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We study how the Rashba spin-orbit interaction influences unconventional superconductivity in
a two dimensional electron gas partially spin-polarized by a magnetic field. Somewhat surprisingly,
we find that for all field orientations, only the larger Fermi surface is superconducting. When
the magnetic field is oriented out-of-plane the system realizes a topological p + ip pairing state.
When the field is rotated in-plane the order parameter develops nodes along the field direction and
finite center-of-mass-momentum pairing is realized. We demonstrate that the pairing symmetry of
the system can be easily probed experimentally due to the dependence of various thermodynamic
quantities on the magnetic field geometry, and calculate the electronic specific heat as an example.

I. INTRODUCTION

The idea that a superconducting state can arise from
direct repulsive interactions between electrons was first
introduced in a celebrated paper by Kohn and Luttinger1

(see2,3 for recent reviews on this topic). Even though
the bare interaction U between electrons is repulsive,
an effective attraction arises at O(U2) which forms a
p-wave superconducting state in three dimensions. Un-
fortunately this type of pairing is much weaker in two
dimensional systems, and in the weak-coupling regime
only a fragile superconducting state at O(U3) exists4.

However, partially polarizing a two dimensional elec-
tron gas (2DEG) with an in-plane magnetic field can dra-
matically increase the strength of the effective pairing
interaction at O(U2), as has been shown by a perturba-
tive diagrammatic expansion5 and more recently by an
asymptotically exact renormalization group approach6,7.
It was found that a non-unitary p + ip superconducting
state forms, in which the larger of the 2DEG’s two energy
bands superconducts, while the smaller one does not.

This interesting result represents one of the conceptu-
ally simplest illustrations of the Kohn-Luttinger mech-
anism of superconductivity. The natural association of
the Sz = +1 order parameter with the majority (spin
up) band ensures its ‘exotic’ nature - the spatial part of
the pair wave function must be an odd function of the
momentum (an odd angular harmonic). The fact that the
highest critical temperature is achieved for the smallest
possible ` = 1 harmonic8 brings this idealized set-up very
close to the forefront of modern research in topological
states of matter9.

However, any physical discussion of two-dimensional
superconductivity requires one to account for an om-
nipresent spin-orbit interaction26–28,34–36,39. In this pa-
per, we extend previous studies by investigating the ef-
fects of Rashba spin-orbit coupling (SOC) on unconven-
tional triplet superconductivity, mediated by repulsive
electron interactions, in a partially spin-polarized 2DEG.
We treat the SOC strength perturbatively with respect to
the magnetic field strength, while allowing the magnetic
field to point at an arbitrary angle with respect to the

plane of the electron motion. As an example, such a sce-
nario arises naturally at the boundary between LaAlO3

and SrTiO3
10,11, where the spin-orbit interaction can be

tuned by controlling an applied gate voltage12–14.

The addition of SOC breaks spin conservation and in-
duces coupling between spin-up and spin-down states. It
was speculated previously7 that SOC would therefore in-
duce a superconducting state on the minority band due to
the additional inter-band interactions it generates. How-
ever, we find that no superconductivity is induced on
the minority band to the leading order in the spin-orbit
coupling strength, regardless of the mutual orientation of
the magnetic field and spin-orbital axes. A state where
momentum-space Josephson coupling induces supercon-
ductivity on the minority band does exist, but it is ener-
getically disfavored compared to a decoupled phase where
only the majority band is superconducting.

We analyze the pairing symmetries realized on the ma-
jority band as a function of the magnetic field orientation.
For as long as the magnetic field possesses a finite out-of-
plane component the majority band is fully gapped with
p + ip symmetry, albeit with an angle-dependent, mod-
ulated gap. When the field is oriented strictly in-plane,
the order parameter develops nodes along the field di-
rection. Moreover, we find that quite generally the emer-
gent superconducting state is of FFLO kind, with a finite
center-of-mass pair momentum15–17, which is determined
by the vector product of the spin-orbital and magnetic
fields.

Studying the details of the band structure and the
direction of the nodes has been an area of intensive
focus in recent experimental studies of unconventional
superconductivity18–21. We show that the dependence of
the pairing symmetry on the magnetic field orientation
allows the nodal symmetries of the system to be read-
ily probed by measurements of various thermodynamic
quantities. To illustrate this, we compute the electronic
specific heat of the system as a function of the magnetic
field orientation.

The structure of this paper is as follows. In section II
we introduce the Hamiltonian and perform a unitary
transformation which brings it into a form diagonal in



2

the band indices. Self-consistent equations of the theory
are derived in section III. In section III A we detail the
resulting order parameter symmetries for different mag-
netic field orientations. Calculation of the electronic spe-
cific heat in section III B is followed by the discussion of
our results in section IV. Complementary discussion of
the finite center-of-mass momentum pairing is presented
in the Appendix.

II. MODEL AND HAMILTONIAN

A. Hamiltonian

The geometry of the system we consider is shown in
Figure 1. We let the 2DEG lie in the xy plane, with
the magnetic field H inclined by a polar angle δ relative
to the ẑ axis with azimuthal angle φ = 0. The non-
interacting part of the Hamiltonian H0 describes elec-
trons with parabolic dispersion k2/(2m) subject to the
external Zeeman field −gµBH · σσσ/2, where g is the g-
factor and µB is Bohr magneton, and the spin-orbit in-
teraction of Rashba type αRk×σσσ · ẑ = αR(kxσ

y−kyσx).
We set ~ = c = 1 throughout the paper.

