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Abstract

The intermediate-valent polymorphs α- and β-YbAlB4 exhibit quantum criticality and other

novel properties not usually associated with intermediate valence. Iron doping induces quantum

criticality in α-YbAlB4 and magnetic order in both compounds. We report results of muon spin

relaxation (µSR) experiments in the intermediate-valent alloys α-YbAl1−xFexB4, x = 0.014 and

0.25. For x = 0.014 we find no evidence for magnetic order down to 25 mK. The dynamic muon

spin relaxation rate λd exhibits a power-law temperature dependence λd ∝ T−a, a = 0.40(4), in the

temperature range 100 mK–2 K, in disagreement with predictions by theories of antiferromagnetic

(AFM) or valence quantum critical behavior. For x = 0.25, where AFM order develops in the

temperature range 7.5–10 K, where we find coexistence of meso- or macroscopically segregated

paramagnetic and AFM phases, with considerable disorder in the latter down to 2 K.

PACS numbers: 75.30.Mb, 75.40.Gb, 75.50.Ee, 76.75.+i
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I. INTRODUCTION

In certain compounds containing f ions, atomic-like f levels and a wide s-d band coexist

at the Fermi level. This permits strong admixture of ionic states with differing valence due

to hybridization with conduction electrons. Such materials are referred to as intermediate-

valence (IV), mixed-valence, or valence-fluctuating compounds. They have a variety of

unique thermal and magnetic properties, usually including the ability of even a small ad-

mixture of a nonmagnetic valent state to prevent local-moment formation in the ground

state1. For nearly-integral valence IV crosses over into Kondo and heavy-fermion behavior2.

The 4f ions Ce3+ and Yb3+, with one 4f electron and one hole, respectively, exhibit IV

or heavy-fermion behavior (admixture of nonmagnetic Ce4+ and Yb2+ components, respec-

tively) in many intermetallic compounds. Their properties in Ce- and Yb-based metals are

not very symmetric, however; superconductivity, weak-moment magnetism, and quantum

criticality are often found in Ce-based compounds but seldom in Yb-based ones. Perhaps

more fundamentally, in metals the Ce valence is usually close to 3, whereas Yb ions are more

often found in an IV state relatively far from integral valence.

The term quantum criticality refers to phenomena involving quantum fluctuations at tran-

sitions between phases at T = 0. Such effects have been extensively studied in numerous

rare-earth-based heavy-fermion metals3–5. They include unconventional superconductivity,

non-Fermi liquid behavior in the neighborhood of the quantum critical point (QCP), weak-

moment antiferromagnetism (AFM), quasi-ordered phases such as ‘spin nematics,’ and even

more exotic phases involving modification of the fundamental nature of the electrons in-

volved. Such phenomena are associated with the interplay between magnetic interactions

and local-moment screening by the Kondo effect and its heavy-fermion cousin, both of which

are found near integral valence; quantum criticality has seldom been searched for in IV ma-

terials.

The polymorphs α-YbAlB4 and β-YbAlB4
6–9 and their alloys with iron10–13 display a

rich variety of unexpected properties, and promise to shed light on a number of interesting

phenomena. They are both substantially intermediate-valent (Ybz+, z = 2.73 and 2.75

for α-YbAlB4 and β-YbAlB4, respectively)14 but, very surprisingly, retain local-moment

behavior to low temperatures9,15. β-YbAlB4 is one of the few pure rare-earth-based materials

to exhibit quantum criticality without tuning, i.e., without doping, pressure, or magnetic
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field, as evidenced by the scaling of the temperature and magnetic field dependence of

magnetization16. Applied magnetic fields rapidly restore Fermi-liquid behavior. β-YbAlB4

is also the only known Yb-based heavy-fermion superconductor: high-purity crystals are

superconducting below Tc ≈ 0.08 K7,8. The superconductivity evolves from the quantum-

critical state and is very fragile, appearing only for samples with low residual resistivities.

This strong sensitivity of Tc to sample purity suggests that the superconductivity is of an

unconventional, non-s-wave type8.

