
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Resonant interactions between discrete phonons in
quinhydrone driven by nonlinear electron-phonon coupling

Aaron S. Rury
Phys. Rev. B 93, 214307 — Published 24 June 2016

DOI: 10.1103/PhysRevB.93.214307

http://dx.doi.org/10.1103/PhysRevB.93.214307
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This study reports experimental, computational and theoretical evidence for a previously un-
observed coherent phonon-phonon interaction in an organic solid that can be described by the
application of Fano’s analysis to a case without the presence of a continuum. Using Raman spec-
troscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700
cm−1 we assign as phonons whose position and line shape asymmetry depend on the sample temper-
ature and light scattering excitation energy. Density functional theory calculations find two nearly
degenerate phonons possessing frequencies near the values found in experiment that share similar
atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone.
Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard
Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin
of the asymmetric features of each peak’s line shape to an interaction between two discrete phonons
via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics
of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to
qualify the temperature dependence of the magnitude of this coupling in the valence band of quin-
hydrone. These results broaden the range of phonon-phonon interactions in materials in general
while also highlighting the rich physics and fundamental attributes specific to organic solids that
may determine their applicability in next generation electronics and photonics technologies.

I. INTRODUCTION

The spectrum of vibrational frequencies of a crystal’s
lattice significantly impacts its thermodynamic proper-
ties and, therefore, its suitability in electronics and pho-
tonics applications1. Typically, in order to calculate ther-
modynamic properties such as the heat capacity, one
works in the harmonic limit in which a potential en-
ergy that scales with the negative square of the change
in the position of atoms away from equilibrium dictates
the frequency of a lattice vibration2. However, the lattice
vibrational frequencies of real crystals deviate from the
harmonic limit. Phonon-phonon interactions represent
one of the most important mechanisms by which this de-
viation occurs and can produce significant changes in the
thermodynamic properties of materials3. Typically, one
represents these interactions by expanding the potential
energy experienced by the nuclei of a solid, V , in the nor-
mal coordinates of the crystal vibrations (Q1, Q2, ..., QN )
as,
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where V0 indicates the value of this potential energy at
the equilibrium position of the nuclei, which we take at
Qi = 0. Explicitly, while the harmonic frequency of the
jth phonon vibration is set by the second term on the
right side of Eq. (1), the higher order terms of this ex-
pansion represent the anharmonicity driven by phonon-
phonon interactions. Given their importance in the be-
havior of nuclei in solids, understanding the physical

foundation of phonon-phonon interactions in candidates
for next generation electronics and photonics technolo-
gies remains a necessity.

For many materials, neutron scattering and ther-
mal transport measurements have been the experimen-
tal techniques of choice to investigate phonon-phonon
interactions3. Neutron scattering allows connection be-
tween phonon anharmonicity and dispersion given the
amount of momentum a neutron can transfer to the
atoms in a solid sample. However, because these tech-
niques interrogate phonons in steady-state electronic con-
figurations, they lack the ability to capture phonon-
phonon interactions in the presence of transient elec-
tronic densities. While typically only providing infor-
mation on the transitions near the center of the Bril-
louin zone due to the conservation of linear momentum
during the light scattering process, Raman spectroscopy
has been used to uncover the complex nature of phonon-
phonon interactions in technologically important inor-
ganic materials ranging from bulk insulators4, includ-
ing ferroelectrics5, to bulk semiconductors6,7 as well as
organic graphitic materials8. Furthermore, by exciting
the Raman scattering process with light whose energy
matches that of transitions between electronic bands of a
material, one can gain insight into the phonon-phonon in-
teractions of transient electronic states not possible with
neutron scattering and transport measurements9.

Previously, experimental evidence has predominantly
pushed researchers to consider phonon-phonon interac-
tions in Raman scattering spectra due to a physical mech-
anism similar to a Fermi resonance. That is, coupling
between the fundamental excitation of a phonon, typi-
cally from the optical branch, with overtones and com-
binations of other phonons, either from the acoustic or
optical branches, due to energy degeneracy.6–8,10. In this
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physical picture of the Fermi resonance, the anharmonic
behavior of phonons implied by the terms beyond the
quadratic contribution to Eq. (1) can be described by
perturbative corrections to a vibration’s self-energy due
to the accidental degeneracy of the energy of the vibra-
tion of interest with that of overtone or combination
bands. By examining Eq. (1), we see that these cor-
rections begin to occur at the third order of perturba-
tion theory, necessitating the interaction of at least three
phonons. However, there is no a priori reason for the
pre-dominance of this phonon-phonon interaction mech-
anism in all materials.

The natural abundance and solution processability of
organic materials composed of electron donor and elec-
tron acceptor molecules, known as charge-transfer (CT)
materials, make them desirable answers as sustainable
technologies in electronics and photonics11. In addition
to the electronic properties of CT materials, researchers
have added hydrogen-bonds for further functionality and
found room temperature ferroelectric behavior12 as well
as coupled magnetic-electron transport effects13. In con-
trast to inorganic materials such as Si, Ge and ZnO that
have been studied extensively using Raman scattering,
the typically large number of atoms in unit cell of organic
materials means that their phonon density of states can
often be large. This increase of the density of phonon
states relative to many simple inorganic materials seems
to imply that one should anticipate stronger and new
types of phonon-phonon interactions in organic materials
with large numbers of atoms in their unit cell, especially
in the presence of hydrogen bonding.

Quinhydrone is a hydrogen-bonded charge-transfer
(HBCT) material formed from the co-crystallization of
the electron donor hydroquinone (HQ) and the electron
acceptor p-benzoquinone (BQ). This material was first
discovered over 150 years ago and has long been used
as an organic electrode14, but its basic physics have re-
mained relatively unexplored. A visual representation of
the unit cell with parameters found from x-ray diffraction
is shown in Figure 115.

The simplicity of quinhydrone makes it an accessible
model material to understand the importance of lattice
phonons in HBCT materials. The few previous studies
undertaken on quinhydrone have already demonstrated
how phonons drive interesting behavior in this mate-
rial. Upon applying pressure along its a-axis, Mitani
et al. found that the behavior of O-H stretching vibra-
tion of HQ changes dramatically and posited a coopera-
tive proton-electron tunneling phase of quinhydrone that
must be mediated by at least one lattice phonon16. Rury
et al. have also shown that unlike other CT crystals, a
Raman-active lattice phonon modulates electron transfer
in the charge separated state of quinhydrone17. How-
ever, phonon-phonon interactions in quinhydrone and
other HBCT materials remain totally unexplored terri-
tory thus far. Given the strong vibrational anharmonic-
ity often found in hydrogen-bonded materials, quinhy-
drone provides a useful model for understanding the role

of phonon-phonon interactions in the presence of electron
transfer where modeling of electron-phonon interactions
is especially important18.

Electron-phonon coupling has been shown to be one of
the most important attributes of low dimensional organic
CT materials, leading to spin-Peierls distortions upon
electronic excitation19, quantum para-electric phases20

as well as other exotic phenomena21. Additionally, non-
linear electron-phonon coupling plays a role in the physics
of two types of strongly correlated electronic phenomena.
First, Cavatorta et al. have shown that the nonlinear
contribution to electron-phonon interactions couples in-
tra and intermolecular vibrations of the pseudo-1D CT
material comprised of tetrathiafulvalene and chloranil
upon the ultrafast photo-induced neutral-to-ionic tran-
sition of this material22,23. Second, a wide array of both
experimental and theoretical studies have shown that
nonlinear electron-phonon coupling plays a central role
in the anomalously high superconducting transition tem-
peratures of MgB2

24–29. Therefore, finding other roles
that electron-phonon coupling can play in determining
the behavior of materials represents an important goal in
the application of new physical phenomena in real world
devices. Bozio and co-workers have shown that Raman
spectroscopy can characterize electron-phonon coupling
in organic CT materials, similar in their electron trans-
fer interactions to quinhydrone30,31.