In order to conveniently treat SOC in perturbation the-
ory, we choose to align the spin quantization axis parallel
to the magnetic field. This is done with the help of a
unitary rotation about the ŷ axis, Ry = exp[−iδσy/2],
which transforms H0 into

H0 =
∑
kσσ′

Eσσ′(k)c†kσckσ′ , (1)

where the matrix E(k) is given by

E(k) =
k2

2m
σ0 − hσz + αR(kxσ̃

y − kyσ̃x) (2)

and σ̃ = (σz sin δ + σx cos δ) x̂ + σyŷ +
(σz cos δ − σx sin δ) ẑ represents the rotated spin σσσ. The
Zeeman coupling strength is given by h = eg|H|/2m.
We neglect the effect of the external field on the orbital
motion of the electrons, an approximation which is jus-
tified if the g-factor is sufficiently large or if the orbital
coupling term is absent. This is the case in systems
of cold neutral atoms, which have been the subject of
several recent experimental studies of SOC22–24.

The electrons repel each other via the short-ranged
(contact) interaction HI =

∫
d2r Un̂↑(r)n̂↓(r) written in

terms of electron spin densities n̂σ(r). Therefore the full
Hamiltonian for our system in momentum space is

H = H0 +HI ,

H0 =
∑
kσσ′

Eσσ′(k)c†kσckσ′

HI =
U

V

∑′

k1k2k3k4

c†k1↑c
†
k2↓ck3↓ck4↑

(3)

where the primed sum is subject to the momentum con-
servation k1 + k2 = k3 + k4.
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FIG. 1: Geometry of the system. We align the spin quanti-
zation axis along magnetic field H.

B. Schrieffer-Wolff transformation

In this Section we describe the single particle spec-
trum of Hamiltonian (3), and construct a canonical
(Schrieffer-Wolff) transformation, which brings the inter-
action Hamiltonian into a form convenient for mean-field
analysis.

The Hamiltonian (3), for general values of αR, h and
U , is extremely complicated, and is amenable only to
numerical treatments. In what follows we make several
physically-motivated simplifying assumptions, which re-
strict the generality of the obtained results, but make the
problem analytically solvable. Throughout, we assume
the spin-orbit interaction to be weak compared to the
Zeeman coupling, allowing us to treat the ratio αRkf/h
perturbatively, where kf is the Fermi momentum of ei-
ther Fermi surface. The particle-particle interaction, U ,
is assumed to be weak, mU � 1. As far as quantities
of higher order of smallness are concerned, we will keep
terms of order O(mUα2

Rk
2
f/h

2) while discarding those of

order O(m2U2αRkf/h), which is permissible for not too
small Rashba SOC, αRkf � mUh. The utility of these
approximations will become clear in what follows.

We begin with the single-particle part of the Hamil-
tonian, H0. The problem of finding the spectrum and
eigenstates of H0 can be easily solved exactly; however,
for our purposes we specialize to the case of weak SOC
from the outset.

To diagonalize H0, we perform a unitary transforma-
tion from the operators ckσ to band operators akλ, where
the index λ ∈ {1, 2} labels the two bands, with 1 denoting
the larger (majority) band and 2 the smaller (minority)
ones. To the required order in αR, the transformation to
band operators is given by

ck↑ =

[
1− α2

Rk
2

8h2
(cos2 φk + sin2 φk cos2 δ)

]
ak1

− αRk

2h
(i cosφk + sinφk cos δ)ak2,

ck↓ = −αRk
2h

(i cosφk − sinφk cos δ)ak1

+

[
1− α2

Rk
2

8h2
(cos2 φk + sin2 φk cos2 δ)

]
ak2,

(4)
where φk is the azimuthal angle of k.
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FIG. 2: Schematics of the Fermi surface geometry when the
magnetic field has a finite in-plane component along x̂. Fermi
surface of the majority (minority) bands is shown in solid/blue
(dashed/red). Filled points denote the location of their cen-
ters.

The exact band dispersion is calculated from Eq. (2)
as

ελ(k) =
k2

2m
− ζλ

√
α2
Rk

2 + h2 + 2αRhk sinφk sin δ (5)

with ζλ denoting the helicity of each band defined with
respect to the ẑ axis. We use ζ1 = 1 (ζ2 = −1) for the
majority (minority) band.

It is worth noting that to the leading order in the ex-
pansion parameter r = αRkf/h � 1 the obtained band
dispersion can be approximated as

ελ(k) ≈ k2
x + (ky − ζλQ)2 −Q2

2m
− ζλh, (6)

where Q = mαR sin δ describes the center-of-mass mo-
mentum shift of the two bands. Observe that to this
order the dispersion retains circular shape, and that the
bands shift in the opposite directions, see Figure ??. Fi-
nally, note that vector Q = Qŷ ∝ ẑ×H/|H| is orthogonal
to the ẑ − x̂ plane.

Next we turn to the interaction Hamiltonian HI . Our
approach is motivated by the observation that in the ab-
sence of SOC, short-range repulsion is of purely interband
character: particles with the same spin orientation feel no
local interaction due to the Pauli exclusion principle. One
may then utilize the Schrieffer-Wolff transformation25 to
get rid of this interband interaction in favor of an effec-
tive intraband one. We will accomplish a similar program
in the presence of SOC. It is known that without SOC,
the effective intraband interaction leads to p-wave super-
conductivity on the majority Fermi surface4,7. We show
below that in the presence of the Rashba SOC the in-
traband attraction is supplemented by two more terms:
an intraband repulsion as well as an interband Josephson
coupling.

