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Abstract

Previous theoretical studies [W. Cho, C. Platt, R. H. McKenzie, and S. Raghu, Phys. Rev. B

92, 134514 (2015); N. Lera and J. V. Alvarez, Phys. Rev. B 92, 174523 (2015)] have suggested

that Li0.9Mo6O17, a quasi-one dimensional “purple bronze” compound, exhibits spin-triplet su-

perconductivity and that the gap function changes sign across the two nearly degenerate Fermi

surface sheets. We investigate the role of spin-orbit coupling (SOC) in determining the symme-

try and orientation of the d-vector associated with the superconducting order parameter. We

propose that the lack of local inversion symmetry within the four-atom unit cell leads to a spin-

orbit coupling analogous to that proposed for graphene, MoS2, or SrPtAs. In addition, from a

weak-coupling renormalization group treatment of an effective model Hamiltonian, we find that

SOC favors the odd parity A1u state with Sz = ±1 over the B states with Sz = 0, where z de-

notes the least-conducting direction. We discuss possible definitive experimental signatures of this

superconducting state.

PACS numbers: 71.10.Fd, 71.10.Hf, 71.27.+a, 74.20.Rp
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Introduction.— In conventional superconductors, the spin-degree of freedom is frozen due

to the singlet nature of Cooper pairs. However, in certain unconventional superconductors,

the spin-degree of freedom remains active when pairing involves the formation of triplet

states. The most familiar example is superfluid He3, in which several spin-triplet states

occur. The order parameter has a richer structure in such systems, which in turn leads to

more subtle collective modes and topological excitations. Consequently, many fascinating

experimental signatures (e.g., in NMR) of triplet superconductivity have been proposed and

identified in a diverse range of materials including K2Cr3As3
1,2, TMTSF2X

3,4, strontium

ruthenate5, and the heavy fermion compound UPt3
6.

In a spin-triplet superconductor, spin-orbit coupling (SOC) can have a qualitative effect

on the nature of the ground state. This is true even in a neutral superfluid such as He3,

where spin-orbit effects due to dipole-dipole forces can lock the relative orientation of spin

and orbital angular momentum of the order parameter7. It follows that spin-orbit effects can

play an even more vital role in many correlated electron materials that exhibit spin-triplet

superconductivity. As SU(2) spin symmetry is broken due to spin-orbit effects, generically

one cannot speak of a “spin-triplet” state; instead, if the material retains inversion symmetry

(parity) in the normal state—as is the case in the present study—one may refer to odd-parity

superconductivity, in which the Cooper pair wave-function is odd under inversion.

There are different perspectives on studying the effects of SOC on odd-parity supercon-

ductivity. As a more phenomenological approach, one takes symmetry considerations into

account and studies the role of spin-orbit effects near the superconducting transition. Such

considerations, based on Landau-Ginzburg theory, inform us on the possible nature of the

ground states by enumerating the set of irreducible representations consistent with the sym-

metries of the normal state8–10. Only a more microscopic theory, which takes into account

the interplay between SOC and interactions, can predict which of these allowed state is

the favored ground state. The microscopic approach to unconventional superconductivity,

taking into account both electron interactions and spin-orbit physics, has been a persist-

ing challenge11–13. Here, we explore such effects in the context of Li0.9Mo6O17, a layered,

quasi-one-dimensional material known more commonly as a “purple bronze.”

There are several indications that this material likely exhibits spin-triplet pairing, among

them the display of a pronounced anisotropy of the upper critical field. In particular, the up-

per critical field along the crystallographic b axis exceeds the Chandrasekhar-Clogston limit,
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FIG. 1. Tight-binding lattice model. Each circle corresponds to a single Mo atom and there are

four atoms per unit cell (gray rectangle). Filled and empty circles denote two types of crystal-

lographically inequivalent Mo atoms, i.e., Mo(1) and Mo(4), within the layers of Li0.9Mo6O17.

Intra-chain, intra-ladder and inter-ladder hopping integrals are denoted t, t⊥, and t′, respectively.