Undoped α-YbAlB4 is not a quantum critical system (no divergence of Cp/T ), but the

solid solution α-YbAl1−xFexB4 can be tuned to quantum criticality at a critical concentra-

tion xcr = 0.01410,13. There is evidence from thermodynamic and photoemission data that

valence fluctuations are involved in the quantum critical behavior13. More heavily Fe-doped

samples exhibit a first-order transition to a canted antiferromagnetic (AFM) phase. In par-

ticular, magnetization and Mössbauer-effect measurements on α-YbAl0.75Fe0.25B4
12,17 show

evidence for a complex phase transition; the magnetization exhibits anomalies at 9.4 K,

8.0 K and 6.9 K17 that have been attributed to magnetic ordering. 57Fe Mössbauer experi-

ments12 and the absence of magnetism in Fe-doped LuAlB4
10 confirm that the doped Fe is

itself nonmagnetic; the static magnetism is due to Yb moments only.

We have used the muon spin relaxation (µSR) technique18–20 to study polycrystalline

samples of α-YbAl1−xFexB4, x = 0.014 and 0.25. Our goals were to examine the muon

spin dynamic (spin-lattice) relaxation in the x = 0.014 sample for evidence of the putative

quantum critical point, and to search for magnetic transitions in both samples via the onset

of a static field or distribution of static fields. Experiments were carried out in zero applied

field (ZF) over the temperature range 0.025–15 K, and in weak longitudinal fields (LF) (i.e.,

field parallel to the initial muon spin direction) at selected temperatures in this range.

For x = 0.014 no evidence was found for static magnetism & 10−2µB/Yb ion down to

25 mK. In this sample the dynamic muon spin relaxation rate λd is found to obey a power-

law temperature dependence: λd(T ) ∝ T−a above 100 mK, with a = 0.40(4) and a maximum

in the neighborhood of 50 mK. This indicates a divergent density of magnetic excitations

(with a possible cutoff near the zero of energy), apparently associated with the QCP at

x = xcr. Such a divergence does not agree with theoretical results based on either AFM

or valence quantum criticality21, both of which yield negative values of a. The divergence

is consistent with a ferromagnetic (FM) instability22, which, however, would not account
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for the results of other experiments noted above. More work is necessary to resolve this

discrepancy.

In α-YbAl0.75Fe0.25B4 the onset of static magnetism over a transition region from 7.5 to

10 K is clearly seen in ZF-µSR relaxation as a wide distribution of local magnetic fields.

The data are consistent with an inhomogeneous distribution of two phases, AFM and para-

magnetic (PM), in the transition region, and there are indications of multiple transitions.

The fraction of PM phase decreases to zero below ∼8 K. In the AFM phase the local field

is widely distributed, with no signature of a well-defined nonzero average. In this sample

λd exhibits a broad maximum at ∼8.5 K suggestive of dynamic critical slowing down of Yb

moment fluctuations, and becomes constant below ∼6 K.

II. EXPERIMENT

Flux-grown small crystals of α-YbAl1−xFexB4, x = 0.014 and 0.25. were prepared as

described previously6. They were characterized using powder x-ray diffraction and magne-

tization measurements.

µSR experiments were carried out at TRIUMF, Vancouver, Canada, using the µSR dilu-

tion refrigerator at the M15 muon beam line for the temperature range 25 mK–2.5 K. The

LAMPF µSR spectrometer at the M20C beam line was used for temperatures between 2 K

and 300 K. Data were analyzed using the Paul Scherrer Institute musrfit fitting program23

and the TRIUMF physica programming environment24.

For time-differential µSR in solids positive muons (µ+) are normally used25. The time

evolution of the decay positron count rate asymmetry A(t) is proportional to the total

(sample plus background) µ+ spin polarization Ptot(t):

A(t) = A0Ptot(t) , (1)

where the initial asymmetry A0 is spectrometer-dependent but is usually ∼ 0.2. The ob-

served asymmetry often contains a component due to muons that miss the sample and stop

elsewhere in the spectrometer. In the following this signal is subtracted, and the data are

normalized by A0 to yield the ensemble spin polarization P (t) in the sample.