As a first step, we recast the interaction Hamiltonian
HI in terms of the band operators akλ. As was mentioned
before, we keep the leading interactions that go as O(U2),
and O(Uα2

R), but drop those that go as O(U2αR).

With this prescription we find that H = H0 +H1 +H2,

H0 =
∑
λ

∑
k

εkλa
†
kλakλ, (7)

and where, schematically, H1 contains all terms of the

form a†λa
†
λaµaµ, and H2 contains all terms of the form

a†λa
†
−λa−λaλ ∝ nλn−λ (with −λ denoting the opposite

to λ band index) as well as those with three operators of
the same band index.

Since we are only concerned with the interaction in
the Cooper channel, the interaction Hamiltonian H1 de-
scribes intraband interaction in this channel – repulsion
(for µ = λ), as well as interband Josephson coupling (for
µ = −λ). Both types of terms are of O(Uα2

R) order.
The interaction terms in H2 are off-diagonal in the band
index, but give effective intraband attraction at O(U2)
order4,7. Therefore, our strategy is to perform a unitary
transformation on the Hamiltonian in order to eliminate
H2 from the resulting expression, in favor of an effective
intraband interaction. The transformed Hamiltonian is

H̃ = e−SHeS (8)

where S = −S† is anti-Hermitian, leaving the eigenvalues
of the Hamiltonian unchanged. We choose the ansatz
[S,H0] = H2, and to the level of approximation stated
earlier we obtain

H̃ = H0 +H1 + [H1, S] +
1

2
[H2, S]. (9)

It is straightforward to show that S is given by the
sum of each term in H2 divided by the energy exchange
mediated by each term. For example, for the term in H2

of the form

U

V

∑
k1k2k3

a†k1,λ
a†k2,−λak3,−λak4,λ (10)

S contains the corresponding term

U

V

∑
k1k2k3

a†k1,λ
a†k2,−λak3,−λak4,λ

εk4,λ + εk3,−λ − εk2,−λ − εk1,λ
. (11)

Using the fact that H1 ∝ O(Uα2
R), as explained above,

we observe that [H1, S] ∝ O(U2α2
R) and as such repre-

sents a higher order correction to our leading order ap-
proximation. Hence we are allowed to drop it. Commut-
ing (11) with H2 in (9) we generate three-particle (six
a) terms where four a operators belong to the band λ,
while the other two are from the opposite, −λ, band.
Therefore the effective intraband interaction in the λ-
band is obtained by projecting all a−λ operators to the
non-interacting −λ band. Such a projection turns out
to be equivalent to the replacement of number conserv-
ing operator products by the appropriate Fermi distribu-

tions: a†k,−λak′,−λ → δk,k′f(εk,−λ), where f denotes the

Fermi distribution. Specializing next to the BCS (pair-
ing) channel in the λ-band, we find that the last term
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in (9) produces an effective interaction between electron
pairs on the Fermi surface of the λ band,

HKL =
U2

2V

∑
λ

∑
k,k′

χ−λ(k− k′)a†−k′,λa
†
k′,λak,λa−k,λ.

(12)
HKL captures the Kohn-Luttinger physics, and describes
the λ-band pairing interaction generated by the particle-
hole fluctuations in the opposite, −λ, band. This result is
fully equivalent to previous diagrammatic calculations4,7

and is graphically described by the diagram in Figure 3.
The functions χλ(k − k′) are the particle-hole suscepti-
bilities for each band, defined by

χλ(q) =
1

V

∑
p

f(εp+q,λ)− f(εp,λ)

εp+q,λ − εp,λ
. (13)

Adding H1 contributions to (12) we finally obtain for
the transformed Hamiltonian (9)

H̃ = H0 +
∑
λµ

∑
k,k′

gλµ(k,k′)a†−k′,λa
†
k′,λak,µa−k,µ, (14)

where the full interaction matrix, gλµ(k,k′), is given by

gλµ(k,k′) =
Uα2

Rkf,λkf,µζλζµ
4V h2

(cosφk − iζλ cos δ sinφk)

× (cosφk′ + iζµ cos δ sinφk′) +
U2χ−λ(k− k′)

2V
δλµ

(15)
where kf,λ is the Fermi momentum on each band, φk is
the angle momentum k makes with x̂-axis, and, as before,
ζλ = 1 (−1) for λ = 1 (λ = 2) is the helicity of each band.

The first term in gλµ(k,k′) represents the interactions
generated by SOC and comes fromH1 contributions. The
factor of ζλζµ tells us that the intra-band interactions
generated by SOC are repulsive, while the inter-band
Josephson terms are attractive.

In writing the Hamiltonian (14) we neglected the shifts
of the Fermi surfaces away from their zero-momentum
centers, ζλQ. Keeping these shifts leads to small cor-
rections beyond the assumed approximation described in
the beginning of this subsection. A more compete form of
the Hamiltonian, which takes into account these shifts,
is derived in Appendix A (see (A.3)), where details of
pairing with finite momentum are discussed.