SOC is represented by a spin-dependent hopping term +iλσz (−iλσz) along (opposite) to the ar-

row directions within the chains. The two yellow circles define centers of C2 rotational symmetry,

the blue (red) lines indicate glide mirror (mirror) planes.

which both suggests the possibility of spin-triplet pairing and highlights the important role

of SOC14. Motivated by these and other experiments15–17 that point towards unconventional

superconductivity, some of us have studied a weak coupling limit of a model Hamiltonian

suggested for this system in a previous paper18. The results here indicated that a triplet

state with accidental nodes was indeed favored over singlet states19 (see also Ref. 20). Here,

we refine our analysis to investigate how the spin degeneracy of the triplet state is lifted

in the presence of SOC. We construct a SOC Hamiltonian that is consistent with the sym-

metries of the model and study the superconducting instabilities as a function of the SOC

coupling constant. Our main results can be summarized as follows: defining the z direction

to be perpendicular to the plane (the least-conducting direction) in Fig. 1, we find that SOC

favors an Sz = ±1 triplet pairing state, corresponding to an in-plane d-vector orientation.

This result is independent of the sign of the SOC constant, as we show below.

Electronic structure considerations. — The low-energy electronic degrees of freedom in

Li0.9Mo6O17 reside on two-leg ladders built from the dxy orbitals of Mo atoms. Here, the

constituting chains run along the crystallographic b axis and are weakly coupled along the

c direction via t⊥ and t′ as shown in Fig. 1. In units of the intra-chain hopping amplitude t,
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we set t⊥ = −0.048ηwt and t
′ = 0.072ηwt, where ηw is an additional parameter controlling

the Fermi-surface warping and nesting properties. As the results of our calculations only

differ in minor details for ηw in a range of 0.5 < ηw < 1.5, we set ηw = 1.0 in accordance with

Ref. 18. Similar, but slightly different tight-binding models have been presented in Refs. 21

and 22.

Tight-binding model.— As a minimal effective Hamiltonian of the low-energy electronic

properties, we consider a Hubbard model18 near quarter filling (nel = 1.9 out of 8 per unit

cell). The tight-binding part of the Hamiltonian H is

H0 =
∑

k

C
†
kH(k)Ck (1)

with Ck = (ck1s, ck4s, ck1′s, ck4′s)
T . We divide the tight-binding Hamiltonian into the kinetic

term H0(k) and the SOC term Hsoc(k) such that H(k) = H0(k)+Hsoc(k). The kinetic term

reads

H0(k) = −




0 t⊥ t′e−ikx(1 + e−iky) t(1 + e−iky)

t⊥ 0 t(1 + e−iky) 0

t′eikx(1 + eiky) t(1 + eiky) 0 t⊥

t(1 + eiky) 0 t⊥ 0




⊗ σ0. (2)

Here, the x, y, and z directions correspond to the crystalline c, b, and −a directions, respec-

tively.

Spin-orbit coupling. We include spin-orbit interactions in the form of a nearest-neighbor

spin-dependent hopping amplitude ±iλσz along the chains. Here, the different signs cor-

respond to hopping directions along and opposite to the bond arrows depicted in Fig. 1.

Within our model description, this type of spin-orbit interaction originates from the lack of

reflection symmetry across a single chain. More precisely, this lack of reflection symmetry

gives rise to a net electric field perpendicular to the chains, which in turn couples the elec-

tron’s propagation to its spin. Since the low energy dynamics arises from a single orbital

(i.e. the dxy orbital), atomic angular momentum is quenched in this system, and the atomic

spin-orbit coupling of the form Ha-SOC ∼ ~L · ~S does not arise. This follows from the fact

that all matrix elements of the dxy-states with the atomic operator Ha-SOC vanish, simply

because dxy has no net angular momentum. As a consequence, one has to invoke higher-

order perturbation processes involving other orbitals to effectively generate a SOC within
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the dxy-orbitals. The resulting SOC term is therefore represented by a spin-dependent hop-

ping and in order to derive its form by symmetry arguments, we note from Fig. 1 that our

model possesses a horizontal mirror plane and a vertical glide mirror plane. Requiring that

1) both these planes of symmetry be preserved and 2) that the normal state retains inversion

symmetry, and 3) recalling that the spin is an axial vector, we are led to two conclusions.

