the flexural mode
contribution to 1/Qrel,q is given by

1
Qac.

rel,q
1

Qem
rel,q

}
flex.,1D

≈ 21+µ

3ΩqρA

γ2
`

v2
`

P (kBT )√
vBR

×


γ2
`

ρv2`
|d|2

3ε0εeffq

 (kBT )1/2

~3/2
I1/2+µ (38)

(recall that Im is defined following Eq. (22)). The re-
sult above shows that relative magnitude of Eq. (38)
to the quality factor for an idealized bulk 1D system is
enhanced by

√
λth/R (� 1 when ~Ωco � kBT ), show-

ing that flexural modes dominate relaxation absorption
in waveguide systems. Losses in such systems scale as
P (kBT )T 1/2 ∝ T 1/2+µ when resonant absorption is neg-
ligible, and may be an alternative explanation for the
temperature dependence of mechanical dissipation ob-
served in nano-beams [24].

Flexural modes in 2D waveguides also lead to enhance-
ment of the acoustic decay over the bulk 2D result above.
A similar analysis as that performed for the cylinder
above gives the relaxation absorption related quality fac-
tor arising from flexural modes in a planar system

1
Qac.
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1

Qem
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}
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√
3ΩqρL
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`

v2
`

P (kBT )
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`
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3ε0εeffq

 kBT

~2
I1+µ

(39)

where the dispersion relation for the fundamental flexu-
ral mode Ω ≈ 1

2
√

3
vplLk

2, valid for Lk � 1, has been

used [78]. A comparison of Eq. (39) to Eq. (35) shows
that flexural modes are the dominant source of relaxation
absorption in 2D structures at low temperatures.
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Now we analyze relaxation absorption in resonant
acoustic cavities. For cavities the decay rate T−1

1 is Pur-
cell enhanced, and so care must be taken when assessing
the asymptotic limits of Qrel,q. In high finesse cavities it
may be possible that ΩqT1 � 1 for non-resonant defects
and ΩqT1 � 1 for resonant defects. However, in certain
ranges of frequencies and temperatures, the inequality
ΩqT1 � 1, is satisfied for all energies contributing to the
integral in Eq. (34). In this limit, the peaked nature
of the TLS-decay rate inside the integrand samples ener-
gies matching phonon resonances and leads to the quality
factor given by

1
Qac.
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1

Qem
rel,q

}
≈ 2π

3ΩqVDkBT

γ2
`

v2
`

∑
q′

PD(~Ωq′)Ωq′

sinh
~Ωq′

kBT


γ2
`

ρv2`
|d|2

3ε0εeffq

 .

(40)

In the limit where the mode volume becomes large the
resonator eigenfrequencies become dense and Eq. (40)
reduces to Eq. (35). In contrast, for small mode vol-
umes the phonon spectra is gapped, and as was seen for
TLS-induced noise in resonators, relaxation absorption
too is exponentially suppressed for low temperatures (i.e.
kBT < ~Ω1) (Fig. 14).

F. Estimations of TLS-induced dissipation in
mesoscale waveguides and resonators

To illustrate the contrasting behavior of defect-induced
dissipation in mesoscale systems we compare the total
the acoustic quality factor and EM loss tangent, given
by Q−1

q = Q−1
res,q + Q−1

rel,q, for waveguides, resonators,
and a 3D bulk. The total quality factor is computed
from Eqs. 32 and 34 and the expressions for T1 and
T2. For simplicity, the spatial and orientation averaged
defect decay rate (see Eqs. 8-13), including the effect of
dispersive higher order modes and Purcell enhancement,
is used to compute the Jc and Qrel,q in these examples.

The defect dephasing rate is given by T−1
2 = T−1

1 /2 +

T−1′

2 where Eqs. 17 and the convention discussed at the
end of Sec. IV C are used.

1. Dissipation in nanoscale waveguides

Figure 13 illustrates the contrasting behavior of the
acoustic quality factor of the fundamental axial-radial
mode of a cylindrical nanowire and a longitudinal wave
of an idealized 3D bulk as a function of frequency. Both
excitations are chosen to have an intensity of 100 W/m2,
and both systems are set at a temperature of 10 mK. The
microwire system is chosen for its simplicity; its mode
functions can be obtained analytically, yet it exhibits all
of the unique behaviors of waveguides. These behaviors
include dispersive flexural modes, and van-Hove singular-
ities in the phonon DOS. For the chosen microwire radius

FIG. 13. Acoustic quality factor for the fundamental axial-
radial mode of a 100 nm radius silica wire as a function of
frequency (green) with 100 W/m2 intensity. The wire tem-
perature is 10 mK. For comparison, Q-factor for quasi-1D
bulk (green dashed) and a 3D bulk (blue) with the same pa-
rameters are displayed, as well as the low- and high-intensity
limits, respectively (solid black) and (gray dashed). Inset: Q-
factor for frequencies above cutoff showing large changes near
van-Hove singularities in the phonon DOS (red-arrows).