To compute the susceptibility, we set αR = 0 in (13),
which is permissible since χλ is multiplied by U2 in the
interaction matrix, and therefore the SOC-induced cor-
rections are O(U2αR) and can be dropped. This is one
of the major simplifications that come from our assump-
tions. At the same time, it is worth noting that the rather
special (circular) form of the dispersion (6) guarantees
that the SOC-induced corrections to χλ(q) can only ap-
pear in O(α2

R) or higher order because the transferred
momentum q = k − k′ does not depend on the overall
momentum shift ζλQ as long as the momenta k,k′ belong
to the Fermi surface of the same band.

1

p + k � k0,��

p,��

�k0,��k,�

k,� k0,�

FIG. 3: The diagram responsible for creating a pairing in-
stability at second order in the particle-particle interaction
strength. Two electrons on band λ with momenta ±k scatter
to momenta ±k′, creating a particle-hole pair on the opposite
band −λ.

Integrating (13) gives an explicit expression for the
charge susceptibility7:

χλ(q) = −ρλ

(
1−

Re
√
q2 − (2kf,λ)2

q

)
(16)

where ρλ is the density of states of the band λ. Again,
the exact expression for ρλ is band and momentum de-
pendent, but the corrections to ρλ = m/2π are O(αR)
and hence need to be dropped when they meet the factor
of U2 present in the interaction matrix.

The fact that χλ(q) reduces to a constant for q ≤ 2kf,λ

is of major importance for our problem. It implies that
electrons on the minority (λ = 2) Fermi surface do not
experience any attractive potential from the particle-hole
fluctuations produced by the majority (λ = 1) electrons.
Indeed, the triplet nature of the electron pair on the ma-
jority/minority Fermi surface (the total spin of the pair
is Sz = +1/ − 1, correspondingly) requires the coordi-
nate part of the pair wavefunction to be an odd angular
harmonic which, at the very minimum, requires that the
interaction which mediates the attraction is momentum-
dependent. However, the maximum momentum transfer
that minority electrons may experience is 2kf,2 which, by
virtue of the finite magnetization M ∝ kf,1 − kf,2 > 0,
is always less than the ‘critical’ 2kf,1 value needed in or-
der for χ1(q) to acquire momentum dependence. The
same argument, when applied to the electron pairs on
the majority Fermi surface, shows that χ2(q) is certainly
momentum dependent for 2kf,2 < q < 2kf,1. Therefore,
triplet pairing is possible on the majority surface.

Furthermore, calculations5,7 show that the pairing is

strongest for the p-wave, l = ±1, harmonic χ
(`=±1)
2 of

χ2. One finds χ
(1)
2 = χ

(−1)
2 = −ρ2η(1 − η), where η =

kf,2/kf,1 < 1 is the ratio of the Fermi momenta. We

note that χ
(1)
2 is most negative, i.e. most attractive, for

η = 1/2.5,7
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III. MEAN FIELD THEORY

The mean-field approximation is formulated by intro-
ducing the order parameters for each band as

∆λ(k) =
∑
µ

∑
k′

gλµ(k,k′)〈a−k′µak′µ〉. (17)

Using the Nambu spinor notation

Ψkλ = (akλ, a
†
−kλ)T , (18)

the mean-field approximation for Hamiltonian (14) reads

H =
1

2

∑
λ

∑
k

(
Ψ†kλHλ(k)Ψkλ + ξkλ

)
−
∑
λµ

∑
kk′

∆†λ(k)g−1
λµ (k,k′)∆µ(k′)

(19)

where ξkλ = εkλ−µ and the matrix Hλ(k) is represented
by

Hλ(k) = ξkλσ
z + ∆λ(k)(σx + iσy) + ∆†λ(k)(σx − iσy).

(20)
The diagonalization of Hλ(k) is accomplished by a

straightforward Bogolyubov transformation, which at
zero temperature gives a thermodynamic potential of

Ω =
1

2

∑
λ

∑
k

(ξkλ − Ekλ)

−
∑
λµ

∑
kk′

∆†λ(k)g−1
λµ (k,k′)∆µ(k′),

(21)

where the quasiparticle dispersion is

Ekλ =
√
ξ2
kλ + 4|∆λ(k)|2. (22)

We then derive the self-consistent equations for the
theory by minimizing Ω with respect to each order pa-
rameter, obtaining

∆λ(k) = −
∑
µ

∑
k′

gλµ(k,k′)
∆µ(k′)

Ek′µ
. (23)

The condensation energy of the system

Ec =
1

2

∑
λ

∑
k

(|ξkλ| − Ekλ)

−
∑
λµ

∑
kk′

∆†λ(k)g−1
λµ (k,k′)∆µ(k′)

(24)

can be significantly simplified further by using the ex-
plicit form of (23),

Ec = −
∑
λ=1,2

ρλ|∆λ(kf,λ)|2. (25)

A. Solutions and their symmetries

Making use of (15) and (23), the self-consistent equa-
tions read

∆λ(k) = −
∑
µ,k′

∆µ(k′)√
ξ2
k′µ + 4|∆µ(k′)|2

{
δλµδλ1

2
U2χ2(k− k′)

+
Uα2

Rkf,λkf,µζλζµ
4h2

(cosφk − iζλ cos δ sinφk)×

× (cosφk′ + iζµ cos δ sinφk′)

}
(26)

Note that, as discussed in the end of section II, the Kohn-
Luttinger mechanism provides only for the pairing in the
majority (λ = 1) band. The χ2(k − k′) term is han-
dled by restricting both momenta to the λ = 1 Fermi
surface, which is allowed due to the presence of ξk′ is
the denominator of the right-hand side, and expanding

χ2(kf,1 − k′f,1) =
∑
`∈odd χ

(`)
2 cos[`(φk − φk′)] in relative

azimuthal angle. The strongest pairing is in the ` = 1
channel to which we restrict ourselves in the following.
(The coupling between different ` channels occurs only
in higher orders of αR expansion.)