First, Rashba SOC, which requires bulk inversion symmetry breaking, cannot occur: the

pattern of spin-orbit coupling must be staggered. Secondly, such SOC can only involve the

z component of the spin: if either the x, y components were involved, the planes of symmetry

described above would be lost. Thus, symmetry considerations constrain SOC to be of the

form

Hsoc(k) =




0 0 0 −iλ(1 + e−iky)

0 0 iλ(1 + e−iky) 0

0 −iλ(1 + eiky) 0 0

iλ(1 + eiky) 0 0 0




⊗ σz.

The (4×4)-matrices in the above notation act in the space of four inequivalent Mo atoms in

the unit cell (Fig. 1), whereas the Pauli-matrices σ0, σz only affect the spin degree of freedom.

The only symmetries explicitly broken by Hsoc are the spin-rotational symmetries generated

by σx and σy. All other symmetries, such as inversion, time-reversal, and spin-rotation

symmetry around z, are still intact and will be used to classify the different pairing states.

Such a form of SOC is reminiscent of that present in materials with “local inversion symmetry

breaking,” as described in Refs. 23 and 24. The basic idea is that while the material does

possess inversion symmetry, one or more sites per unit cell do not coincide with inversion

centers. Other examples include graphene, where each sublattice locally breaks inversion

but the triangular Bravais lattice is manifestly centrosymmetric25,26, monolayers of MoS2
27,

and the new pnictide superconductor SrPtAs28, where the latter has recently been suggested

to host chiral singlet superconductivity29.

We assume an on-site repulsion term

Hint = U
∑

i

∑

o

nio↑nio↓ =
U

N

∑

{ki}

∑

o

c
†
k1o↑

c
†
k2o↓

ck4o↓ck3o↑, (3)

where momentum conservation k4 = k1+k2−k3 is implicitly imposed, N denotes the number

of unit-cells, and o labels the four inequivalent Mo sites. The model we consider reads

H = H0 +Hint (4)

5



and is most conveniently, at least in the case of weak coupling with |t|, |t⊥|, |t′|, |λ| ≫ U ,

represented in an eigenbasis of H0:

γ
†
kbs =

∑

o

asbo(k)c
†
kos. (5)

Here, the corresponding states |kbs〉 = γ
†
kbs|0〉 fulfill H0|kbs〉 = ǫb(k)|kbs〉 and can still

be labeled by the Sz quantum number s. The band index b = 1, . . . , 4 enumerates the

corresponding energy bands ǫb(k), which are at least two-fold degenerate due to combined

inversion and time-reversal symmetry. The effect of the spin-orbit coupling λ is small on the

band structure ǫb(k) but rather significant on the states |kbs〉. This follows from degenerate

perturbation theory, in which the first-order energy correction due to Hsoc vanishes for all

momenta and all band indices. The resulting model in the band basis then reads

H =
∑

kbs

ǫb(k)γ
†
kbsγkbs +

∑

{ki,bi}

V (k1b1, k2b2, k3b3, k4b4)γ
†
k1b1s1

γ
†
k2b2s2

γk4b4s4γk3b3s3, (6)

where k4 = k1 + k2 − k3 modulo reciprocal lattice vectors, and the coupling function given

by

V (k1b1, k2b2, k3b3, k4b4) =
U

N

∑

o

a
↑
b1o

(k1)a
↓
b2o

(k2)a
↑∗
b3o

(k3)a
↓∗
b4o

(k4). (7)

Constraints from symmetry.— Before proceeding with the weak-coupling solution, we

wish to outline the possible superconducting states that may arise based on symmetry

considerations alone. In addition to possessing time-reversal and spatial inversion symmetry,

the Hamiltonian is invariant under 1) a U(1) spin rotation about the z axis and 2) reflections

about the xy, yz, and zx planes, and 3) π rotations about the x, y, and z axes. Although in

a strict sense the real-space lattice model only has glide reflection symmetry about the yz

plane, the k-space Hamiltonian in Eq. (6) is symmetric under the reflection about this plane

due to an appropriate basis choice that incorporates additional Bloch phases. The point-

group of H in Eq. (6) is therefore D2h. Note that while the U(1) rotation transforms the

spin alone, the reflections transform both the spin and momentum components. Specifically,

the reflection about the yz plane acts on a k-dependent spin-1/2 object as

τx : f(kx, ky, kz) |s〉 → ±if(−kx, ky, kz) σx|s〉 (8)