(100 nm) and temperature, the thermal frequency is far
below cutoff (i.e. kBT � ~Ωco, see Fig. 5). Therefore
relaxation absorption is dimensionally reduced, with a
magnitude determined by the four acoustic modes with-
out cutoff, but dominated by flexural modes.

Figure 13 shows that the quality factor of the axial-
radial mode in the cylinder (green) is much smaller than
the 3D bulk system (blue) for frequencies below Ωco.
This occurs because the critical intensity is geometri-
cally and dispersively enhanced in the microwire (see Fig.
12), and because relaxation absorption is geometrically
enhanced by flexural modes Eq. (38). The reduced di-
mensional theory for the cylinder computed using Eq.
(12) (green dashed line of Fig. 13) differs from the ex-
act calculation with higher frequency due to higher or-
der dispersion not accounted for in Eq. (12). Above
Ωco sharp discontinuities are observed in Qac. at frequen-
cies where acoustic excitations with zero group velocity
are supported (i.e. van-Hove singularities), contrasting
markedly from bulk systems (see Fig. 13). The dissi-
pation is dominated by resonant absorption at low in-
tensities, and the Q of all systems converges to a nearly
universal value determined by Eq. (27) (black line of Fig.
13). While this example focuses on phononic dissipation,
the EM loss tangent has a very similar character.

2. Dissipation in acoustic resonators

The Purcell effect and the gapped phonon DOS lead
to marked differences between defect-induced dissipation
in resonators and bulk systems. Such differences are dis-
played in Fig. 14 which compares Qac. for the fundamen-
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tal shear wave of a cubic silica resonator to the fundamen-
tal shear wave of a 3D bulk as a function of frequency.
The resonator is defined using periodic boundary condi-
tions and the frequency of the fundamental shear mode
is continuously varied by scaling the resonator size. This
example is amenable to a fully analytical treatment, and
it has all of the salient features of a general resonator
system.

We have shown that the critical intensity for a res-
onator mode is Purcell enhanced (Fig. 12), and as a
result Qac. is smaller in resonators (red-dotted) than in
3D bulk systems (blue) for fixed circulating intensity
(1 W/m2) (Eq. (32) & Fig. 14). However, the intra-
cavity power is enhanced in resonators by energy stor-
age. Therefore, we also compare Qac. for resonator and
bulk systems with the same driving intensity (1 W/m2),
and including the effects of intra-cavity power enhance-
ment. When this enhancement is accounted for, res-
onators (red) out-perform bulk systems (blue) over a
broad range of frequencies.

In resonators the quality-factor ceiling set by relax-
ation absorption is exponentially enhanced when at low
temperatures(kBT � ~Ω1, see Eq. 40). This en-
hancement is illustrated by the black dashed line in Fig.
14. For the example of Fig. 14, with cubic geome-
try and plane wave normal modes, relaxation absorp-
tion in resonators and bulk systems is equivalent when
Ω1 � ωth. However, when Ω1 > ωth the resonator’s
thermo-mechanical motion is frozen out and Qrel is en-
hanced (black-dashed line).

As a final remark we mention that the resonator is as-
sumed to contain an ensemble of defects in these exam-
ples. However, if a uniform DDOS is assumed then fewer
defects are contained in the system as its dimensions are
scaled down. In such scaled down systems, with a small
number of defects, Fig. 14 describes the average qual-
ity factor (the observed dissipation will fluctuate from
sample-to-sample).

3. Low- and high-intensity limits of defect-induced
dissipation

Above, we saw that mesoscopic systems exhibit non-
trivial saturation and dissipation characteristics deter-
mined by the details of the phonon DOS. However, in
certain limits there are several striking universal trends,
shown in Fig. 15, that are common to EM and acoustic
dissipation.