Based on the pioneering work espousing both phonon-
phonon and electron-phonon interactions in other ma-
terials using Raman spectroscopy, we have applied a
combined experimental, computational and theoretical
inelastic light scattering spectroscopic approach to un-
cover a previously unreported interaction between two
of the phonons of the model HBCT material quinhy-
drone driven by electron-phonon interactions. Using sin-
gle crystal, polarized Raman spectroscopy excited in res-
onance with separate electronic transitions of this mate-
rial, we find two high frequency lattice phonons of quin-
hydrone whose behavior we explain with a mechanism
similar to a Fano interaction, but without the need for
a continuum of states. This behavior includes the mir-
rored behavior of the inverse of the asymmetry parameter
and line width of each mode, which we show is in accord
with Fano’s original treatment of the case of auto ioniza-
tion in atoms and molecules. Furthermore, we find that
this interaction depends on the energy used to excite the
scattering process. Resonant excitation of electron trans-
fer through an intramolecular transition of the electron
acceptor of quinhydrone, BQ, enhances the interaction
between the two modes and leads to increased asymme-
try of the peak associated with each phonon relative to
a near-IR resonant excitation of what we believe to be a
excitonic electron transfer transition.

Ab initio electronic structure calculations of quinhy-
drone using density functional theory (DFT) find two
nearly degenerate vibrations whose atomic motion is de-
localized on both molecules of quinhydrone. These calcu-
lations provide evidence that the two phonons are com-
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FIG. 1. (color online) Visual representation of the ab-plane of
the crystallographic unit cell of monoclinic quinhydrone found
from room temperature x-ray diffraction measurements15

showing the electron donor of the material, hydroquinone
(HQ), on the right and the electron acceptor, p-benzoquinone
(BQ), on the left. Lattice parameters are reported in the top
right corner.

prised of nuclear motion out of the aromatic plane of each
molecule. We propose that the frequencies and intensities
of these modes become coupled due to their degeneracy
and their ability to modulate electron transfer in quinhy-
drone. Based on this assignment of the modes and phys-
ical picture of the coupling mechanism, we analytically
calculate model polaron wave functions in the presence
of both first and second order perturbative corrections
to adiabatic states due to electron-phonon coupling us-
ing a nonlinear Peierls-Hubbard Hamiltonian. We then
use these polaron states to calculate Raman spectra using
a first principles approach of time-dependent perturba-
tion theory found by the interaction of these states with
quantized incident and scattered electromagnetic waves.
We find excellent agreement between the measured and
calculated spectra that further motivates the assignment
of a Fano-like resonant interaction between the modes
under examination driven by electron transfer between
the donor and acceptor sites of quinhydrone. Our data
analysis and modeling also cast significant doubt on the
alternative effects that may explain our results. Addi-
tionally, near-infrared excitation of a sample formed from
the deuterated form of the electron donor of quinhydrone,
hydroquinone (HQ), shows that the higher frequency of
these two modes carries substantial motion of the hy-
droxyl hydrogen of HQ that has been previously proposed
to dominate the proton transfer behavior of quinhydrone.

These experimental and theoretical results broaden the
range of possible phonon-phonon interactions in solids as
well as form a foundation on which further investigation
of similar effects on other HBCT materials can be ex-
amined. In particular, doubts have been raised concern-
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FIG. 2. (color online) Temperature dependent z(xx)z̄-
polarized Raman scattering spectra of a monoclinic quinhy-
drone single crystal in the region between 640 cm−1 and 750
cm−1 excited at 2.33 eV.

ing the ability of specific hydrogen-bonded charge trans-
fer materials to achieve room temperature ferroelectric
phases, as reported by Tayi et al.. These doubts are based
upon analytical results of the Peierls-Hubbard Hamilto-
nian when used in combination with computational in-
puts found from DFT calculations18. However, the re-
sults we find here provide evidence that higher order
contributions to the Peierls-Hubbard Hamiltonian may
be necessary to capture the relevant physics of HBCT
materials. Therefore, for cases when electron transfer be-
tween donor and acceptor sites drives anharmonic cou-
pling between phonons the results found in this study
imply that Fano-like resonant interactions between vi-
brational states could play a meaningful role in the be-
havior of these materials and impact their application in
electronics and photonics.

II. RESULTS

A. Experimental

Samples of monoclinic quinhydrone single crystals
and temperature-dependent, polarized Raman spectra
were formed and gathered in the same manner as de-
scribed previously17,32. Figure 2 shows the temperature-
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dependent Raman scattering from a monoclinic quinhy-
drone single crystal in the region between 640 cm−1 and
750 cm−1 excited at 2.33 eV for the z(xx)z̄ polarization
configuration33. We highlight to the reader that Rury
et al. have shown that light at 2.33 eV likely excites
an intramolecular electronic transition of BQ that drives
intermolecular electron transfer in quinhydrone on time
scales that could not be definitely determined with sub-
100 fs resolution32. In the spectra of Figure 2, two peaks
appear as broad, low intensity features at 273 K that
shift in frequency, increase in intensity, and change in
line width as we cool the crystal. We assign both fea-
tures as phonons of quinhydrone. Given the previous no-
tation of the Raman-active lattice phonons of monoclinic
quinhydrone17, we denote the lower and higher frequency
peaks as ν6 and ν7, respectively.
Upon closer examination of Figure 2, one sees that

both temperature-dependent peaks possess asymmetric
line shapes, but in different directions of energy. The
lower frequency of the two features has a fatter tail to-
ward lower energy while we find the opposite case for the
higher frequency peak. We also note that the asymme-
try of each peak changes as a function of temperature.
In addition, the scattering intensity at frequencies be-
tween these two peaks drops to zero. Furthermore, as
shown in Figure 3, upon excitation of the same quinhy-
drone single crystal at 1.58 eV both the ν6 and ν7 modes
appear, albeit with differences that will be discussed in
detail below. The reader should note that while the spec-
tra of Figure 2 are shown on a linear-linear scale, those
of Figure 3 are shown on a linear-log10 scale due to the
dramatic increase in the intensity of Raman scattering
excited at 1.58 eV caused by an increased ground state
electron transfer upon cooling monoclinic quinhydrone32.