Two categories of processes contribute to the relaxation of P (t): static relaxation, due to

an inhomogeneous distribution of time-average local fields 〈Bloc〉 at µ
+ sites, and dynamic
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relaxation, due to thermal fluctuations δBloc(t) of the µ
+ local fields around their time aver-

ages. Static relaxation is due to (quasistatic) nuclear dipolar fields in dia- and paramagnets,

and to coupling to static magnetism if present.

Dynamic relaxation usually arises from coupling to electronic spin fluctuations26. If the

fluctuation rate 1/τc is in the so-called motional narrowing limit γµ〈δB
2
loc〉

1/2τc ≪ 127,28, the

resulting µ+ spin polarization can be modeled by

P (t) = e−λdtGs(t) , λd ≈ γ2
µ〈δB

2
loc〉τc , (2)

where Gs(t) is the appropriate static relaxation function. We expect situations of this kind

in the present study, and are thus motivated to fit forms of Eq. (2) to the data.

III. RESULTS AND DISCUSSION

A. α-YbAl1−xFexB4, x = 0.014

1. Zero-field µSR

Figure 1 shows P (t) for α-YbAl0.986Fe0.014B4 at 2.5 K and 50 mK in zero field (ZF). The
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FIG. 1. (Color online) Zero-field (ZF) µ+ spin relaxation in α-YbAl0.986Fe0.014B4, T = 2.5 mK

(circles) and 50 mK (squares). Curves: fits of exponentially-damped ZF Gaussian Kubo-Toyabe

function [Eq. (3)] to the data.

curves are fits to the data of the exponentially-damped relaxation function

P (t) = e−λdtGG(t) , (3)
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where

GG(t) =
1

3
+

2

3
(1−∆2t2) exp

(

−1
2
∆2t2

)

(4)

is the ZF Gaussian Kubo-Toyabe (KT) function29 appropriate to relaxation by a randomly-

oriented Gaussian distribution of static local fields. The relaxation rate ∆ is the rms width

∆/γµ of the local field distribution in “frequency units”. The data exhibit the minimum

in P (t) and recovery at late times associated with Eq. (4)29. It can be seen that there is a

small but measurable increase in relaxation rate at low temperature, together with a change

in shape of P (t) associated with an increase of λd relative to ∆.

In the filled skutterudite compound PrPt4Ge12, combined Gaussian and exponential re-

laxation has been reported30 for which a Lorentzian component of the static field distribution

rather than dynamic spin fluctuations is mainly responsible. We therefore consider a gen-

eralization of the ZF Gaussian KT relaxation function to the case of a combined Gaussian

and Lorentzian static field distribution, the so-called ZF Voigtian static KT function30:

GV (t) =
1

3
+

2

3
(1− λt−∆2t2) exp

(

−λt− 1
2
∆2t2

)

. (5)

The shape of the relaxation function is controlled by the ratio ∆/λ: the limit λ → 0 yields

Eq. (4), whereas the limit ∆ → 0 yields the ZF exponential KT function appropriate to

dilute local-moment systems with 1/r3 interactions with the muon31. Equation (5) should

be considered an empirical interpolation between the Gaussian and exponential limits.

Fits of the exponentially-damped ZF Voigtian KT function

P (t) = e−λdtGV (t) (6)

to the data for x = 0.014 (not shown) yield λ ≈ 0 (and λd 6= 0); there is no evidence for

static exponential relaxation in this sample. We shall see in Sec. III B, however, that in

the high-temperature PM phase of α-YbAl0.75Fe0.25B4 fits to ZF data using Eq. (6) yield

nonzero λ (and λd ≈ 0).

Figure 2 gives the ZF temperature dependences of the t=0 asymmetry A0 [Eq. (1)], the

static KT relaxation rate ∆, and the dynamic rate λd for temperature T between 25 mK

and 2.5 K. Over this range A0 and ∆ are constant to within a few percent of their averages

[Figs. 2(a) and 2(b), respectively]. There is no sign of oscillations that would indicate a well-

defined static field, and there is no “missing asymmetry” from very rapid relaxation due to a

strong magnetic transition. The near constancy of ∆ [average value 0.345(9) µs−1] indicates
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FIG. 2. (Color online) Temperature dependences of ZF µ+ initial count rate asymmetry and

spin relaxation rates in α-YbAl0.986Fe0.014B4. (a) Initial asymmetry A0. (b) Static Gaussian KT

rate ∆. (c) Dynamic relaxation rate λd. Solid line: fit of the power law λd ∝ T−α to the data for

T ≥ 100 mK. The dashed and dash-dot lines represent the range of slopes predicted by the theory

of Ref.21.

no static magnetism at the level of ∼0.01µB per unit cell. These results rule out the onset of

static magnetism above 25 mK. The value of ∆/γµ is roughly consistent with 171Yb, 27Al,

and 11B nuclear dipolar fields. A quantitative comparison would require knowledge of the

µ+ stopping site, which is not known at present.