The dissipation is universal in two limits, surprisingly
having nearly the same magnitude for EM and acoustic
fields with the same mode volume. The first regime is
reached at low intensity (J � Jc) and low-temperatures
(kBT < ~Ω) where resonant absorption, described by Eq.
(27), dominates the dissipation (black). In this limit the
temperature dependence of the dissipation is determined
by the thermal population inversion of the defects that
interact with the wave of interest. The second limit is

FIG. 14. Acoustic quality factor of the fundamental acoustic
mode of a silica resonator with acoustic intensity of 1 W/m2

(red-dotted), and finesse-enhanced intensity Q
2π

1W/m2 (red).
The system temperature is taken to be 10 mK. The quality
factor ceiling for the resonator, given by Eq. (40), is shown as
a black-dashed line. For comparison the result for a 3D bulk
system with intensity 1W/m2 is displayed (blue).

reached at low-frequencies where relaxation absorption
converges to a universal value given by Eq. (36) (black-
dashed). In this limit, the temperature dependence of
this universal trend probes the energy dependence of the
DDOS.

When an arbitrary mode is driven to saturation the
EM and acoustic dissipation approaches a universal (but
system-dimension dependent) dissipation floor set by re-
laxation absorption. In Fig. 15 we display results for
systems where relaxation absorption dimensionally re-
duced (ωth < Ωco), and therefore the temperature de-
pendence is determined by the system dimension, the
energy dependence of the DDOS, and dispersive proper-
ties of the fundamental acoustic modes. In Fig. 15 the
high-intensity limit for the acoustic quality factor and in-
verse loss tangent in 1 (green), 2 (orange), and 3D (blue)
systems supporting flexural modes is shown. The low-
temperature scaling of T 1/2+µ, T 1+µ, and T 3+µ for 1,
2, and 3D respectively, serves as a powerful diagnostic
measurement to survey the mechanical degrees of free-
dom and the DDOS that contributes to dissipation in a
given system. As a final note in this section, these results
show that the unique properties of mesoscale systems are
only visible at high intensities.

V. DISCUSSION

As an array of emerging nanoscale technologies
progress to ever-smaller sizes the interplay of geometry,
dispersion and density of states lead to radical modifica-
tions of the nature of defect-induced noise, dissipation,
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FIG. 15. Asymptotic limits of inverse EM and acoustic quality
factor at high- and low-intensities. The parameter µ is set to
0.3.

and nonlinearity.

We have shown that the nature of defect dynamics is
determined by the interplay of confinement, TLS energy,
defect concentration, and temperature. Namely, emis-
sion into slow group velocity, flexural, or resonator modes
leads to a large (Purcell) enhancement of the decay rate,
and when the separation between thermally activated de-
fects exceeds one or more system dimension the behavior
of spectral diffusion is transformed (see Figs. 5, 7 &
13). As a result, the noise produced by defects is shaped
by system geometry and is suppressed in systems con-
structed from high-quality acoustic resonators operating
at low-temperatures (see Figs. 9, 10 & 11). In addi-
tion, the saturation scale for defect-induced dissipation
(Fig. 12), and the dissipation floor at high-intensities is
strongly modified by geometric, dispersive, and Purcell
enhancements to T1 and T2 shown in Figs. 13-15.

We have shown that the negotiation of a system’s com-
peting length-scales defines a unique fingerprint for de-

fect physics. Such a fingerprint can serve as a powerful
characterization tool, and can be used to test the foun-
dations of glass physics. For example, we have demon-
strated that defect decay and dephasing, observable using
π-pulse and phonon echo [55, 72, 73], directly probe the
phonon DOS (e.g. Eq. (6) & Fig. 12) and reveal the
nature of defect-defect interactions. Defect-induced elec-
tromagnetic noise reveal information about the DDOS,
the system dimension, and fundamental origins of noise
in qubits, and measurements of dissipation can probe sys-
tem dimensionality, the phonon DOS, and energy depen-
dence of the DDOS. A collection of such measurements
can isolate and determine each of the parameters enter-
ing the standard tunneling state model. Thus, the TSM
and its alternatives [59–63], which give contrasting pre-
dictions in reduced dimensional systems [44], can be put
to the test.

In closing, we have demonstrated that an ever-present
source of noise and dissipation, engendered by low-energy
defect centers, hinges sensitively on system scale and ge-
ometry. Our results show that this noise and dissipa-
tion can be reduced in mesoscale systems, suggesting that
thoughtful mode engineering may enable unprecedented
levels of performance in an array of cutting-edge tech-
nologies.
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Appendix A: Derivation of T−1
1