The temperature-dependent evolution of the line
shapes of the two phonons becomes more interesting
upon isotopic substitution of one of the oxygen-bound
hydrogen atoms of HQ with deuterium. Figure 4 com-
pares Raman spectrum of a 78 K monoclinic crystal of
d5-quinhydrone excited at 1.58 eV to the spectrum scat-
tered by a fully hydrogenated crystal at the same temper-
ature. Two features stand out in this comparison. First,
while ν6 remains a single peak, ν7 has become two peaks.
Second, while the position of ν6 remains approximately
the same in the deuterated sample, the position of the ν7
mode shifts to higher frequency, even when accounting
for the doublet structure.
To understand the evolution of the line shape of the

ν6 and ν7 modes upon cooling the quinhydrone crystal,
we fit their line shapes using a Fano profile34, as done
previously by Cooper and co-workers35,36. We use the
equation,

I(ω) = I0

(

q + ω−ω0

Γeff

)2

1 +
(

ω−ω0

Γeff

)2 . (2)

where ω0 is the phonon frequency, Γeff is its effective line
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FIG. 3. (color online) Temperature-dependent, z(xx)z̄-
polarized resonance Raman spectra of a monoclinic quinhy-
drone single crystal for excitation at 1.58 eV in the window
of 640 cm−1 to 750 cm−1 shown on a linear-log10 scale
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FIG. 4. (color online) Comparison of the Raman spectrum of
fully hydrogenated single monoclinic quinhydrone crystal ex-
cited at 1.58 eV (solid) to the spectrum of a deuterated single
monoclinic quinhydrone crystal excited at the same energy
(dashed).
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width and q is the asymmetry parameter, as defined by
Fano. Figure S1 of the Supplemental Material (SM) com-
pares the ν6 mode in Figure 2 to fits using Eq. (2). Fits
of the ν7 mode in Figure 2 to Eq. (2) show similar agree-
ment. In contrast, Figure S2 of the SM shows poorer fits
of ν6 to Eq. (2) for 1.58 eV excitation, especially at the
lower temperatures used in our measurements. All pa-
rameters of the fits to Eq. (2) of the ν6 and ν7 modes at
each temperature, including their associated uncertainty,
for 2.33 eV excitation are found in Tables S1 and S2, re-
spectively, of the SM. In the case of 1.58 eV excitation,
the shoulder to the high energy side of ν7 precluded its fit
to Eq. (2) so that Table S3 only reports the parameters
of the fits to Eq. (2) for the ν6 upon near-IR excitation.
Possible reasons explaining the presence of this shoulder
and its effect on the interpretation of our results are dis-
cussed in Section III. To analyze the position of the ν7
mode as a function of temperature the frequency of the
peak intensity is taken, which can be extracted for all
the temperatures expect 273 K under our experimental
conditions. Figure S3 of the SM shows that q for the ν6
is smaller upon excitation at 2.33 eV relative to 1.58 eV
for all temperatures considered in our study, even consid-
ering the error of the fits of the spectra to Eq. (2). This
difference in the magnitude of q for each excitation laser
implies that any interaction between the ν6 and another
resonance is larger upon 2.33 eV excitation than in the
case of 1.58 eV.

The fits of the measured spectra to Eq. (2) allow one
to compare the trends in peak position and frequency
difference of the two modes as functions of temperature.
The top panel of Figure 5 shows the temperature depen-
dence of the position of each mode for each excitation en-
ergy. We find that simplest interpretation of these data
is that the position of the higher frequency of these two
peaks shifts linearly with temperature, while the lower
frequency of the pair seems to asymptotically approach
its frequency at low temperatures for both excitation en-
ergies. In addition, the frequency separation between the
two features at each temperature changes as a function
of excitation energy, as shown in the bottom panel of
Figure 5. For 2.33 eV excitation, a larger frequency sep-
arates the two peaks than upon 1.58 eV excitation. The
overall temperature dependence of the frequency differ-
ence is similar for each excitation energy. The behav-
ior of the temperature dependence of the frequency dif-
ference between these two phonon modes seems largely
dependent on the nonlinear trend in the ν6 mode fre-
quency. Since one would anticipate a linear dependence
of a phonon frequency on temperature stemming from
changes to the real part of the phonon’s self-energy as ex-
plained previously6,7,37, the nonlinear dependence of the
peak position of the ν6 mode for both excitation energies
implies a separate mechanism must explain the change
in its frequency as the temperature changes. The mecha-
nism we believe leads to this temperature dependence is
developed theoretically in Section II.C. and discussed in
Section III.
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FIG. 5. (color online) Top: Comparison of the temperature
dependence of the ν6 (squares) and ν7 (crosses) upon on exci-
tation of a single monoclinic crystal of quinhydrone at 2.33 eV
(green) to that for 1.58 eV excitation (red). Bottom: Com-
parison of the temperature dependence of the frequency dif-
ference of the ν7 and ν6 modes of monoclinic quinhydrone
upon 2.33 eV (green) and 1.58 eV (red) excitation.

In Fano’s seminal treatment, he showed that the line
width of a measured peak can provide evidence of the
presence of a resonant interaction between modes. Ex-
plicitly in the context of auto ionization, Fano stated
’This result shows that the configuration interaction ”di-

lutes” the discrete state φ throughout a band of actual
stationary states whose profile is represented by a reso-

nance curve with a half-width π|VE |2. If the system under
consideration were prepared in the state φ at a certain in-

stant, it would auto ionize with a mean life h̄/2π|VE |2.’34,
where he had defined VE as the interaction energy be-
tween a discrete state and a continuum. This statement
means that the introduction of an interaction between
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the state φ and a continuum results in a ’new’ channel
from which φ can decay, resulting in a line shape dom-
inated by the interaction. While our case is physically
distinct from that of auto ionization since there is no ev-
idence of a continuum of any kind in our measurement,
we believe that the spirit of Fano’s statement appears in
our spectra.

In Eq. (2), the asymmetry parameter, q, relates to the
interaction potential between the resonances of interest
via an inverse relationship, i.e. Vint ∝ 1

q
. Therefore, by

plotting the inverse of q as a function of temperature for
each mode, we can determine how a would-be interac-
tion between the two modes varies with this constraint.
Comparison of the inverse of the asymmetry parameter
with the line width at different temperatures then could
provide insight into any coupling between these modes.
The top panel of Figure 6 shows the temperature depen-
dence of the line width (Γeff ) extracted from fits of the
measured spectra to Eq. (2) for the ν6 and ν7 modes
of monoclinic quinhydrone measured upon excitation at
2.33 eV, while the bottom panel shows the temperature
dependence of the magnitude of inverse of the asymmetry
parameter, |1/q| for the same excitation energy. These
figures shows that line width and |1/q| for each mode
mirror each other in an interesting way. In the case of
Γeff , we see that upon cooling the quinhydrone crystal
the line width of ν6 starts out at its largest value and
then decreases, which is almost the exact trend shown
by |1/q| for the ν7 mode. This trend can almost be read
directly from the spectra shown in Figure 2 where the
line shape of ν7 closely resembles that of a Lorentzian
below 123 K, which should be the case when |1/q| ≈ 0.
Similarly to the mirroring of Γeff for ν6 and |1/q| for
ν7, the line width of ν7 initially increases when cooled
below 273 K until it reaches a maximum around 150 K
and then decreases again, showing a striking similarity
to the temperature dependent trend of |1/q| for the ν6
mode. It should be pointed out again that each peak in
Figure 2 has been fit to Eq. (2) independent of the other
such that there is no interplay between the parameters
used to minimize the difference between the fit and data
in the nonlinear least-squares algorithm we have used to
find the parameters of Tables S1 and S2.

Fano’s statement from his original work highlighted
above provides an avenue to interpret both panels of Fig-
ure 6. When the interaction is strong between the modes,
excitation of one mode, say ν7, will lead to more rapid
transfer of the excitation to the coupled mode, ν6. There-
fore in the presence of coupling, a large value of |1/q| for
ν7 implies a large value of Γeff for ν6. In the opposite
extreme, when the interaction is small for one mode, then
one would anticipate that line width of the other mode
would be small, indicating a smaller probability that the
excitation decays from its original state. The panels of
Figure 6 show that the ν6 and ν7 modes of quinhydrone
display behavior consistent with this physical picture of a
resonant phonon-phonon interaction. To our knowledge
this is the first observation of this behavior in the pa-
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FIG. 6. (color online) Top: Comparison of the effective line
width (Γeff ) found for the ν6 mode (crosses) to that of ν7
mode (diamonds) of monoclinic quinhydrone extracted from
fits of measured spectra excited at 2.33 eV to Eq. (2). Bot-
tom: Comparison of the temperature dependence of the in-
verse of the asymmetry parameter, q, found from the same
fits of the ν6 mode (crosses) to that of ν7 mode (diamonds)
to Eq. (2) upon excitation of a single monoclinic crystal of
quinhydrone at 2.33 eV.

rameters that define the dynamics of discrete vibrational
excitations in a solid.