In contrast, there is a significant increase of λd with decreasing temperature, followed

by a broad maximum at ∼50 mK. Above 100 mK the data follow a power law λd ∝ T−a,

with a = 0.40(4). This divergence followed by a maximum suggests the onset of quantum

(T = 0) critical spin fluctuations with a cutoff at low frequencies.

A divergent λd(T ) is, however, not predicted by theories of either AFM or valence crit-

icality21. The latter has been proposed as a mechanism for quantum critical phenomena

in a number of Ce- and Yb-based heavy-fermion compounds including α- and β-YbAlB4
13.

The dynamic relaxation rate (1/T1 in NMR terminology) of a spin probe (nuclear or muon

spin) has been calculated within this theory, and vanishing of 1/T1(T ) as T → 0 is obtained:
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1/T1 = λd ∝ T 0.3–0.5, in marked disagreement with the data above 100 mK (Fig. 2). AFM

spin fluctuations also result in a < 0, i.e., vanishing 1/T1 as T → 021,22,32.

It is possible that the comparison should be made at lower temperatures, below the max-

imum in Fig. 2(c). The available temperature range down to the cryostat base temperature

of 25 mK is too limited for a quantitative comparison, but the data are consistent with the

theoretically expected21 range of slopes (dashed and dash-dot lines in Fig. 2). This would

restore agreement with the valence criticality scenario. It would, however, leave the origin

of the power law above 100 mK unexplained.

Power-law temperature dependences of the µ+ dynamic relaxation rate have been ob-

served in a number of systems that exhibit the non-Fermi liquid behavior often associ-

ated with quantum criticality. These include CeP0.15Rh0.85
33, YbCu5−xAux, x = 0.634, and

YbNi4P2
35. In these cases the exponent a varies between 0.3 and 0.8. The divergence has

been taken as a sign of a FM QCP, primarily on the basis of the qualitative agreement with

predictions of the self-consistent renormalization (SCR) theory22 for FM criticality. For

AFM criticality SCR theory predicts a negative value of a, as does a later proposal of quan-

tum tricriticality32. Magnetization measurements10 exhibit hysteresis along the c axis, and

suggest a FM component of the ordered magnetization in the ab plane of α-YbAl1−xFexB4,

x > xcr. Fluctuations associated with this component could dominate the µ+ dynamic re-

laxation for x = xcr. However, Ref. 22 predicts a maximum in 1/T1 at low temperatures,

associated with coupling between spin fluctuation modes around the critical wave vector.

This is consistent with the data [Fig. 2(c)], but parameter values necessary for quantitative

comparison are not known. In any case, bulk properties of α-YbAl0.986Fe0.014B4
13 are not

consistent with the FM QCP scenario36.

2. Longitudinal-field µSR

The dependence of P (t) on longitudinal field (LF) in α-YbAl0.986Fe0.014B4 at 25 mK is

shown in Fig. 3. As in ZF, the data are well fit by an exponentially-damped static relaxation

function [Eq. (2)], where in this case Gs(t) is the static Gaussian KT relaxation function

in nonzero LF29. The majority of the field dependence is due to “decoupling” of the muon

spin from random static internal fields by the longitudinal field HL for HL & ∆/γµ. For

HL = 31.8 Oe (Fig. 3) the decoupling is nearly complete and the relaxation is mainly
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FIG. 3. (Color online) Longitudinal-field (LF) µ+ spin relaxation in α-YbAl0.986Fe0.014B4,

T = 25 mK. Curves: fits to the data of exponentially-damped static LF Gaussian Kubo-Toyabe

function 29.

dynamic29.