We find that (26) admits two distinct kinds of solutions
which we call coupled and decoupled.

The coupled solution involves both bands and is char-
acterized by the following angular structure

∆λ(k) = ∆λ(cosφk − iζλ cos δ sinφk), (27)

where the ∆λ 6= 0 are constants that must be solved for
self-consistently. In this solution both bands are gapped,
with momentum-space Josephson coupling (∝ Uα2

R) in-
ducing a superconducting gap on the minority band. In
addition, however, this solution is also characterized by
the presence of a repulsive intra-band interaction on each
band (∝ Uα2

R(cos2 φ′+cos2 δ sin2 φ) > 0) that diminishes

the attraction due to χ
(1)
2 and the Josephson coupling.

Since ∆λ is exponentially sensitive to the magnitude
of the overall attractive interaction, we are prompted to
look for a pairing symmetry that minimizes their influ-
ence in the self-consistent equations. Observe that the
repulsive intra-band interactions on the majority band
will vanish if ∆1(k) satisfies∑

k′

(cosφk′ + i cos δ sinφk′)∆1(k′)√
ξ2
k′1 + 4|∆1(k′)|2

= 0. (28)

It is not difficult to see that (28) is satisfied if

∆1(k) = ∆1(cos δ cosφk + i sinφk). (29)

In addition, if ∆1(k) satisfies (29), then the inter-
band Josephson coupling term in the minority-band self-
consistent equation vanishes as well. Since the only other
term in the minority band self-consistent equation is re-
pulsive, the energetically favorable solution is to have
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∆2(k) = 0 everywhere. This decoupled solution thus re-
alizes a phase where the minority band is not supercon-
ducting, with the amplitude of the order parameter ∆1

on the majority band determined by solving

∆1(k) = −
∑
k′

U2χ
(1)
2 ∆1(k′) cos(φk − φk′)

2
√
ξ2
k′1 + 4|∆1(k′)|2

. (30)

By combining (29) and (30) we find

∆1(k) = ∆1

(
cos δ cosφk + i sinφk

)
,

∆1 =
2ωce

1−cos δ
2(1+cos δ)

1 + cos δ
exp[−2/(U2ρ1|χ(1)

2 |)], (31)

where ωc is the standard upper-limit cutoff in the ξ inte-
gration.

To determine which of the two found solutions is re-
alized, we compare their condensation energies using
Eq. (24). We find that for all values of the spin-orbit
strength and all magnetic field orientations, the decoupled
solution has the lower condensation energy, and hence
is physically realized. The basic reason for that is the
aforementioned exponential sensitivity of the energy gap
to the magnitude of the attractive potential. This turns
out to be a much stronger effect than the power-law gain
(∝ Uα2

R) of the condensation energy due to the induced
superconductivity in the minority band.

It is interesting to note that the self-consistent solution
for the majority-band order parameter (31) in the decou-
pled phase has no explicit dependence on the spin-orbit
interaction. This means that for small αR the presence of
a spin-orbit interaction affects the type of pairing sym-
metry that is realized in the system, while the actual
magnitude of the spin-orbit coupling does not influence
the strength of the superconducting phase. At the same
time, ∆1 does depend on the magnetic field orientation
via the cos δ dependence in (31), and is larger when the
magnetic field is in-plane (at δ = π/2).

A less-obvious feature of the found decoupled solution
is that it is actually of the FFLO kind. Thanks to Eq.(6)
each member of the superconducting pair carries finite
momentum Qŷ, resulting in the Qpair = 2Qŷ momentum
of the pair. The fact that χ2(k) is not sensitive to Q, as
previously mentioned in the discussion above (16), makes
the issue of the center-of-mass momentum ‘hidden’ in the
described analysis. A two-particle Schrodinger equation
re-formulation of the problem, outlined in the Appendix,
makes this important point much clearer. Our finding
of finite Qpair is quite similar to that in Refs.26,27 which
considered the opposite from ours limit of strong SOC,
αRkf/h� 1. Note that the fact that the two bands shift
in opposite directions makes the coupled solution even
more unfavorable – under this condition the Josephson
coupling term does not conserve momentum, which has
the effect of further suppressing it.

It is instructive to critically compare the symmetries of
the decoupled and coupled phases for the limiting cases
of completely out-of-plane (δ = 0) or completely in-plane
(δ = π/2) magnetic fields.

For δ = 0 the coupled solution (27) has ∆1(k) ∝
e−iφk , ∆2(k) ∝ eiφk while the decoupled one (31) has
∆1(k) ∝ eiφk , ∆2(k) = 0. Thus the effect of the
spin-orbit interaction is to lift the degeneracy between
p + ip (∆(k) ∼ eiφk) and p − ip (∆(k) ∼ e−iφk) pairing
states. We see that in the coupled solution, each order
parameter has a chirality opposite to that of its parent
band (ζλ), while in the decoupled one the chirality of ∆1

matches that of its parent band, ζ1 = 1. The fact that
the decoupled solution is favored suggests that the chi-
rality of the order parameters likes to match the chirality
of their respective bands.