Despite the qualitative agreement in the temperature
dependence of the line width and asymmetry parameter
of each respective mode, inferring quantitative relation-
ships between these parameters from the data shown in
Figure 6 is difficult at this stage. This difficulty arises
from the fact that while the resonant interaction between
the ν6 and ν7 modes of monoclinic quinhydrone may be
significant at the temperatures examined in Figures 2 and
3, other effects can also determine the decay channels of a
given vibrational excitation of a crystal’s lattice. Specif-
ically in the case of this study, the top panel of Figure 6
shows that while the inverse of the asymmetry parameter
of ν7 plateaus very close to 0 for temperatures below 123
K, the line width of ν6 continues to decrease when the
crystal is further cooled. This change in the line width
without a clear identification of the role of the interaction
between the two modes along that decay channel shows
that the temperature dependence of the compressibility
of quinhydrone can still affect the self-energy of this vi-
bration, as is expected of crystalline lattice phonons7.
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Therefore, further study of quinhydrone that allows de-
termination of the contribution from other effects that
control the dynamics of vibrational excitations is neces-
sary before a quantitative correspondence between Γeff

and |1/q| can be established.
While this treatment in the spirit of Fano motivates

the physical picture that the ν6 and ν7 modes of mon-
oclinic quinhydrone couple in a way unseen previously,
this treatment provides no insight into the physical mech-
anism that leads to the interaction necessary to establish
such a coupled system of vibrations. In order to establish
this mechanism, we have undertaken both computational
and analytical calculations to understand the types of vi-
brations likely involved in this interaction as well as its
fundamental physics and their manifestation in Raman
scattering spectra.

B. Computational

To assign the atomic motion corresponding to the ν6
and ν7 modes, we undertook ab initio electronic struc-
ture calculations using DFT. We use the Becke 1988
exchange functional38 in combination with the Perdew-
Wang generalized gradient approximation correlation
functional39, denoted as B3PW. These calculations use
polarizable electronic basis sets for hydrogen40, carbon40

and oxygen41 atoms as implemented in CRYSTAL1442.
This software package applies Bloch’s theorem in con-
junction with the symmetry operations of the space
group of monoclinic quinhydrone to calculate its elec-
tronic bands. The positions of the atoms of monoclinic
quinhydrone were set to those found in the room tem-
perature x-ray diffraction pattern, reported previously15.
The irreducible Brillouin zone of quinhydrone was set
on a mesh according to Pack-Monkhorst sampling us-
ing a shrinking factor of 8 for all three crystallographic
directions. Both IR and Raman-active vibrational fre-
quencies of quinhydrone were found via the Coupled
Perturbed/Kohm-Sham (CHKS) algorithm43,44. This
algorithm directly calculates the dipole, polarizability
and hyper-polarizability using perturbation theory in re-
sponse to an electric field applied to the different axes of
the crystal of interest.
Upon completion of the DFT and CHKS calculations,

we find two vibrations near 710 cm−1 whose atomic mo-
tions are not localized on either HQ or BQ. This fact gives
us physical motivation to assign them as phonons whose
frequency should change as a function of the thermally
driven contraction of the crystal. We find both modes
within 0.1 cm−1 of 713 cm−1, but of different activity.
The lower frequency of these two modes is Ag symme-
try and Raman-active while the higher is Au symmetry
and IR-active. Vectorial representations of the lower and
higher frequency of these two modes found from the cal-
culation are shown in the left and right panels of Figure 7,
respectively, as rendered by the software Jmol45. In each
panel of Figure 7, the electron acceptor, BQ, is shown on

the left and the electron donor, HQ, on the right and the
white, gray and red sites correspond to hydrogen, carbon
and oxygen atoms, respectively. Given their positions in
frequency relative to the experimentally determined peak
positions shown in Figures 2 and 3, we assign these two
modes as ν6 and ν7, although its not clear which calcu-
lated vibration corresponds to which mode in the exper-
iment. This assignment is made in Section III. It seems
that by coupling the motion of these two intramolecu-
lar vibrations in a specific way, two new intermolecular
phonons appear in the spectrum of quinhydrone unlike
those of any reported organic charge-transfer materials
previously. To identify the mechanism that can lead to
this coupling, we turn to first principles analytical theory
of the polaronic properties and light scattering spectra of
charge transfer materials.

C. Theoretical

While the computational results in the previous sec-
tion allow one to visualize the types of nuclear motion
that likely correspond to the ν6 and ν7 phonon modes of
quinhydrone, DFT calculations cannot alone determine
the mechanism that would lead these vibrations to cou-
ple in a manner that results in the temperature depen-
dent Raman scattering shown in Figures 2 and 3. In
order to identify this mechanism, we calculated model
Raman spectra from the second order correction in time
dependent perturbation theory caused by the harmonic
time varying incident laser and scattered electromagnetic
fields in the presence of first and second order electron-
phonon coupling.
The calculation of the Raman spectra begins with iden-

tifying the pertinent model Hamiltonian for the case
of each excitation laser. Previously, Rury et al. used
both resonance Raman and ultrafast transient reflectiv-
ity spectroscopies to show that intramolecular excitation
of BQ in quinhydrone leads to electron transfer between
the donor and acceptor of this material on time scales
less than 100 fs32. However, this conclusion relied on
electron-phonon coupling manifest in the Raman scatter-
ing of the low frequency lattice phonons that differed sub-
stantially for visible and near-IR excitation. Therefore,
one must take care in establishing the pertinent electronic
Hamiltonian and basis states that can model the electron-
phonon coupling in the case of each excitation laser. We
believe that the Peierls-Hubbard Hamiltonian can han-
dle the physics of both excitation processes, but since
previous results more clearly identify a complete charge
transfer excitation path for the 2.33 eV laser source, we
focus our treatment here on this physical case.
Generally, we write the Peierls-Hubbard Hamiltonian

of our model crystalline system as,

Htot = He +Hph +He−ph, (3)

where He and Hph correspond to the adiabatically sep-
arated contributions from the electronic, intermolecular
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FIG. 7. (color online) Vectorial representation of the atomic motion of the Ag mode at 713 cm−1 (left pair) and the Au mode
at 713 cm−1 (right pair) found from DFT calculations using the B3PW global hybrid functional, as described in the text.

vibrational (ph) degrees of freedom of the charge transfer
material, respectively. In addition, He−ph corresponds
to the electron-phonon coupling contributions that we
treat as perturbing the adiabatically separated Hamilto-
nian. He−ph in quinhydrone leads to new states created
by mixing the eigenstates of both He and Hph.
We use the Hubbard Hamiltonian for the electronic

contribution to Eq. (3). In their second quantized form,
the electronic and lattice phonon vibrational contribu-
tions to this Hamiltonian become,

He =
∑

i,σ

ǫia
†
i,σai,σ +

∑

i

Uini,↑ni,↓

−t
∑

i,σ

[

a†i,σai+1,σ + a†i+1,σai,σ

]

, (4a)

Hph =
∑

j

h̄ωj(b
†
jbj +

1

2
). (4b)