The relaxation rate λd varies considerably with field, as shown in Fig. 4 for T = 25 mK

and 2.5 K. At both temperatures λd goes through a maximum at ∼4 Oe, followed by a
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FIG. 4. (Color online) Dependence of dynamic µ+ spin relaxation rate λd on longitudinal field in

α-YbAl0.986Fe0.014B4 at 25 mK (squares) and 2.5 K (circles).

shallow minimum at somewhat higher fields. It is hard to see how such weak fields could

modify the electronic spin system significantly.

This field dependence is reminiscent of that observed in Cu metal, which was attributed

to avoided level crossing (ALC) of muon Zeeman and nuclear quadrupolar energy levels37.

In ALC the maximum in λd occurs at roughly ωQ/γµ, where ωQ is the nuclear quadrupolar

splitting frequency. However, ωQ/2π obtained from the peak field is ∼0.05 MHz, which is
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an order of magnitude smaller than values obtained from quadrupole-split 11B NMR in α-

and β-YbAlB4
38. It seems unlikely either that (1) the muon spin couples predominantly to

27Al or 173Yb (NMR has not yet been reported for either of these nuclei, and 173Yb is only

16% abundant), or (2) the small concentration of iron dopant or the additional contribution

of the muon electric field gradient37 cancels the intrinsic crystalline contribution to ωQ(
11B)

to this degree. Thus the origin of the observed field dependence remains uncertain.

B. α-YbAl1−xFexB4, x = 0.25

(For convenience we refer to magnetic order in this system as “antiferromagnetic” or

“AFM”, in spite of the evidence for FM criticality discussed in Sec. IIIA 1.)

The behavior of the µ+ relaxation for x = 0.25 can be divided into three temperature

regions: (1) a fully PM region T & 10 K, (2) a fully AFM region T . 7.5 K, and (3) a

transition region between these temperatures. In all three regions the damped ZF Gaussian

KT function [Eq.(3)] give poor fits to ZF data, whereas for the PM and AFM regions damped

ZF Voigtian KT fits [Eq.(6)] are statistically satisfactory. This is evidence for a local field

distribution function with a Lorentzian component, i.e., with more weight in the “wings” or

“shoulders” than for a purely Gaussian distribution.

In the transition region neither Gaussian nor Voigtian KT functions give satisfactory fits,

but good fits were obtained to a sum of PM and AFM relaxation functions, with an AFM

fraction fAFM that decreases monotonically from fAFM = 1 at ∼8 K to 0 at ∼10 K. This

indicates that the transition region is macroscopically inhomogeneous.

We first consider data from the PM and AFM temperature regions.

1. Voigtian and power-exponential relaxation functions

An alternative to the Voigtian KT relaxation function for interpolation between Gaussian

and exponential KT relaxation functions is provided by the ZF power exponential (PE)39

GPE(t) =
1

3
+

2

3
[1− (σt)β] exp[−(σt)β/β] . (7)

The exponential and Gaussian KT relaxation functions are limits for β = 1 and 2, respec-

tively. The shape of the PE relaxation function is controlled by β, in a manner analogous

to the ratio ∆/λ for the Voigtian (Sec. IIIA 1).
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Both Voigtian and PE functions have been used when a more exact model of the field

distribution is unavailable or cumbersome20. Thus it is useful to examine whether or not for

some intermediate distributions the data would be better fit by one or the other interpolat-

ing function. This is done by comparing Voigtian and PE fits to data from YbAl0.75Fe0.25B4

at temperatures well above and well below the AFM transition. Figure 5 shows the compar-

ison40. For clarity only the fits are shown; the data are discussed below. By eye the curves
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FIG. 5. (Color online) Voigtian [Eq.(6), dashed curves] and power-exponential [Eq.(7), dash-

dot curves] Kubo-Toyabe relaxation functions from fits to ZF µ+ spin polarization data from

α-YbAl0.75Fe0.25B4. (a) PM phase, T = 15.0 K. (b) AFM phase, T = 1.99 K.

of Fig. 5 seem more nearly Gaussian in the PM phase and more nearly exponential in the

AFM phase. The fit values of the parameters β (PE fits) and ∆/λ (Voigtian fits) confirm

this qualitative impression: for the PE fits βPM is significantly larger than βAFM, and for the

Voigtian fits ∆PM > λPM and ∆AFM < λAFM in the PM and AFM states, respectively.