(|s〉 denotes a spin state), and similarly for other reflections τy and τz.
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Having enumerated the symmetries of the normal state, and neglecting kz dependence

of the order parameter, it follows that there are four distinct irreducible representations

corresponding to odd-parity superconductivity in our model3,30:

A1u : d(k) = ηx(k)x̂+ αηy(k)ŷ,

B1u : d(k) = αηy(k)x̂+ ηx(k)ŷ,

B2u : d(k) = ηx(k)ẑ,

B3u : d(k) = ηy(k)ẑ. (9)

Here, x̂, ŷ, and ẑ respectively denote the triplet states proportional to −| ↑↑〉 + | ↓↓〉,
| ↑↑〉 + | ↓↓〉, and | ↑↓〉 + | ↓↑〉; ~η(k) is a function of momentum that transform as the

components of momentum (e.g., ηi = sin (ki) with the lattice constants set to unity); α is

an arbitrary real-valued constant. In our symmetry analysis, we neglect an overall complex

factor that is always present in the superconducting order parameter which has no observable

consequences.

The A1u and B1u representations have in-plane d-vectors, which correspond to linear

combinations of states with Sz = ±1. Rotation of the spin about the z axis, which is a

symmetry operation, mixes these representations, thereby rendering them degenerate. This

degeneracy would be lifted if the normal state did not conserve Sz. Under the reflection τz

[see Eq. (8)], both A1u and B1u change sign; on the other hand, the two representations

are respectively odd and even under τy. The B2u and B3u representations have the d-vector

along the z axis. They can be thought of as triplet states with Sz = 0. They are both

invariant under the reflection τz. Under τy, B2u is odd, whereas B3u is even.

As we shall demonstrate below, our microscopic theory leads to the conclusion that the

states with the d-vector oriented in-plane is favored. In the presence of Sz conservation,

this order parameter would have soft collective fluctuations corresponding to the freedom

to “rotate” into an arbitrary linear superposition of the A1u, B1u representations. If Sz

conservation were broken - due to effects that are not captured in our present model—these

representations would split, and the associated collective modes would be gapped.

Perturbative renormalization group (RG). — Starting from the model Hamiltonian in

(6), we implemented an RG method31–34 to investigate superconducting instabilities à la

Kohn and Luttinger35. The idea is to assume sufficiently small interactions such that a

renormalized interaction near the Fermi surface can be safely calculated by perturbation
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FIG. 2. First and second order contribution to the effective interaction Veff. Each solid line

corresponds to a propagator with momentum k, band-index b and spin s. The dashed line refers

to the interaction in (6) and provides nonzero contributions for spin configurations of the type

indicated in diagram (1a).

theory and still remains in a weak-coupling range. For the remainder modes, a standard

RG procedure36,37 is applied and gives significant renormalization only for couplings in the

Cooper channel. This of course only holds if the system is not at a highly fine tuned point of

the phase diagram at which even infinitesimally small interactions induce other competing

channels. As a first step, we therefore determine the effective interaction Veff at energy scales

close to the Fermi surface by calculating the lowest order diagrams shown in Fig. 2. Before

we proceed with the subsequent RG treatment in the Cooper channel, it is useful to organize

the pair scattering in terms of irreducible representations of Sz and parity

Hpair
int =

1

2

∑

k,q

∑

{si}

Veff(ks1,−ks2, qs3,−qs4)γ†ks1γ
†
−ks2

γ−qs4γqs3

=
1

2

∑

k,q

[
Γ0(k, q)ψ

†
0,kψ0,q + Γ1(k, q)ψ

†
1,kψ1,q + Γ2(k, q)ψ

†
2,kψ2,q + Γ3(k, q)ψ

†
3,kψ3,q

]
.