The electronic Hamiltonian contains contributions from
both the electron transfer integral t, the intra-site elec-

tron repulsion energy is U and ni = a†i,σai,σ is the elec-

tron number operator. The operator a†i,σ (ai,σ) creates

(annihilates) an electron on the ith site in a spin state σ
and the operator ni,↑ counts the number of electrons on

ith site with the spin state ↑. The operator b†j (bj) plays

the same role as a†i,σ (ai,σ), but in the case of the phonon
with an energy h̄ωj.
In general for molecular charge transfer materials like

quinhydrone, there are two ways in which the vibrations
contribute to the electron-phonon coupling Hamiltonian.
First, lattice phonons of the material can modulate the
transfer integral t, which creates the so-called nonlocal
electron-phonon coupling47. Second, intramolecular vi-
brations of the donor and acceptor molecules can mod-
ulate the on-site energy, ǫi, which leads to electron-
molecular vibrational coupling46,48 or local electron-
phonon coupling. Given the substantial out of plane
atomic motion found from DFT calculations consistent
with the frequencies of the peaks in our measurements,
these modes should mainly modulate t. Therefore, we do

not treat local electron-phonon coupling in the present
study. Inspired by the treatment of Bozio and co-
workers30,31, the electronic Hamiltonian, He, can be ex-
panded in the N lattice normal coordinates, Qj about
their equilibrium position (Qj = 0) as,

He(Q1, Q2, ..., QN ) ≈ He(0) (5)

+
∑

j

∂He

∂Qj

∣

∣

∣

∣

∣

0

Qj +
∑

j,k

1

2

∂2He

∂Qj∂Qk

∣

∣

∣

∣

∣

0

QjQk + ...

Eq. (5) shows that the single partial derivative of He

with respect to the lattice normal coordinates gives the
lowest order correction to electronic Hamiltonian due to
electron-phonon coupling caused by electron transfer be-
tween sites. Using the standard relations between the
coordinates of quantum harmonic oscillators and their
associated creation and annihilation operators, this term
takes the second quantized form,

H
(1)
e−ph =

∑

i,σ,j

{

gj(~kj)b
†
j + g∗j (

~kj)bj

}

(6)

x
[

a†i,σai+1,σ + a†i+1,σai,σ
]

.

In Eq. (6), gj(~kj) is the electron-phonon coupling con-
stant that determines the strength with which the elec-
tron transfer process scatters a phonon of energy h̄ωj and

depends on the phonon wave vector, ~kj . One can also
think of this constant as the ability of a given phonon to
modulate the electron transfer integral, t, of Eq. (4a).
We refer to the inclusion of Eq. (6) in treating quinhy-
drone as linear electron-phonon coupling.

In addition to this lowest order contribution in Eq. (5),
there is a second order contribution stemming from the
expansion He in the lattice normal coordinates. In terms
of the phonon creation and annihilation operators, this
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term can be written as,

H
(2)
e−ph =

∑

i,σ,j,l

{

G
(1)
jl (

~kj , ~kl)b
†
jb

†
l (7)

+G
(2)
jl (

~kj , ~kl)b
†
jbl +G

(3)
jl (

~kj , ~kl)bjb
†
l

+G
(4)
jl (

~kj , ~kl)bjbl

}[

a†i,σai+1,σ + a†i+1,σai,σ

]

.

The terms G
(m)
jl (~kj , ~kl) determine the strength of each

contribution to the second order e-ph coupling and de-
pend on the wave vector of both phonon modes, j and l,
in order to maintain the conservation of linear momen-
tum in the crystal. Eq. (7) shows that in addition to

the term proportional to b†jb
†
l that excites overtones for

j = l and combination bands for j 6= l, there are two
cross terms in the phonon creation and annihilation op-
erators that also couple modes of different index in the
case j 6= l. We refer to the inclusion of the second or-
der corrections to the material Hamiltonian as nonlinear
electron-phonon coupling. Since the spontaneous transfer
of electron density from one site to the other that drives
both linear and nonlinear electron-phonon coupling de-
pends on the spacing of sites in the crystal lattice, these
coupling constants should explicitly depend on tempera-
ture as dictated by the compressibility of the material of
interest.

In the case of quinhydrone, theoretical assessments of
the electronic structure of the HQ-BQ dimer in vacuum
propose that this material is neutral in its ground state49.
Therefore, for a simple two site model we can first apply
the results of Painelli and Girlando46 to solve the Hamil-
tonians of Eqs. (4a) and (4b) followed by a calculation of
the perturbations due to the first and second order e-ph
coupling of the form of Eqs. (6) and (7). However, care
must be taken in the choice of the electronic basis states
used for the case of each excitation laser.

For the case of the 2.33 eV laser, the experimental ev-
idence amassed thus far suggests that electron transfer
from HQ to BQ is resonantly excited via an intramolecu-
lar transition of BQ. However, in the case of the 1.58 eV,
previous experimental indications point to a distinct elec-
tronic state, which may be in excitonic in nature based on
electron-phonon coupling interpreted from Raman spec-
tra and the ultrafast dynamics probed in the near-IR
region following visible excitation of quinhydrone single
crystals32. While experiment50 and theory51 suggest that
electronic excitation of BQ in the region around 2.33 eV
is a singlet-to-triplet n→ π∗ transition in the solid-state
and gas phases, respectively, there is no evidence on the
assignment of this transition in quinhydrone. Therefore,
for simplicity we propose that one should use a basis
set of states similar to those introduced by Painelli and
Girlando46. To determine the effect of nonlinear electron-
phonon coupling, we use a natural basis set of electronic

states written as,

|Φ〉 = | ↑↓, 00〉, (8a)

|ψ±〉 =
1√
2

[

| ↑ 0, 0 ↓〉 ± |0 ↓, ↑ 0〉
]

, (8b)

|Θa〉 = |0 ↓, ↑↓, 0 ↓〉, (8c)

|Θb〉 = | ↑ 0, ↑ 0〉, (8d)

where the notation |s1s2, s3s4〉 is read from left to right
as the pair of spin states of the electrons on the donor,
HQ and then the pair of electron spins on BQ. In this
context, the state |Φ〉 corresponds to the localization of
the electron density on the donor site of the model while
the states |Ψ+〉 and |Ψ−〉 thru |Θa,b〉 correspond to the
singlet and triplet configurations of the charge-separated
states of the two site mode, respectively. Diagonalizing
the Hamiltonian of Eq. (4a) using the basis states in Eq.
(8) hybridizes |Ψ+〉 with |Φ〉 giving two states that we
denote as |ΨA〉 and |ΨB〉, written as

|ΨA〉 = a1|Φ〉+ a2|ψ+〉, (9a)

|ΨB〉 = a2|Φ〉 − a1|ψ+〉. (9b)