It can be seen that the Voigtian and PE functions are very similar, and there is no

significant difference between them in goodness of fit. There is, however, one situation in

which the PE fit is more flexible, viz., if there is even more weight in the shoulders than for a

Lorentzian field distribution. A PE fit can accommodate this with a value of β less than 1 (a

“stretched exponential”), whereas a Voigtian fit only interpolates between the exponential

and Gaussian limits. We shall see in Sec. III B 4 that exponentially-damped PE fits in the

transition region near 10 K yield β < 1, and we therefore use this function for fits in the

AFM phase. For fits in the PM phase we have arbitrarily chosen the exponentially-damped

Voigtian KT function [Eq. (6)].
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2. Paramagnetic Phase

Figure 6 shows the time evolution of the µ+ spin polarization P (t) in α-YbAl0.75Fe0.25B4,

T = 15.0 K. The µ+ data are similar to those for the x = 0.014 sample at high temperatures
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FIG. 6. (Color online) α-YbAl0.75Fe0.25B4 µSR ZF asymmetry time spectrum, T = 15.0 K.

Solid curve: exponentially-damped Voigtian KT relaxation [Eq. (6), λd ≈ 0]. Dash-dot curve:

exponentially-damped Gaussian KT relaxation [Eq. (3)].

(cf. Fig. 1). The solid curve is a fit to the exponentially-damped Voigtian KT relaxation func-

tion given by Eq. (6). This fit yields PM-phase static relaxation rates ∆PM = 0.291(3) µs−1

and λPM = 0.087(4) µs−1 [Eq. (5)], and dynamic rate λd ≪ 0.01 µs−1 [Eq. (6)]. For com-

parison, the dashed curve (which is not a fit) gives the exponentially damped Gaussian KT

function of Eq. (3) with the same value of ∆PM and λd = 0.087 µs−1.

The latter curve agrees with the former and with the data only at early times (. 3 µs).

At late times the Voigtian function without damping return to the value 1/3 as generally

expected18,20 for static relaxation only and randomly-oriented local fields. This return is in

better agreement with the data than the overall damping imposed by Eq. (3).

The temperature dependences of the ZF rates ∆PM, λPM, and λd in α-YbAl0.75Fe0.25B4

are shown in Fig. 7. At 10 K and above all three quantities are essentially temperature-

independent. The average value ∆
(av)
PM = 0.290(2) µs−1 is somewhat smaller than in α-

YbAl0.986Fe0.014B4. This and the substantial value of λ
(av)
PM [0.091(5) µs−1] can be attributed

to the dilution of the 27Al nuclear spins by Fe substitution, which reduces the nuclear dipolar

fields at µ+ sites and renders their distribution less Gaussian with more weight in the wings.

The dynamic rate λd is essentially zero over the entire temperature range, in contrast

to the nonzero rate in α-YbAl0.986Fe0.014B4. This indicates that the spin fluctuation rate is
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significantly faster in α-YbAl0.75Fe0.25B4. In particular, above 10 K λd does not exhibit the

increase with decreasing temperature characteristic of critical slowing down. An increase is

observed below ∼9 K, however (Sec. III B 4, Fig. 10).

3. Antiferromagnetic Phase

The local field due to magnetic order in a crystal is expected to point in a well-defined

crystalline direction, and thus may not be randomly oriented in a polycrystal if the latter is

preferentially oriented41. The α-YbAl0.75Fe0.25B4 sample is a mosaic of flat millimeter-sized

single crystals glued to a silver plate. The crystalline c axes are normal to the flat faces,

and are therefore oriented preferentially along the initial µ+ spin direction. Preferential

orientation changes ZF static KT relaxation functions in polycrystalline samples for µ+

sites with lower than cubic symmetry, principally by modifying the late-time constant µ+

spin polarization from the value 1/3 found for random orientation20,42.