In this section we derive the upper state lifetime for a defect coupled to a system’s acoustic field. We begin our
derivation by computing the transition amplitude for the coupled phonon-defect system to go from an initial state
|i〉 = |e〉 ⊗ |Ψi〉 at time ti to a final state |f〉 = |g〉 ⊗ |Ψf 〉 at time tf where the states |Ψi〉 and |Ψf 〉 are energy
eigenstates of the uncoupled phonon system. Formally, this amplitude can be written as

ci→f = 〈f |UI(tf , ti)|i〉 (A1)

where UI(tf , ti) is the time evolution operator in the interaction picture. The time evolution operator can be written

as UI(tf , ti) = T exp{− i
~
∫ tf
ti
dt HI

int(t)} where HI
int is the interaction Hamiltonian in the interaction picture. In the

weak coupling approximation the transition amplitude takes the form

ci→f ≈ −
i

~

∫ tf

ti

dt〈f |HI
int(t)|i〉. (A2)
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The probability of deexcitation, for the process described above, is given by the modulus square of the transition
amplitude. The total probability of deexcitation, via emission into all channels, is given by averaging over the initial
state of the phonons and summing over all final states

P tote→g ≈
1

~2

∑
Ψf

∑
Ψi

pi

∫ tf

ti

dt

∫ tf

ti

dt′〈g| ⊗ 〈Ψf |HI
int(t)|e〉 ⊗ |Ψi〉〈e| ⊗ 〈Ψi|HI

int(t
′)|g〉 ⊗ |Ψf 〉. (A3)

Since
∑

Ψi
pi|Ψi〉〈Ψi| = ρ̂ is the initial density matrix of the phonon field,

∑
Ψf
|Ψf 〉〈Ψf | = I, and the relevant

component of the interaction Hamiltonian is proportional to σx and the strain field the transition probability is given
by

P tote→g ≈
1

~2

∆2
0

E2

∫ tf

ti

dt

∫ tf

ti

dt′eiE/~(t−t′)〈γ : ξ(t′, r)γ : ξ(t, r)〉 (A4)

where 〈g|σIx(t)|e〉 = e−iEt/~ has been used, 〈...〉 ≡ tr{ρ̂...}, ξ(t′, r) is the freely evolving strain field, and r is the
position of the defect.

We define the strain correlation function G+(t, t′) ≡ 〈γ : ξ(t, r)γ : ξ(t′, r)〉 that only depends upon the difference

in time arguments in steady-state. When tf ,−ti → ∞ a change of variables gives the decay rate T−1
1 , i.e. (P tote→g +

P totg→e)/(tf − ti), as

T−1
1 ≈ 1

~2

∆2
0

E2
(G+(E/~) +G+(−E/~)). (A5)

For a phonon bath in thermal equilibrium the fluctuation-dissipation relation can be applied to reduce the expression
above to

T−1
1 ≈ 2

~
∆2

0

E2
coth

E

2kBT
ImG(E/~) (A6)

where G(ω) is the retarded Green’s function related to γ : ξ(t, rj). G(t, t′) can be derived from the Green’s function
for the displacement field glm(x, x′)

[(ρ∂2
t + ρΓ∂t)δ

l
i − ∂jC

jkl
i ∂k]glm(x, x′) = δ4(x− x′)δim (A7)

where Cijkl is the system’s elastic tensor, and where we’ve assumed that the phonons experience a linear dissipation
Γ.

We write glm as a Fourier transform g̃lm(ω,x,x′) = (1/2π)
∫
dωe−iωtglm(t,x; 0,x′). The spatial dependence can be

obtained by decomposing g into normal modes

g̃(ω,x,x′) =
∑
q

Aquq(x). (A8)

Plugging this expansion into the equation above, and using the eigenvalue and orthonormality properties of the
eigenfunctions, results in an expression for Aq yielding the following representation for g̃

g̃(ω,x,x′) =
∑
q

uq(x)u∗q(x′)

Ω2
q − iωΓq − ω2

. (A9)

Contracting each vector eigenfunction ukq with γik∂i gives G

G(ω,x,x′) =
∑
q

γ : ξ
q
(x)γ : ξ∗

q
(x′)

Ω2
q − iωΓq − ω2

(A10)

which has an imaginary part at coincidence given by

ImG(ω,x,x) =
∑
q

ωΓq|γ : ξ
q
(x)|2

(Ω2
q − ω2)2 + (ωΓq)2

. (A11)

The equation above leads to the decay rate for the defect given by

T−1
1 (E) ≈ 2

~
∑
q

∆2
0

E2
coth

E

2kBT

Γq(E/~)|γ : ξ
q
(r)|2

(Ω2
q − (E/~)2)2 + ((E/~)Γq)2

(A12)

which agrees with Eq. (4) in the limit Γq → 0 and with Eq. (13) when averaged over defect orientations and positions.
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1. Waveguides

In this section we compute the decay rate for a defect in a 2D waveguide. We begin from Eq. (6). The mode
index q can be represented as {m,k} where m is an index labeling the eigenfunctions describing the elastic field
in the dimension normal to the plane, and k is a wavevector in the plane. Hence, the mode sum