For the case of 2.33 eV excitation of electron trans-
fer in quinhydrone, we can limit our treatment to |ΨA〉
and |ΨB〉. Given our assignment of an excitonic transi-
tion resonant at 1.58 eV, it is difficult to imagine the
exact form of natural electronic basis sets one should
use for that experimental situation. However, even given
the possible many-body nature of this state, a similar
electron-phonon coupling mechanism likely gives rise to
our observations, as explained below. To understand the
effects of both first and second order e-ph coupling we
now only explicitly treat the states in Eq. (9) for the
sake of simplicity and then motivate a physical picture
for the case of 1.58 eV excitation that captures the nec-
essary physics to explain our results.
To consider the role of electron-phonon coupling terms

like that of Eqs. (6) and (7) in inelastic light scatter-
ing, we start with model adiabatic wave functions of
the form |Ψ〉|n〉j |m〉l for the jth and lth phonon eigen-
states of Hph where |Ψ〉 corresponds to one of the elec-
tronic eigenstates of He in Eq. (9). In the case where
only the ground vibrational state of quasi-neutral ground
electronic state, |ΨA〉, is populated (i.e. n = m = 0),
we propose that the resonance Raman scattering from
the jth mode uses quantum paths containing the low ly-
ing phonon states of the participating excited electronic
state: |ΨA〉|0〉j |0〉k → |ΨB〉|0〉j |0〉l → |ΨA〉|1〉j |0〉l and
|ΨA〉|0〉j |0〉l → |ΨB〉|1〉j |0〉l → |ΨA〉|1〉j |0〉l. Therefore,

in order to correctly treat H
(1)
e−ph and H

(2)
e−ph we must ap-

ply do so for all of the states participating in the full light
scattering process.
The full form of the wave functions resulting from per-

turbations due to linear and nonlinear electron-phonon
coupling are shown in Appendix A. Eqs. (A1a)-(A4d)
show that the excited vibrational state of the jth mode
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couples to the lth mode in the final state of the scat-
tering process, |Ψ2〉, by introducing nonlinear e-ph cou-
pling. The level of mixing is determined by the value

of G
(3)
jl for the modes of interest. Therefore, we can now

see how the Peierls-Hubbard Hamiltonian including both
first and second order e-ph coupling can lead to phonon
mode mixing.
It is important to disentangle the physical meaning of

the calculated wave functions in Eqs. (9) and (A1). Since
there is a repulsive term in the Hubbard Hamiltonian
denoted U that characterizes the Coulomb interaction
between the electrons on a given site, there is a spon-
taneous tendency for the electronic density to delocalize
between the two sites. In response to this spontaneous
delocalization of the electrons between sites, the lattice
must conserve any momentum created by exciting spe-
cific phonons. In the presence of an existing phonon exci-
tation, nonlinear electron-phonon coupling dictates that
a spontaneous transfer from one site to the other can
then also transfer vibrational excitation from the normal
modes of one phonon to those of a different phonon.
The fact that we have only considered a single Raman

active mode, j, in deriving Eqs. (A1a)-(A1d) factors im-
portantly into our interpretation of the measurements of
Section II.A. This is because the DFT calculations of Sec-
tion II.B found that one of the two degenerate vibrations
at 713 cm−1 possesses Au symmetry and is IR-active.
However, the electron-phonon coupling Hamiltonians of
Eqs. (6) and (7) show that in order to become active
via this mechanism a given phonon mode only needs
to modulate the electron transfer integral, t. Since the
atomic motion of both of the modes shown in Figure 7
clearly change the orbital overlap of the donor and ac-
ceptor molecules, it seems reasonable that both of these
modes can directly change the value of t. Thus, the lin-
ear and nonlinear electron-phonon coupling constants for

the lth mode, gl, G
(1)
ll and G

(3)
jl , should be non-zero for

such a mode.
In the context of a possible excitonic state excited

by1.58 eV, Eqs. (A1) shows that in order for a similar
mechanism to give rise phonon mode mixing, the excited
state populated by an electronic transition resonant with
light at this energy must use the lattice vibrations to
couple to both the initial and final states participating in
the Raman process. Even given the many-body nature
of an excitonic state, if such a state carries substantial
character from electron transfer between the donor and
acceptor is not hard to see that any changes in t would
directly affect the energy of this state and couple it to
the ground state. Therefore, while we cannot realize an
efficient way to express an excitonic state in terms of the
electron spins on the donor and acceptor sites of a two
site model in a manner similar to Eq. (8), excitonic elec-
tron transfer polaronic states of a similar form to Eqs.
(A1) must characterize the effects of linear and nonlin-
ear electron-phonon coupling on these states.
With the wave functions found from inclusion of both

linear and nonlinear electron-phonon coupling, one can

proceed to determine the effects of these interactions on
resonantly enhanced light scattering spectra. The full
derivation of the second order time-dependent correc-
tions due to the incident and scattering electromagnetic
fields is found in Appendix B, where Eq. (B5) shows
the explicit form of this corrections. Examination of
Eq. (B5) shows that the line shapes of the jth and lth

modes of a two-site model of quinhydrone get contribu-
tions from two different scattering pathways. While the
first line of Eq. (B5) shows the Lorentzian line shape
one expects from vibrational Raman peaks, the second
line represents interference between the quantum paths
participating in the scattering process caused by the res-
onant interaction of these two phonons driven by e-ph
coupling, as has been described in detail previously for
other physical circumstances52. Eqs. (B3a), (B3b) and
(B4) show the parameters of the experiment that define
the relative contribution from the terms of Eq. (B5).
These include the linear and nonlinear electron-phonon
coupling constant matrix elements with respect to states
|ΨA〉 and |ΨB〉 as well as the detuning of the laser fre-
quency, ωL, from the frequency of the resonant electronic
transition of choice, i.e. ω13 or ω14. Therefore, using the
temperature-dependent peak position, intensity and ef-
fective line width extracted from the fits of the measured
spectra to Eq. (2), we can calculate the spectral shape of
the Raman spectrum in the presence of linear and nonlin-
ear electron-phonon coupling as one would expect from
the expansion of the electronic Hamiltonian in the lattice
phonon normal coordinates, as shown in Eq. (5).

Figure 8 compares the experimental spectra for tem-
peratures of 78 K, 173 K, and 248 K to calculations using
Eq. (B5) with the parameters in Tables S1 and S2 for
the mode frequency (ωj and ωl) and mode line width (Γj

and Γl) as well as the experimentally determined rela-
tive intensity of the two modes in the case of that Aj

and Al have opposite sign. Inspection of this compar-
ison shows excellent agreement between our model and
measurements. Interpretation of the using above treat-
ment leads us to propose that nonlinear e-ph coupling
between the ν6 and ν7 modes of monoclinic quinhydrone
causes the interference between the scattering pathways
of the Raman process, as seen in Eq. (B5), leading to
a deviation from the harmonic frequency of each phonon
mode and the asymmetric line shape of each peak. For
the case of 2.33 eV excitation we also find ourselves in a
fortunate situation. Unlike 1.58 eV excitation, no mean-
ingful change is observed in the integrated intensity of
any of the peaks below 650 cm−1 for 2.33 eV32. Based
on this consideration, it seems reasonable to conclude
that the energy of the transition excited by 2.33 eV does
not change with temperature. Therefore, any change we
see in the relative intensity of the two modes in our spec-
tra should derive from changes in the other parameters
driving the interactions, i.e. the linear and nonlinear
electron-phonon coupling constants. To undertake this
assessment of the contribution of each coupling constant,
we must first identify a given peak in our spectra with
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FIG. 8. (color online) Comparison of the experimental Ra-
man scattering spectra of a single monoclinic crystal of quin-
hydrone excited at 2.33 eV (solid) to model spectra calculated
from a first principles model based on nonlinear electron-
phonon coupling(dashed) for temperatures of 78 K (top), 173
K (middle), and 248 K (bottom).

a specific mode in the model. This is achieved below
in Section III, where we can assess the strength of these
different interactions in the context of the other relevant
attributes of our study as well as consider other possible
explanations of our experimental results.

III. DISCUSSION

Results from experiment, computation and theory
seem to support a hypothesis that the ν6 and ν7 modes
of quinhydrone couple resonantly in a manner similar to
a Fano resonance, but in the absence of a continuum.
In particular, these modes possess line shapes of oppo-
site asymmetry, DFT calculations find nearly degenerate
delocalized vibrations of different irreducible represen-
tations near the experimentally determined frequencies,
and a first principles time-dependent theoretical model
of the light scattering process in the presence of linear
and nonlinear electron-phonon interactions qualitatively
reproduces our experimental results. Furthermore, the

characteristics of the experimentally determined temper-
ature dependence of the line width and asymmetry pa-
rameter of these two modes mirror each other in manner
qualitatively consistent with a Fano-like mechanism that
couples these vibrations. However, these facets of our
results do not conclusively prove the Fano-like resonant
hypothesis and there remain three important attributes
of the spectra whose explanation needs to be made within
the context of our proposed mechanism.