Figure 8 gives the ZF µ+ spin polarization at 1.99 K. The data have been fit using an

exponentially-damped “offset-PE” KT function

PAFM(t) = e−λdtG′
PE(t) , (8)
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FIG. 8. (Color online) α-YbAl0.75Fe0.25B4 µ+ spin polarization P (t) in ZF at T = 1.99 K. Prefer-

ential crystallite orientation reduces the amplitude of the slowly-relaxing polarization at late times

from the value 1/3 expected for randomly-oriented local fields.

where

G′
PE(t) = (1− flate) [3GPE(t)− 1] /2 + flate , (9)

with GPE(t) given by Eq. (7). Equation (9) simply replaces the constants 2/3 and 1/3 in

Eq. (7), appropriate to randomly-oriented fields, by 1 − flate and flate, respectively. It is a

rough approximation for small |flate − 1/3| to the exact result for preferential orientation

assuming a uniaxial orientation distribution20,42. The fit value of flate is 0.22 < 1/3, which

indicates that the static µ+ internal fields are preferentially oriented perpendicular to the

crystalline c axes42.

Parameters from damped offset-PE KT function fits to data in the 2–8 K temperature

range are shown in Fig. 10 and discussed in the next section.

4. Transition region

Magnetization measurements indicate multiple phase transitions in α-YbAl0.75Fe0.25B4

over the temperature range 6.9–9.4 K17, but the data do not determine whether or not

the various phases are macroscopically segregated. µSR is an ideal technique to probe

inhomogeneous magnetism due to its sensitivity to static electronic magnetism, ordered or

disordered.

As previously noted, fits of either the Voigtian or the PE function to the data over the

entire temperature range give very poor fits in the transition region, suggesting an inhomo-
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geneous distribution of transition temperatures. Magnetic resonance probes are sensitive to

spatial distributions of local magnetism, ordered or disordered, if the correlation length ξM

that describes this distribution is long enough so that each muon or nucleus is coupled to

only one “domain” of the distribution. This usually means ξM must be longer than a few

lattice parameters.

The simplest assumption for such meso- or macroscopic inhomogeneity is a two-component

(AFM and PM) form

P (t) = fAFMPAFM(t) + (1− fAFM)PPM(t) , (10)

where fAFM is the fraction of AFM phase. This scenario provides good fits over the entire

temperature range, as shown in Fig. 9. The temperature dependences of fAFM and the
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FIG. 9. (Color online) ZF µ+ spin polarization relaxation in α-YbAl0.75Fe0.25B4 at representative

temperatures over the temperature range 2 K–15 K. The data exhibit temperature-dependent

AFM and PM fractions in the AFM-PM transition region 7.5–10 K. Curves: fits to Eq. (10).

AFM-phase component parameters σAFM, β, and λd from fits of Eqs. (8) and (10) to the

data below ∼10 K are given in Fig. 10. In the fits flate in Eq. (9) has been fixed at its

low-temperature value. The parameters of the PM-phase component PPM(t) in Eq. (10)

have been assumed temperature independent, and are fixed at their averages from data for

T > 10 K (Fig. 7).

It can be seen that fAFM decreases monotonically over the transition region, suggesting

a distribution of transition temperatures. There is, however, considerable structure in the

temperature dependences of all the parameters, which we compare with the previously-

reported transition temperatures17 TN1 = 9.4(2) K, TN2 = 8.0(2) K, and TN3 = 6.9(1) K.
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FIG. 10. (Color online) Temperature dependences of AFM-phase µ+ spin relaxation parameters

in the AFM and transition regions of α-YbAl0.75Fe0.25B4 from fits to Eqs. (8) and (10). (a) An-

tiferromagnetic fraction fAFM. (b) Power-exponential relaxation rate σAFM. (c) Exponent β.

(d) Dynamic relaxation rate λd.

(1) From Fig. 10(a), with decreasing temperature fAFM becomes nonzero below 10 K

rather than TN1. There are inflection points in fAFM(T ) near 9 K and 8 K and saturation

at fAFM = 1 below 7.5 K, i.e., no structure at 7 K.