∑
q is given by∑

m(A/4π2)
∫
d2k where A is the area of the plane, to be taken to infinity at the end of the calculation, and the mode

eigenfrequencies can represented as Ωq ≡ Ωm(k). Using the delta function identity listed inline above Eq. (8) we find

〈T−1
1 (E)〉V =

1

L

∑
m,j,η

∫
d2k

∆2
0

2~ρ
γ2
η

v2
η

emj,η coth

(
E

2kBT

)
δ(k − |kmj |)
|~vmjg |

(A13)

where |kmj | is defined inline above Eq. (10), and mj is short for m,kmj . Eq. (10) is obtained by evaluating the
k-integral and using vmjp = Ωm(|kmj |)/|kmj |.

2. Bulk medium with dissipation

In Eq. (A12) we have derived the formal expression for the decay rate of a defect interacting with a collection of
lossy phonon modes. It is interesting to evaluate the expression for T−1

1,min in the infinite volume limit where the sum
over modes becomes an integral. The result for T1 in this limit depends upon the physical origin of the phonon decay.
If the phonon dissipation is assumed to arise from local absorption due to the intrinsic losses present in the material
we find the decay rate

T−1
1 (E) ≈ 2

2π2~ρ
∑
η

γ2
η

v5
η

coth
E

2kBT

∫ Λ

0

dΩ
Γ(E/~)Ω4

(Ω2 − (E/~)2)2 + ((E/~)Γ)2
(A14)

where we have introduced a high-frequency cutoff Λ representing the defect ‘size’. If we take Γ to be constant and
assume Λ� E/~,Γ we find

T−1
1 (E) ≈ 1

π2~ρ
∑
η

γ2
η

v5
η

E

~
coth

E

2kBT

[
ΛΓ +

πΓ

4

Re[ω̃3]

Im[ω̃]Re[ω̃]
+O(Λ−1)

]
(A15)

where ω̃ =
√

(E/~)2 + iΓ(E/~).
Notice that the decay rate is composed of a potentially large cutoff-dependent term when the acoustic medium is

assumed to be lossy, and a cutoff independent term. This cutoff dependent contribution to the decay rate is well-
known in the study of spontaneous emission of atoms embedded in absorbing dielectrics where it is attributed to
non-radiative decay through near-field interactions [71]. This interpretation is consistent in the acoustic case treated
here as the cutoff-dependent part of the decay rate arises entirely from the E = 0 component of T−1

1 , i.e. from static
elastic fields, the elastic equivalent of the electrostatic dipole field. Systems with large sources of intrinsic acoustic
dissipation may require a more general treatment than that leading to Eq. (4). As an example consider phonon-
phonon scattering in glass which leads to decay rates of order (2π)1 Hz [34] at 3.8 K for GHz frequency phonons. For
Λ = 0.1 nm the cutoff-dependent contribution to T−1

1 is four orders of magnitude smaller than the cutoff-independent
component, and hence Eq. (4) gives a quantitative estimation of the defect decay rate in a dissipative bulk. When
phonon dissipation arises from defects (all remaining defects) we find that GHz phonons and for Λ = 0.1 nm that the
cutoff-dependent term is comparable to Eq. (4). We plan to investigate this effect further in future work.

Dissipation of phonon modes occurs even in lossless media when energy leaks from a resonator into a supporting
structure. For this case a decay rate can be added to the equation of motion for the phonon field to model the energy
leakage from a mode. For such a system the decay rate will scale as Γ ∼ − 4v

L ln r where v is the sound speed, L is the
characteristic size of the resonator, and r is the reflection coefficient, representing the fraction of energy retained in
the system for each cycle. Unlike the previous example, the dissipation is not distributed throughout the resonator,
i.e. the losses occur as energy leaks away upon reflection at the resonator-support interface. Hence, for this system
the cutoff-dependent component of the decay rate is an artifact of the way we have modeled the cavity losses and thus
should be subtracted. Indeed, for the case of an atom in an inhomogeneous dielectric a calculation of the decay rate
is cutoff-independent so long as the dielectric imediately surrounding the atom is not lossy [79]. Also, note that the
decay rate vanishes in the infinite volume limit, and hence Eq. (A15) appropriately reduces to Eq. (4) for a lossless
medium in the infinite volume limit.
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Appendix B: Elastic energy and angular averages of γ : ξ
q

The elastic energy of a system occupying volume V is given by

E = K + V =
1

2

∫
V

d3x [ρu̇2 + Cijklξijξkl]

where K is the kinetic energy, V is the potential energy, and Cijkl is the elastic tensor. By decomposing the elastic
field into normal modes, using the orthonormality relation for the displacement field, integrating the potential energy
term by parts, and using the eigenvalue equation for the normal modes one finds the following identities

K = V =
1

4

∑
q

~Ωq(bqb
†
q + b†qbq). (B1)

For an isotropic medium the elastic tensor is Cijkl = λδijδkl + µ(δikδjl + δilδjk) where λ = ρ(v2
` − 2v2

t ) and µ = ρv2
t .