(10)

Here, we used the following notation for the pairing operators

ψ
†
0,k =

1√
2

(
γ
†
k↑γ

†
−k↓ − γ

†
k↓γ

†
−k↑

)
, ψ

†
1,k = γ

†
k↑γ

†
−k↑,

ψ
†
2,k =

1√
2

(
γ
†
k↑γ

†
−k↓ + γ

†
k↓γ

†
−k↑

)
, ψ

†
3,k = γ

†
k↓γ

†
−k↓,
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and omitted the band indices b which are implicitly included in the momentum k because

all modes away from the Fermi surface have been scaled out. The various coupling functions

Γ in (10) can be inferred from the effective interaction Veff or, respectively, the diagrams

Fig. 2:

Γ0(k, q) =
1

2

[
d1a(k ↑,−k ↓, q ↑,−q ↓) + d2a(k ↑,−k ↓, q ↑,−q ↓)

+ d2b(k ↑,−k ↓, q ↑,−q ↓) + (k ↔ −k)
]
,

Γ1(k, q) =
1

2

[
d2d(k ↑,−k ↑, q ↑,−q ↑)− (k ↔ −k)

]

Γ2(k, q) =
1

2

[
d2b(k ↑,−k ↓, q ↑,−q ↓)− (k ↔ −k)

]

Γ3(k, q) =
1

2

[
d2d(k ↓,−k ↓, q ↓,−q ↓)− (k ↔ −k)

]

Here, the on-site nature of the bare interaction leads to a number of consequences: first, the

diagrams (2c) and (2e) identically vanish; second, (2a) is also an on-site interaction; third,

as both (1a) and (2a) are even in k, they do not contribute to Γ1,2,3, which are odd in k.

If we further decompose the different coupling functions Γi into eigenmodes defined by the

integral equation along the Fermi-surface

∮
dk̂

(2π)vF (k̂)
Γi(k̂, q̂)gni(q̂) = wnigni(k̂), (11)

the 1-loop RG flow in the Cooper channel decouples into separate flow equations for each wni

dwni(l)

dl
= −w2

ni(l), wni(l) =
wni(0)

1 + wni(0)l
. (12)

The initial values wni(0) are given by the eigenvalues in (11) and the index ni labels the

n-th eigenmode of Γi. It is easy to see from (12) that a negative eigenvalue grows further

under renormalization and that the most negative one w0i eventually causes a pairing insta-

bility with a transition temperature Tc ∼ We−1/|w0i| and a superconducting gap structure

determined by the corresponding eigenmode g0i(k̂). It should also be noted that, for asymp-

totically small interactions, the bare coupling of (1a) in Fig. 2 provides an infinitely larger

contribution than the other terms (2a-e) and that (2a) has precisely the same momentum

dependence as (1a). Then, for the purpose of calculating negative eigenvalues, one can sim-

ply project Γ0 onto the null space of (1a) [and hence of (2a)] as discussed in more detail in

Ref. 19.
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FIG. 3. Leading dimensionless eigenvalues w̃0i ≡ w0i(W
2/U2) for the even-parity, odd parity B3u

(Sz = 0) and for the degenerate A1u/B2u (Sz = ±1) channel as a function of the spin-orbit coupling

λ.

Results of the weak-coupling analysis.— Figure 3 shows the dominant pairing strength in

the different pairing channels as a functions of spin-orbit coupling λ. As in Ref. 19, we have

plotted the dimensionless quantity w̃0i ≡ w0i
W 2

U2 with W denoting the electronic bandwidth

and only show data for the band structure parameters corresponding to ηw = 1.

Using an independent numerical implementation, we reproduced the results of a previous

work19 in the limit of vanishing SOC λ. Here, the odd-parity channel is clearly favored

as compared to the even-parity one. This conclusion also persists in the regime of finite

SOC, where the odd-parity state with total Sz = ±1 is preferred over the one with Sz = 0.

Note that states with Sz = 1 and Sz = −1 are degenerate in terms of their eigenvalues in

Eq. (11) due to time-reversal symmetry and that in the limit of λ → 0, also the Sz = 0

channel merges as required by spin-rotation symmetry. As a general trend, it appears that

the absolute eigenvalues in Fig. 3, and with that also Tc, decreases with increasing SOC.