One possible alternative explanation for the appear-
ance of the line shape of each peak at each excitation
energy is the simple linear combination of other peaks
whose small intensity may not allow one to discern them
as distinct features. In fact, Figure 3 shows that a small
shoulder appears to the higher energy side of ν7 at 98
K. However, when we consider all of the experimental
evidence in the context of our technical capabilities, this
possibility does not appear as a likely explanation of our
experimental results for two reasons.

First, while Figure 3 shows a shoulder near 740 cm−1

at 98 K for 1.58 eV excitation, no such shoulder exists in
the case of 2.33 eV excitation. In fact, the fits of the 78
K and 98 K spectra of the ν7 mode upon 2.33 eV exci-
tation shown in Figure 2 to Eq. (2) find that their line
shapes are almost perfect Lorentzians, even when con-
sidering the region significantly higher in frequency than
740 cm−1. Second, we point out once more that Figure
3 shows spectra on a linear-log10 scale since the intensity
of the light scattering excited at this energy changes so
dramatically as the quinhydrone crystal cools. Therefore,
the shoulder seen at 98 K is more than an order of mag-
nitude lower than the peak of ν7. Also, we have reason
to believe that the presence of this shoulder in the spec-
trum excited at 1.58 eV is largely technical. The com-
mercial Raman spectrometer used in our measurements
is designed for full polarization control of the incident
and scattered light through computer-controlled optics
inaccessible to the user in any other manner. Therefore,
the user is limited by software in adjusting the exact ro-
tation of wave plates and polarizers used to control the
polarization of each light field.

While our control measurements have shown that this
does not affect the results for 2.33 eV excitation, we find
that measurements conducted at 1.58 eV deviate signifi-
cantly from established polarization ratios for isotropic
samples. Specifically, we tested the ability of the in-
strument to reproduce the reported depolarization ratio
(ρ = I‖⊥/I‖‖) of the 992 cm−1 totally symmetric ring
stretching vibration of benzene liquid, which Skinner and
Nilsen found to be 0.0253. While the experiments at 2.33
eV can achieve this previous result within 30%, those
carried out at 1.58 eV produce a depolarization ratio al-
most a factor of 2 larger than 0.02. In addition, DFT
calculations find a Bg vibration near the frequency of
715 cm−1 whose intensity is predicted to be significantly
larger for the z(xy)z̄ polarization configuration than the
z(xx)z̄ configuration. Therefore, a small change in the
polarization fidelity of the incident electromagnetic field



12

could explain the presence of a shoulder on the order
of a few percent the height of the main peak of inter-
est. In addition, since all of our measurements suggest
that each laser excites a separate electronic transition of
quinhydrone, it becomes difficult to compare the behav-
ior of the spectra between the different sources since some
modes may appear for one laser and not the other.
An additional alternative explanation is the Fermi res-

onance mechanism thoroughly explained previously and
examined in several other materials6,7,10. However, when
we consider the frequencies of the ν6 and ν7 modes, this
mechanism also seems an unlikely explanation of our re-
sults. The ν6 and ν7 modes lie at energies more than
twice as high as the other lattice phonons of quinhydrone
and no other phonons appear in the spectral window of
Figures 2 and 3. Therefore, in order to obey the energy
conservation necessary for a Fermi resonance, overtones
higher than second order would be required. However,
there is no evidence for even the first overtone of any
of the lattice phonons of monoclinic quinhydrone in our
Raman spectra, making the possible excitation of higher
order overtones very unlikely.
In addition to considering alternative explanations for

the line shape of each peak in Figures 2 and 3, the model
proposed in Section II.C. must account for the tempera-
ture dependence of three attributes of the experimental
spectra highlighted above: the peak position of the ν6
mode, the frequency difference between the two modes
as a function of excitation laser energy, and relative in-
tensity of each peak . As shown in Figure 5 of Section
II.A., the peak position of the ν6 mode shifts nonlin-
early with temperature for both excitation lasers. This
similarity in the temperature dependence of the mode
position seems to imply that this behavior is associated
with the valence band of quinhydrone. While one would
anticipate a linear dependence of this peak, the treat-
ment of electron-phonon coupling in Section II.C. shows
that there is a mechanism for the deviation from this
expectation: nonlinear electron-phonon coupling. In de-
termining the perturbation to |ΨA〉, we found a term that
uses the nonlinear e-ph coupling interaction Hamiltonian
of Eq. (7) to mix |ΨA〉 with |ΨB〉 while creating no net
excitations of lattice. Eq. (A1b) shows that the spon-
taneous transfer of an electron from donor to acceptor
could cause the excitation of one lattice mode to transfer
to another phonon of the lattice with a strength G

(3)
jl .

In this way, one could equate this term with an anhar-
monic coupling between the jth and lth modes driven by
electron transfer. Additionally, since this occurs for ν6 in

our data and would necessitate G
(3)
jl theoretically, we can

tentatively assign ν6 as the lth mode in our treatment of
Section II.C. Given that this mode appears theoretically
because of its coupling to the Raman-active jth mode,
it seems likely that ν6 corresponds to the IR-active Au

mode found from DFT calculations.
Despite this tentative assignment, proving that nonlin-

ear e-ph coupling leads to the exact temperature depen-
dence of Figure 5 is significantly more complicated. In

order to quantitatively determine the temperature depen-
dence of frequency and line width of a particular vibra-
tion one would anticipate from a two-mode anharmonic-
ity driven by electron-phonon interactions, one would
have calculate the effect of this anharmonic coupling on
the phonon self-energy in a similar manner to the treat-
ment of Crowley and others6,7,10. While DFT calcula-
tions might allow us to grossly estimate the derivatives
of the electronic Hamiltonian leading to e-ph coupling if
we had access to the source code of the software used
in this study, we simply do not have the other types of
data on quinhydrone that would allow us to undertake
any kind of meaningful numerical calculation to compare
to our data. These data would include the tempera-
ture dependent lattice parameters of the crystal as well
as the Grüneisen parameter for this material. Nonethe-
less, nonlinear e-ph coupling at least provides a plausible
mechanism by which two-mode anharmonicity can affect
the temperature dependent real part of the phonon self-
energy and cause a nonlinear temperature dependence of
the peak position.

While the effect of e-ph coupling on the valence band of
quinhydrone likely explains the temperature dependence
of the ν6, it is the effect of this coupling on the excited
bands of quinhydrone that leads to difference in the fre-
quency separation of the two modes of interest as a func-
tion of the laser excitation energy. The bottom panel of
Figure 5 shows that difference in frequency between the
ν6 and ν7 modes increases by almost 10 cm−1 for certain
temperatures when we change the excitation laser from
1.58 eV to 2.33 eV. This change can be explained by the
difference in the linear e-ph coupling constant, gl, in the
different states excited at each laser energy. Since the
frequency of a given vibration depends explicitly on the
electronic configuration, the frequency of a given vibra-
tion should depend on whether electron transfer becomes
optically induced in the fully charge separated state ver-
sus a bound state like that of an exciton. Since most of
the deviation in the difference between the two modes
derives from the position of ν6, it seems that the cou-
pling of this mode to electron transfer most sensitively
determines its frequency in each of the respective excited
bands probed in our measurements. Thus, the difference
in the frequency of the ν6 as a function of laser energy
could serve as a probe of e-ph coupling in different elec-
tronic bands once definite assignment of these bands is
established.