With a mode decomposition of the strain, the identity E = 2V, and the orthonormality relation we find

E =
∑
q

1

2
~Ωq(bqb

†
q + b†qbq)

[
1

Ω2
q

∫
V

d3x ρ(v2
` |trξq|

2 + 2v2
t (ξ

q
: ξ∗

q
− |trξ

q
|2)

]
. (B2)

The quantity in square brackets is equal to 1, and which we interpret as the sum of the fractions of elastic energy in
compressional eq` and shear eqt motion of the qth mode

eq` =
1

Ω2
q

∫
V

d3x ρv2
` |trξq|

2 (B3)

eqt =
2

Ω2
q

∫
V

d3x ρv2
t (ξ

q
: ξ∗

q
− |trξ

q
|2). (B4)

Now we evaluate 〈|γ : ξ
q
|2〉V . Using γ : ξ = γ̃[(1 − 2ζ)trξ + 2ζn̂ · ξ · n̂] [64] the n̂-orientation average of |γ : ξ

q
|2

can be performed giving ∫
dϕ

4π
|γ : ξ

q
|2 = γ2

` |trξq|
2 + 2γ2

t (ξ
q

: ξ∗
q
− |trξ

q
|2). (B5)

Finally, averaging the result above over the system volume we arrive at Eq. (5) if we assume that the density
throughout the system is uniform.

Appendix C: Small Mode Volume Limit

The analysis of defect-induced dissipation in the main body of the text applies to the scenario where a large number
of defects interact with each phonon mode. However, for resonator systems as the system volume becomes small a
point is reached where the acoustic modes can interact with a single defect, occurring when Nres 6 1. In this case the
defects no longer act as a spin bath which can irreversibly absorb acoustic energy, and the defect-phonon system will
undergo Rabi oscillation. For silica based systems

Nres ∼ P~ΓqV =
Γq

2πMHz

V

(1µm)3
, (C1)

meaning that the small mode volume limit can be achieved with 1 MHz linewidth modes in systems with volumes
less than a 1 µm3. For the formula above the acoustic mode decay rate is determined by all other sources of loss in
the system such as phonon-phonon scattering.

The energy of systems with Nres = 1 will oscillate between the defect and phononic degrees of freedom with the
frequency

Ω̂2
Rabi =

2

~Ωq

∆2
0

E2
|γ : ξ

q
(r)|2

(
N̂ +

1

2

)
+ (Ωq − E/~)2 (C2)

which is calculated from the Heisenberg equations (Appendix A) of the coupled system in the rotating wave approxi-

mation (RWA) [80]. The operator N̂ = b†qbq + 1
2σz is conserved in the RWA.
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Appendix D: Dipole-dipole correlation function

In this section we compute the dipole-dipole correlation function for the defects using the QRT. For weak coupling
the dipole-dipole correlation function separates into two terms

〈δPi(t)δPj(t
′)〉 =δijdd

[
∆2

0

E2
〈σx(t)σx(t′)〉

+
∆2

E2
(〈σz(t)σz(t′)〉 − w2

0(E))

]
(D1)

where we’ve suppressed the defect labels i and j on defect parameters, and w0(E) ≡ − tanh E
2kBT

is the thermal
equilibrium value of σz. The correlation functions above can be approximated using the quantum regression theorem
(QRT) [74], positing that the two-time correlation function of an operator A 〈A(t)A(0)〉 satisfies the same equation
of motion as the mean value 〈A(t)〉, giving

〈σx(t)σx(t′)〉 ≈1

2
(1 + w0(E))ei

E
~ (t−t′)− |t−t

′|
T2 (D2)

+
1

2
(1− w0(E))e−i

E
~ (t−t′)− |t−t

′|
T2

〈σz(t)σz(t′)〉 ≈e−
|t−t′|
T1 + w2

0(E)

(
1− e−

|t−t′|
T1

)
. (D3)

The correlation functions above satisfy the Pauli operator algebra at equal times, and at large time separations, i.e.
for |t − t′| � T1 (or T2) the two operators appearing in 〈σz(t)σz(t′)〉 are completely uncorrelated and hence the
correlation function factorizes 〈σz(t)σz(t′)〉 = 〈σz(t)〉〈σz(t′)〉 = w2

0(E). The QRT is valid in the weak coupling limit.