(2) Recalling that the AFM-phase PE relaxation rate σAFM [Fig. 10(b)] measures the

strength of static fields (in frequency units), the decrease of σAFM(T ) with increasing tem-

perature from 2 K to 8 K is expected; it is the temperature dependence of the order pa-

rameter in this region. The minimum at ∼8 K and maximum at ∼8.3 K suggest structural

transitions in the spin order. They might be associated with an increase in magnetic volume

fraction, since fAFM exhibits small additional increases with decreasing temperature at these

temperatures [Fig. 10(a)]. Above 9 K σAFM becomes small but remains nonzero as long as

fAFM > 0.

(3) The exponent β [Fig. 10(c)] decreases from its low-temperature value above ∼7 K,

goes through a minimum near 8 K and a maximum near 8.5 K, and decreases to less than

1 above ∼8.8 K. As noted above, a decrease of β indicates broadening of the wings of the
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field distribution, i.e., increasing probability of field values far from the median. Not only

is the volume fraction of the AFM phase decreasing with increasing temperature, but the

disorder within this volume is increasing.

(4) The dynamic rate λd [Fig. 10(d)] increases rapidly with decreasing temperature below

∼9 K to a poorly-defined maximum at 8–8.5 K, and then decreases to a constant value

∼0.06 µs−1 from ∼6 K down to 2 K. The maximum in the transition region suggests critical

slowing down of spin fluctuations associated with the AFM transition. Of the parameters

shown in Fig. 7 only λd exhibits structure near TN3 (∼7 K)17, below which it drops suddenly

with decreasing temperature.

IV. CONCLUSIONS

We have carried out µSR experiments on Fe-doped YbAlB4 as a probe of quantum crit-

icality and magnetic order in this alloy series. The principal results of this study are as

follows.

For x = 0.014 there is no evidence of static magnetism, ordered or disordered. The

dynamic muon spin relaxation rate λd exhibits a power-law temperature dependence λd ∝

T−a, a = 0.40(4), in the temperature range 100 mK–2 K. This divergence is similar to that

found in materials with a putative FM QCP, and is in strong disagreement with predictions

by theories of quantum critical behavior due to either AFM or valence fluctuations. With

decreasing temperature λd passes through a broad maximum at ∼50 mK, which might

restore agreement with predicted valence critical behavior at lower temperatures, but the

divergence above 100 mK would then remain unexplained. Further studies are necessary to

clarify this situation.

For x = 0.25 the AFM state is inhomogeneous, with a broad distribution of local fields at

µ+ sites and no indication of a well-defined average field. The inhomogeneity increases in the

temperature region 7.5–10 K, where the µSR data indicate the coexistence of magnetically

ordered and paramagnetic phases. This is evidence that the scale of the inhomogeneity

is meso- or macroscopic, since otherwise each muon would sample both phases and the

relaxation function would not exhibit the two-component behavior described in Sec. III B 4.

It is possible that Fe substitution is not random, so that clustering leads to a distribution

of phase transition temperatures. There is evidence for a number of phase transitions from
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magnetization and µSR experiments, with rough but not perfect agreement between the

transition temperatures.

ACKNOWLEDGMENTS

We are grateful to R. Abasalti, D. Arseneau, B. Hitti, S. Kreitzman, I. McKenzie, and

G. D. Morris of the TRIUMF Centre for Molecular and Materials Science for their help

during these experiments, to A. Bianchi and A. Desilets-Benoit for useful discussions, and

to Hu Cao for help with the experiments and data analysis. This work was supported in

part by the U.S. National Science Foundation, grant nos. 0801407 (Riverside), 1105380 (Los

Angeles), and 1104544 (Fresno), by the U.C. Riverside Academic Senate Committee on Re-

search, by the National Natural Science Foundation of China (No. 11474060) and STCSM

of China (No. 15XD1500200) (Shanghai), and by a Grant-in-Aid (No. 21684019) from the

Japanese Society for the Promotion of Science (JSPS) and Grants-in-Aid for Scientific Re-

search on Priority Areas (Nos. 17071003 and 19052003) from the Ministry of Education,

Culture, Sports, Science and Technology (MEXT) (Kashiwa).

∗ To whom correspondence should be addressed: macl@physics.ucr.edu

† Current address: RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan

1 C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).

2 A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cam-

bridge, 1993).

3 P. Coleman and A. J. Schofield, Nature 433, 226 (2005).
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