For in-plane fields (δ = π/2), the order parameters de-
velop nodes. In the coupled phase both order parameters
go as cosφk with nodes along the normal to the magnetic
field direction, while in the decoupled phase the majority-
band order parameter goes as sinφk and has nodes along
the field direction.

Before moving on, it is helpful to examine the spin
structure of the pair. Because of the spin canting
provided by the spin-orbit interaction, we expect that
a singlet pairing component will be mixed into each
band, along with along with admixtures of spin triplet
pairing28. Inverting (4), we find that amplitude for cre-
ating a majority-band Cooper pair in the spin basis is

〈a†k1a
†
−k1〉 =

{(
1− α2

R

4h2
(k2
x + k2

y cos2 δ)

)
| ↑↑〉

+
α2
R

4h2

(
k2
x − k2

y cos2 δ + 2ikxky cos δ
)
| ↓↓〉

+ i

(
αR
2h
− α3

R

16h3

(
k2
x + k2

y cos2 δ
))

× (kx + iky cos δ)(| ↑↓〉 − | ↓↑〉)
}

× (cosφk cos δ + i sinφk)
(32)

When the magnetic field is oriented along the SOC
axis (δ = 0), the dominant | ↑↑〉 pairing shares the p+ ip
symmetry of the majority band order parameter. Triplet
pairing of opposite spin | ↓↓〉 is admixed with magni-
tude α2

Rk
2/h2, possessing a fx3−3xy2 + if3x2y−y3 pairing

symmetry. Additionally, singlet pairing of magnitude
αRk/h + α3

Rk
3/h3 and dx2−y2 + id2xy symmetry is re-

alized, and so even in the decoupled phase all types of
spin pairing except triplet pairing with Sz = 0 exist in
the system. From this, we see that the total angular mo-
mentum of the system is jz = 2. We also note that as
expected, increasing the strength of SOC increases the
amount of | ↓↓〉 and | ↑↓〉− | ↓↑〉 pairing that is admixed.

When the magnetic field is completely in-plane, the
dominant spin-up triplet pairing state has two nodes
along the magnetic field direction, while the minority
spin-down triplet state has four nodes with dx2y sym-
metry and the singlet state also has four nodes, obeying
a dxy symmetry with a small admixture of dx3y. Thus
the triplet states share the ε(kx, ky) = ε(−kx, ky) sym-
metry of the larger Fermi surface, while the singlet state
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FIG. 4: The majority-band contribution to the specific heat
C1 as a function of the magnetic field inclination angle,
shown for a few different values of the ratio T/Tc in the low-
temperature regime. Here, γ denotes the coefficient of the
minority band’s contribution to the total specific heat, which
is linear in T .

does not.

To summarize, when the magnetic field is normal to
the 2DEG plane the majority band has an isotropic gap
with px + ipy type pairing. As the field inclines, the
cosφk component of the order parameter decreases in
strength with the inclination angle δ, causing the angu-
lar modulation of the superconducting gap around the
Fermi surface. Eventually, at δ = π/2, the order param-
eter acquires a pure py symmetry and develops nodes in
the directions parallel to the magnetic field. The minor-
ity band remains in the normal state independent of the
magnetic field orientation.

B. Specific heat

The dependence of the pairing symmetry on the mag-
netic field orientation provides an ideal way for connect-
ing our work with experiment, since the field orientation
is easily tuned in the lab simply by rotating the sample.
The fact that the gap develops nodes when the magnetic
field is oriented in-plane produces signatures in a handful
of experimentally accessible quantities (e.g. the T depen-
dance of the London penetration depth18, the thermal
conductivity29, the electronic specific heat30, etc).

We focus on the electronic specific heat as an example,
and calculate C(T ) as a function of the magnetic field
orientation. The electronic specific heat is calculated by

(setting kB = 1)

C(T ) =
∑
λ

∫ ku,λ

kl,λ

dk k

∫ 2π

0

dφ

2π

√
ξ2
kλ + 4|∆λ(k)|2 ∂fkλ

∂T
.

(33)
Here, kl,λ (ku,λ) is the momentum corresponding to the
energy at which we impose a lower (upper) cutoff to the
energy integration.

Although the full calculation must be carried out nu-
merically, we can estimate the behavior of C(T ) in the
low temperature limit. For all magnetic field orienta-
tions, the contribution from the gapless minority band
is linear in T as ∆2 = 0. The contribution to the spe-
cific heat from the majority band depends on the type
of pairing symmetry realized, and consequently on the
magnetic field orientation. When the magnetic field is
parallel to the SOC axis the integral over φ can be done
easily, and the total specific heat is approximated by

C(T )H||ẑ ∼
ρ1∆

5/2
1

T 3/2
e−∆1/T + ρ2T, (34)

where as before, ρλ is the density of states of the band
λ.

When the magnetic field is completely in-plane the or-
der parameter of the majority band has nodes along the
field direction, which affects the temperature dependence
of the specific heat. The dominant contribution to the
specific heat occurs near the nodal points at φk = 0, π
where the gap vanishes, from which we can estimate that
at low temperature,

C(T )H⊥ẑ ∼
ρ1T

2

∆1
+ ρ2T. (35)

The dependence of the specific heat on T 2 is a character-
istic feature of order parameters with nodal symmetry,
as has been pointed out in18,31. It is worth noting here
that T 2 behavior will also be present for the almost in-
plane orientation of the magnetic field, π/2 − δ � 1,
when the minimal value of the superconducting gap,
∆min = ∆1 cos δ is much smaller than its maximum value
∆max = ∆1. In this case (35) will hold in the inter-
mediate temperature regime ∆min � T � ∆max. For
T � ∆min the specific heat will crossover to the expo-
nentially suppressed regime of (34).