Appendix E: Derivation of resonant absorption

In this section we derive resonant absorption of a driven acoustic mode.

1. Heisenberg equations of motion

To orient the reader and establish notation we first give the Heisenberg equations of motion for the coupled defect-
phonon system in full generality

σ̇z,j =
2

~
∑
q

(gq,0jbq + g∗q,0jb
†
q)σy,j (E1)

σ̇y,j =
1

~
[E′j + 2

∑
q

(gq,jbq + g∗q,jb
†
q)]σx,j −

2

~
∑
q

(gq,0jbq + g∗q,0jb
†
q)σz,j (E2)

σ̇x,j = −1

~
[E′j + 2

∑
q

(gq,jbq + g∗q,jb
†
q)]σy,j (E3)

ḃq = −iΩqbq −
i

~
∑
j

[g∗q,jσz,j + g∗q,0jσx,j ] (E4)

where the shorthand gq,0j ≡ ∆0j

Ej

√
~

2Ωq
γ : ξ

q
(rj) and gq,j ≡ ∆j

Ej

√
~

2Ωq
γ : ξ

q
(rj) has been introduced. The

equations for the coupled defect-photon system can be derived by taking gq,0j = −i∆0j

Ej

√
~Ωq

2 d · Eq(rj) and

gq,j = −i∆j

Ej

√
~Ωq

2 d ·Eq(rj) and bq → aq, the annihilation operator for the EM field, in the equations above.

2. Bloch equations

For the purposes of deriving resonant absorption we work with the Bloch equations describing the mean-field
dynamics of the interaction of a single phonon mode with the defect ensemble. In addition, we neglect the diagonal
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coupling ∆ which plays a minor role in this process. The Bloch equations can be derived from the Heisenberg equations
of motion in leading order perturbation theory resulting in

Ṡz = − 1

T1
(Sz − w0)− i2

~
(gq,0βqS

+ − g∗q,0β†qS−) (E5)

Ṡ+ =
(
iE/~− T−1

2

)
S+ − i

~
g∗q,0β

†
qSz (E6)

β̇q = (−iΩq − Γq/2)βq −
i

~
gq,0S

− + fq (E7)

where Sk ≡ 〈σk〉, S± = (Sx ± iSy)/2, the effect of thermal fluctuations of the phonon field have been accounted for
in the decay rates T1 and T2, βq is the driven component of the phonon field, fq ∝ e−iωt is an external drive, and the
RWA has been used which is valid so long as Ωq � Γq. The dephasing time T2 results from thermalization by the
phonon field and by other thermally active defects in the system. The latter is unimportant when PkBTV < 1, i.e.
there are no thermally active defects present in the system, which is feasible with very small mode volumes and low
temperatures. For silica PkBTV ≈ 75 for T = 10 mK and V = 1 µm3.

With a strong external drive oscillating at ω we look for solutions with βq and S− both oscillating as e−iωt and Sz
time-independent. In this approximation, the solution for S+ and Sz are given by

Sz =
w0

1 +
4|gq,0|2T1T2

~2
1

1+(E/~−ω)2T 2
2
|βq|2

(E8)

S+ = − i
~
g∗q,0

T2

1− iT2(E/~− ω)
β†qSz. (E9)

When plugged into the equation of motion for the phonon, these solutions account for the back reaction of the defect
on the phonon mode. This is manifested as a frequency shift and a dissipation function: [−i∆Ωres

q − Γres
q /2]βq

−iωβq = [−i(Ωq + ∆Ωres
q )− (Γq + Γres

q )/2]βq + fq (E10)

Γres
q = −2

|gq,0|2

~2

T2

1 + T 2
2 (ω − E/~)2

Sz (E11)

= 2
|gq,0|2

~2

tanh
(

E
2kBT

)
√

1 +
4|gq,0|2T1T2

~2 |βq|2
T̃2

1 + T̃ 2
2 (ω − E/~)2

(E12)

where T̃2 =
√

1 +
4|gq,0|2T1T2

~2 |βq|2T2. Eq. (E11) gives the dissipation rate for resonant absorption of acoustic energy

by a single defect. In the case when the energy of a large number of defects fall within 1/2πT2 of the mode frequency
the dissipation rate can be calculated by taking the ensemble average of Eq. (E11) with respect to all defect properties.
Such an averaging, and using Ωq � Γq, results in Eq. (32).