The associated pair wave functions g0i(k̂) along the Fermi surface are shown in Fig. 4 for

λ = 0.0t and λ = 0.03t. Notice that when SOC is absent, the odd-parity solution exhibits a

gap minimum at kx = 0 on each Fermi surface sheet (a more careful inspection reveals that

the “gap minimum” in each of the inner fermi surfaces is a pair of closely spaced nodes);

with increasing SOC, each gap minimum turns into a pair of nodes.

Magnitude of the spin-orbit coupling λ. — On a microscopic level the term Hsoc results
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FIG. 4. (left to right) Leading eigenvectors in the even parity (Sz = 0), odd parity B3u (Sz = 0)

and in the degenerate A1u/B2u (Sz = ±1) channel. The upper row displays the case of zero spin-

orbit coupling λ = 0.0t, the lower one shows λ = 0.03t. The upper (lower) subdivision in each

viewgraph corresponds to the upper (lower) Fermi surface of equal color coding.

from a perturbative treatment of the full atomic spin-orbit orbit interaction Ha-SOC ∼ ~L · ~S
within the subspace of dxy states. Obtaining a reliable estimate of λ is subtle and requires

ab initio calculations, as shown by Min et al.26 for graphene and Xiao et al.27 for MX2 (M

= Mo, W; X = S, Se). Such microscopic calculations are beyond the scope of this study.

Instead, we varied λ in a broad range and postpone a microscopic calculation of and estimate

of λ for this compound to a future study.

Discussion. — In this paper, we have incorporated the effects of spin-orbit coupling in a

weak-coupling treatment of superconductivity in purple bronze. We have constructed a spin-

orbit Hamiltonian by requiring that the reflection symmetries about the planes shown in Fig.

1 as well as inversion symmetry be present. As a consequence, the spin-rotational symmetry

is not fully broken but retains a residual U(1) symmetry corresponding to a conserved Sz

in this model. From our weak-coupling analysis, we have found that the favored odd-parity

state has an in-plane d-vector. A possible explanation might be the induced spin-orbit

coupling between the Cooper pair angular momentum L and its total spin S, which in

turn favors Sz = ±1 simply because the purely planar description only allows for a finite
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contribution in Lz. For the found state with in-plane d-vector we expect that in principle,

the Goldstone mode associated with the in-plane spin rotation is gapped due to an explicit

symmetry-breaking term (originating either from spin-orbit coupling interactions that are

ignored in our model or from an external in-plane Zeeman field applied in the laboratory).

Nevertheless, having incorporated the dominant energy scales into our effective Hamiltonian,

it is likely that soft Goldstone modes would be retained to an excellent approximation.

In addition to possessing soft collective excitations, the order parameter considered here

can in principle host half-quantum vortices. Along a closed path that encloses such a defect,

the order parameter

Ψ = eiϕ
[
dx
(
− | ↑↑〉+ | ↓↓〉

)
+ idy

(
| ↑↑〉+ | ↓↓〉

)]
(13)

remains singe-valued when ϕ → ϕ + π, ~d → −~d upon enclosing the defect. However, such

excitations are not favored over ordinary vortices (where ϕ winds by 2π without any change

in the vector components of ~d) in bulk systems since the spin current is unscreened, leading

to a logarithmically divergent energy cost in two dimensions38. These defects, however might

exist in mesoscopic samples as is also likely the case in Sr2RuO4
39.

With an in-plane d-vector, there would be no change in the NMR Knight shift below the

superconducting transition, for a field applied along the crystalline b-axis, which is the least

resistive transport axis. Thus, NMR measurements would be the most direct test of our

theory.

Finally, we mention here the role of strong electron interactions. We have taken on a

weak-coupling approach to this system. However, there are several indications that strong

interactions are present in the normal state, including the presence of charge ordering and

Luttinger liquid behavior. Our approach is justified by the fact that at lower tempera-

tures, such Luttinger liquid behavior crosses over into Fermi liquid behavior in this system.

Nonetheless, it will be interesting to study the superconducting instabilities of this system

from the vantage point of stronger coupling. We are currently attempting to do so using

density matrix renormalization group calculations on multi-leg ladders, and will report our

results in a forthcoming publication.
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