For general magnetic field orientations we resort to in-
tegrating (33) numerically. Figure 4 shows the contribu-
tion to the specific heat from the majority band, plotted
against δ for several different values of the ratio T/Tc and
normalized by γ, the coefficient of the (gapless) minority
band’s contribution to the specific heat.

The contribution from the minority band is linear in
T , and does not affect the shape of the curves in figure 4.
The difference in specific heat between the two limiting
field orientations is a factor of a few, which should be
easily observable in an experimental setting.

In addition to the specific heat, thermal conductivity
measurements offer another way of connecting our work
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to experiments. As in the case of the specific heat, the
thermal conductivity will be exponentially suppressed
when the magnetic field is out-of-plane and assume a
power-law dependence on T when the field is in-plane. Fi-
nally, the thermal conductivity will be anisotropic when
the field has an in-plane component, making the thermal
conductivity an effective probe of the pairing symmetry’s
dependence on the field orientation.

IV. DISCUSSION

To summarize, we have investigated the role that
the spin-orbit interaction plays in unconventional super-
conductivity in spin-polarized two-dimensional electronic
gases.

We showed that the spin-majority band has p+ip pair-
ing when the Zeeman field is out of plane of the 2DEG
and parallel to the SOC axis, but develops nodes along
the field direction when the field is rotated in-plane. This
physics of the system can be readily probed by a mea-
surement of the electronic specific heat.

Somewhat surprisingly, for not too large spin-orbit
coupling (as compared to the Zeeman coupling), the mi-
nority band remains gapless for all magnetic field geome-
tries, turning the considered system into an unusual non-
unitary half-superconductor.

Because only the majority band is gapped, this system
realizes an effectively “spinless” superconducting state,
even though both bands have non-zero occupation. This
is in contrast with other ways of engineering spinless su-
perconductors, which usually involve carefully tuning the
chemical potential so that only a single band intersects
the Fermi level9.

Further, the system considered here support Majorana
modes at its edges32. When the field has a non-zero out-
of-plane component, the superconducting states possess
chirality fixed by the SOC-induced lifting of the p ± ip
pairing degeneracy, which is inherited by the edge modes.
Purely in-plane fields lead to a nodal p-wave order pa-
rameter, having non-chiral flat-band edge states33. Im-
portantly, in the present case the surface states should be
thought of as surface resonances. Indeed, due to the pres-
ence of gapless states on the minority band and Rashba
spin-orbit coupling, the two Fermi surfaces are in general
coupled by potential disorder, of which a sample bound-
ary is an example. Therefore, the edge states formed by
the majority band are in general hybridized with the bulk
states from the minority band, and thus are not sharply
defined.

Our treatment is limited to the leading, O(U2), order
in the electron-electron interaction strength U . It has
been shown in Ref. 4 that the minority band becomes
superconducting in the next, O(U3), order of the pertur-
bative expansion. This minority band superconductiv-
ity appears due to interaction-induced corrections to the
susceptibility which violate the flatness of χ for q < 2kf ,
and does not require any critical threshold value of U .

These considerations imply that, strictly speaking, our
findings apply at temperatures above the critical one for
the minority band, which is parametrically smaller than
the critical temperature for the majority band.

A study with arbitrary SOC strength and an in-plane
magnetic field was carried out in Ref. 34. There and in
Ref. 35, it was found that inter-band coupling can allow
for a small gap on the minority band to be energetically
favored for stronger SOC, suggesting that there may exist
a phase transition between the coupled and decoupled
solutions at αRkf ∼ h. As such, it would be valuable to
formulate SOC non-perturbatively within our model in
order to better understand these phase transitions.

Despite being of a rather model nature, the considered
Kohn-Luttinger-Rashba problem suggests an interesting
possibility of purely electronic mechanism of supercon-
ductivity in LAO/STO oxide interfaces. Given the re-
ported co-existence of the superconducting and ferromag-
netic orders in this interesting system, one can imagine
that a spontaneously developed ferromagnetic order pro-
motes an exotic p-wave superconductivity considered in
our work. While it does appear that the prevailing view
of the topic consists in ferromagnetism and supercon-
ductivity originating from different electronic bands, and
in addition the superconductivity originating from the
standard phonon mechanism36, the possibility of a more
exotic physics along the lines of our study should cer-
tainly be kept in mind. We would also like to note that
the relative strength of Zeeman (∼ 0.1eV36), and Rashba
(∼ 0.01eV37) spin splittings at magnetized LAO/STO in-
terfaces places them in the regime considered in this pa-
per, and our treatment would be applicable for not too
strong electron-electron repulsion, mU . 0.1.