Appendix F: Derivation of relaxation absorption

In this section we derive the phonon dissipation rate due to relaxation absorption. We begin with the observation,
with some rearrangement of Eq. (1), that the energy level of a given defect is modulated by an incident strain field

as Ej → Ej + 2
∆j

Ej
γj : ξ(rj). This energy-level modulation will drive the level inversion which can be accounted for

by Taylor expanding w0(E) for small strain in the Bloch equation for the Sz

Ṡz ≈ −
1

T1

(
Sz − w0 − 2

∂w0

∂E

∆

E
γ : ξ(r)

)
(F1)

where the off-diagonal coupling, proportional to gq,0j , and the suffix j has been dropped.
The strain field on the right hand side of Eq. (F1) drives oscillations of the level inversion, and in turn, level

inversion oscillations lead to the radiation of phonons in a random direction. This acoustic radiation can be computed
by finding the solution of Sz and plugging it’s solution into the equation of motion for the mean acoustic field
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β̇q = (−iΩq − Γq/2)βq −
i

~
gqSz (F2)

where the diagonal coupling has been reintroduced and gq,0j has been set to zero. The oscillating component of the
level inversion δSz is given by

δSz ≈
2

1− iΩqT1

∂w0

∂E
gqβq. (F3)

Plugging this expression into the equation of motion for the phonon, i.e. using the RWA, results in dissipation and a
frequency shift

− i
~
gqδSz =(−i∆Ωrel

q − Γrel
q /2)bq (F4)

where

∆Ωrel
q =

2

~
|gq|2

1

1 + Ω2
qT

2
1

∂w0

∂E
(F5)

Γrel
q = −4

~
|gq|2

ΩqT1

1 + Ω2
qT

2
1

∂w0

∂E
(F6)

which is the frequency shift and dissipation from relaxation absorption for a single defect. When averaged over all
defect properties Eq. (F6) reduces to Eq. (34) in the main text.

Γrel
q can be interpreted as the energy lost from the phonon mode as it drives a defect, and the defect reradiates that

energy into a random direction with a strength set by T−1
1 . In the high frequency limit notice that the defect decay is

proportional to T−1
1 . Hence, for a cavity based system only resonant defects will appreciably reradiate the phonon’s

energy. Given the exponential suppression of Γrel
q with E by ∂w0

∂E = − 1
2kBT

sech2 E
2kBT

, the dominant contribution to
relaxation absorption in a cavity based system is given by the defects that are resonant with the fundamental mode
Ω0. Hence, the quality factor is given by

1

Qrel,q
≈ 4

~
|gq|2

1

Ω2
qT1

1

2kBT
sech2 ~Ω1

2kBT
(F7)

with T1 evaluated at E = ~Ω1, and hence relaxation absorption is exponentially suppressed for low temperatures
where ~Ω1/kBT � 1. After averaging over defect properties it can be shown that Eq. (F7) is the first term of Eq.
(40).
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[64] D. V. Anghel, T. Kühn, Y. M. Galperin, and M. Manni-

nen, Phys. Rev. B 75, 064202 (2007).
[65] J. E. Graebner, B. Golding, and L. C. Allen, Phys. Rev.

B 34, 5696 (1986).
[66] L. Bernard, L. Piche, G. Schumacher, and J. Joffrin, J.

Low. Temp. Phys. 35, 411 (1978).
[67] J. Rose, Ultrasonic Waves in Solid Media, (Cambridge

University Press, Cambridge, 1999).
[68] J. L. Black and B. I. Halperin, Phys. Rev. B 16, 2879

(1977).
[69] A. J. Al-Bayati, K. G. Orrman-Rossiter, J. A. van den

Berg, and D. G. Armour, Surf. Sci. 241, 91 (1991).
[70] The equality γ2

` /v
2
` = γ2

t /v
2
t is satisfied for the range of

deformation potential values measured in silica.
[71] S. Scheel, L Knöll, and D-G. Welsch, Phys. Rev. A 60,

1590 (1999).
[72] C. Enss, S.Ludwig, R. Weis, and S. Hunklinger, Czech.

J. Phys. 46, 2247 (1996).
[73] C. Enss, R. Weis, S.Ludwig, and S. Hunklinger, Czech.

J. Phys. 46, 3287 (1996).
[74] L. Mandel and E. Wolf, Optical Coherence and Quantum

Optics (Cambridge, London, 1995).
[75] M. Constantin, C. C. Yu, and J. M. Martinis, Phys. Rev.

B 79, 094520 (2009).
[76] A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, Phys.

Rev. Lett. 94, 127002 (2005).
[77] The last equality holds when the orientation a defect’s

electric dipole and deformation potential are uncorre-
lated on average.

[78] D. Royer and E. Dieulesaint, Elastic Waves in Solids I
(Springer, Berlin, 1996).
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