Regarding perhaps the most studied p-wave candidate
superconductor, Sr2RuO4

38, our work offers cautionary
tale as far as the question of effectiveness of the inter-
band Josephson coupling is concerned. Our finding that
the dominant superconducting order parameter ‘inherits’
chirality of the respective band appears to be quite gen-
eral and is expected to apply to a more realistic models
of multi-band superconductivity in systems with strong
spin-orbit interactions.
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Appendix: Finite momentum pairing

For the magnetic field with an in-plane component the
center-of-mass of each band is shifted by Q = Qŷ ∝
ẑ ×H/|H|, where Q = mαR sin δ, as we discussed below
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Eq.(6) and illustrated in Figure ??. The shift is along
the direction normal to the Zeeman field39–43. It reaches
maximum at the point of the topological transition when
the two Fermi surfaces ‘touch’ and when the SOC and
Zeeman strengths are equal34, which lies well outside of
the perturbative SOC regime studied here.

To account for finite center-of-mass-momentum
(COMM) pairing, we assume the existence of two COMM
qλ that optimize pairing on each band34, so that pair-
ing occurs between electrons with momenta ±k + qλ/2.
We see that by the ελ(−kx, ky) = ελ(kx, ky) symmetry
of the (shifted) band dispersions, qλ cannot have an x-
component, so that qλ = qλŷ.

We proceed by solving the two-particle Schrodinger
equation, assuming a pair wavefunction of the form

|Ψ〉 =
∑
λk

Φqλ(k)a†k+qλ/2,λ
a†−k+qλ/2,λ

|0λ〉, (A.1)

with Φqλ(−k) = −Φqλ(k) and where |0λ〉 denotes the
ground state of the λ band. The Schrodinger equation is
(H0 +HI)|Ψ〉 = Eq|Ψ〉, where

H0 =
∑
λk

ελ(k + qλ/2)a†k+qλ/2,λ
ak+qλ/2,λ (A.2)

is the free Hamiltonian and HI is the interaction part.
The form of the interaction matrix is calculated using
the same transformation as in the qλ = 0 case considered
earlier. Each term in HI goes as O(U2) or O(Uα2

R), and
so any corrections to HI caused by finite COMM pairing
are small enough to be dropped in our approximation
scheme (also, see discussion around (16)). Thus we have

HI =
∑
λµ

∑
kk′

gλµ(k,k′)a†k+qλ/2,λ
a†−k+qλ/2,λ

×a−k′+qµ/2,µak′+qµ/2,µ (A.3)

where gλµ is given by (15). Since the interaction term is
not changed from before, the decoupled solution is still

energetically favored – from here on we specialize to this

case. Therefore, we can let gλµ → U2χ2(k−k′)
2V δλ1δλµ.

To proceed, we take the inner product of the
Schrodinger equation with 〈0λ|a−p+qλ/2,λap+qλ/2,λ, ob-
taining

U2

V

∑
k

χ2(k− p)Φq1(k) = Φq1(p)×(
Eq − [ελ(p + q1/2) + ελ(−p + q1/2)]

)
(A.4)

Using (6) the bracket on the RHS is simplified to (Eq −
[−2h − Q2/m + (q1 − 2Q)2/(4m) + k2/m]) ≡ −Ωq −
2ξk, where Ωq > 0 is the two-particle bound state energy
measured from the twice Fermi energy. Next, we expand
both sides in angular harmonics series, e.g. Φq1(k) =∑
n fn(k)einφk , to obtain

−ρU2χ
(−`)
2

∫ ωc

0

dξf` = (Ωq + 2ξ)f`, (A.5)

which leads to

−ρU2χ
(−`)
2

∫ ωc

0

dξ

Ωq + 2ξ
= 1. (A.6)

We obtain Ω
(`)
q = 2ωc exp[−2/(ρU2|χ(`)

2 |)]. As argued

previously, the highest Ω
(`)
q occurs in the ` = 1 channel,

when χ
(`)
2 reaches the most negative value. Therefore,

the energy of the two-particle state has the form Eq =

2εf − Ω
(1)
q + [(q1 − 2Q)2 − 4Q2]/(4m) and is minimized

by q1 = 2Q = 2mαR sin δ.

Finally, we point out that the same result can also be
obtained through a mean-field analysis by making the re-
placement ξkλ → (ξk+qλ/2,λ+ξ−k+qλ/2,λ)/2 in the quasi-
particle dispersion Ekλ, and then (numerically) minimiz-
ing the thermodynamic potential Ω with respect to qλ.

1 W. Kohn and J. M. Luttinger, Physical Review Letters 15,
524 (1965).

2 M. Y. Kagan, V. A. Mitskan, and M. M. Korovushkin,
Physics-Uspekhi 58, 733 (2015), URL http://stacks.

iop.org/1063-7869/58/i=8/a=733.
3 S. Maiti and A. V. Chubukov, AIP Conference

Proceedings 1550, 3 (2013), arxiv:1305.4609, URL
http://scitation.aip.org/content/aip/proceeding/

aipcp/10.1063/1.4818400.
4 A. V. Chubukov, Phys. Rev. B 48, 1097 (1993).
5 M. Y. Kagan and A. V. Chubukov, JETP Letters 50, 517

(1989).
6 S. Raghu, S. A. Kivelson, and D. J. Scalapino, Phys. Rev.

B 81, 224505 (2010), 1002.0591.
7 S. Raghu and S. A. Kivelson, Phys. Rev. B 83, 094518

(2011), 1009.3600.

8 M. Y. Kagan and A. V. Chubukov, JETP Letters 47, 614
(1988).

9 J. Alicea, Reports on Progress in Physics 75, 076501
(2012), URL http://stacks.iop.org/0034-4885/75/i=

7/a=076501.
10 N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis,

G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S.
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