With tentative assignment of the ν6 mode of quinhy-
drone as the lth mode of our analytic model, we can be-
gin to assess the strength of the electron-phonon coupling
constants through the relative intensity of each peak in
the measured spectra using the development of the cal-
culated Raman spectra found from time-dependent per-
turbation theory. Eq. (B4) shows that the relative peak
amplitude of the contribution of the jth to that of the lth
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FIG. 9. (color online) Comparison of the experimental deter-
mined ratio of the peak intensity of the ν7 mode to that of
the ν6 excited at 2.33 eV for temperatures between 78 K and
273 K.

mode is

RA =
Aj (ω13 − ωL + iΓl)

Al (ω14 − ωL + iΓj)
, (10)

where Aj and Al have been defined in Eq. (B3) and are
proportional to the linear and nonlinear electron-phonon
coupling constants, g and G, respectively. The square of
Eq. (10) should be roughly proportional to the relative
intensity of each peak in our spectra. When we compare
Eq. (10) to the experimentally determined ratio of the ν7
peak intensity to that of the ν6 peak for each tempera-
ture for 2.33 eV excitation, an interesting trend appears.
This ratio of the peak intensities is shown in Figure 9.
In Figure 9, we see that while the peak intensity of the
ν6 mode is larger than that of ν7 for temperatures above
173 K, the opposite holds for temperatures below 150 K.
In fact, at 78 K, the intensity of ν7 is almost a factor of
2 larger than ν6. This increase is even more significant
when we consider the fact that Γl in the numerator of
Eq. (10) corresponds to the line width of ν6, which de-
creases by an order of magnitude when the quinhydrone
crystals cools from 273 K to 78 K. Since we pointed out
above that there is no experimental evidence to support
a change in the energy of the transition excited at 2.33
eV based on the integrated intensity of the other phonon
peaks of quinhydrone, this temperature trend in Figure
9 must be driven changes in the model parameters ex-
pressed in Eqs. (B3a) and (B3b): g∗j , gl, Gjj , Gll and
Gjl. Broadly, the temperature trend in Figure 9 seems
to indicate that the matrix elements in the basis of |ΨA〉
and |ΨB〉 of g∗j , Gjj and/or Gll either grow in strength as
the crystal is cooled or those matrix elements of gl and
Gjl reduce in magnitude. In the context of the fits of
the experimental spectra to Eq. (2) which show that the

|1/q| for the ν7 mode decreases in a manner similar to the
increase in the relative intensity of Figure 9, it is likely
that the trend in Figure 9 shows the decrease in Gjl as
the sample cools. If this term represents the transfer of
excitations of the ν6 mode to ν7, then as it reduces we
would expect to see an overall increase in the scattering
intensity from the ν7, as shown in Figure 9. Thus, the
temperature dependence of the relative intensities of the
two peaks from our experimental data provides further
evidence that the nonlinear electron-phonon interaction
between two phonon modes drives the phenomena ob-
served in this study.
As a final point of discussion, Figure 4 shows the

change we observe upon the isotopic substitution of 5
of the hydrogens of HQ with deuterium. As pointed out
in Section II.A., the ν7 mode splits and becomes two
modes of similar intensity, while the ν6 mode remains
relatively unchanged. The change in the appearance of
the ν7 mode seems to highlight a significantly larger con-
tribution from hydroxyl hydrogen motion to this mode
than to ν6 and would be much more sensitive to hydrogen
bonding in quinhydrone. This behavior of the ν7 mode
upon isotopic substitution further motivates our assign-
ment of ν6 as the non-Raman-active lth mode of model
since one would expect modes more localized on HQ to
more sensitively change in response to the chemical sub-
stitution made in our measurements. However, the DFT
calculations of Section II.B. show that this mode should
be Raman-active. Therefore, ν6 must be the IR-active
mode, which corresponds to l in our model above.
The physical reason for the splitting is likely a sym-

metry breaking in the vibrational eigenstate due to the
difference in the mass of hydrogen and deuterium. How-
ever, the fact that a Raman-active mode that carries such
a substantial character of the hydrogen bonds of quinhy-
drone can couple to an IR-active vibration of the lattice
due to electron transfer raises additional questions re-
lated to the coupled dynamics of electrons and protons in
the materials like quinhydrone. These questions will ne-
cessitate further experimentation and theorizing, which
is beyond the scope of the present study. Nonetheless
these results highlight the complex and rich physics of
HBCT materials.

IV. CONCLUSIONS

We have presented experimental, computational and
analytical theoretical evidence of a resonant phonon-
phonon interaction in the HBCT material quinhydrone
similar to the configuration interaction first explained by
Fano. However, unlike Fano’s treatment we have shown
such an interaction between discrete states in the ab-
sence of a continuum. DFT calculations of the electronic
structure of quinhydrone find two degenerate vibrations
delocalized on both the donor and acceptor molecules
of this material whose frequency qualitatively match our
measurements. Based on the nonlinear Peierls-Hubbard
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Hamiltonian, we believe the mechanism leading to this
phonon-phonon interaction is the first and second order
corrections to the adiabatic wave functions of quinhy-
drone due to electron-phonon coupling. This behavior
of quinhydrone shows that spontaneous fluctuations in
the localization of electron density on different molecular
sites can lead to a complex interaction between discrete
vibrational eigenstates of its crystalline lattice, which
to our knowledge has yet to be observed in any other
material. First principles modeling of the Raman scat-
tering process using time-dependent perturbation theory
finds that this mechanism can provide excellent quali-
tative agreement with our measurements excited in the
visible region. This modeling shows that the deviation
of the harmonic frequency of each vibration stems from
interference between the quantum mechanical pathways
taking part in the inelastic light scattering process, as
one would expect from a Fano-like resonant interaction.
Interference between discrete resonances has been

observed previously in nano-structures54, plasmonic
structures55 as well as metamaterials composed of plas-
monic unit cells56. However, to our knowledge the coher-
ent coupling of discrete phonons forming a Fano-like res-

onant interaction has thus far been unobserved in a bulk
material, either organic or inorganic, driven by any kind
of mechanism. In addition, based on isotopic substitution
these results may be driven by electron-proton interac-
tions native to hydrogen-bonded charge-transfer mate-
rials. These results may shed light on the discrepancy
between recent theoretical assessments of the ability of
organic HBCT materials to attain room temperature fer-
roelectric phases, expand the physical mechanisms that
produce phonon-phonon interactions and demonstrate
the rich physical phenomena present in hydrogen-bonded
materials that may lead to their further application in
electronics and photonics.

Appendix A: Nonlinear Electron Transfer Polaron

Wavefunctions

Following the line of reasoning detailed in Section II.C.
and standard time-independent perturbation theory, the
unnormalized electron transfer polaron wave functions
pertinent to 2.33 eV excitation in the presence of both
linear and nonlinear electron-phonon coupling become,

|Ψ1〉 = |ΨA〉|0〉j |0〉l + |ΨB〉
{

2a1a2
√
2

[ 〈ΨB|gj |ΨA〉
EA,00 − EB,10

|1〉j |0〉l +
〈ΨB|gl|ΨA〉
EA,00 − EB,01

|0〉j |1〉l
]

(A1a)

+8|a1a2|2
[(

|〈ΨB|G(1)
jj |ΨA〉|2 + |〈ΨB|G(1)

ll |ΨA〉|2
EA,00 − EB,00

)

|0〉j |0〉l +
|〈ΨB|G(1)

jl |ΨA〉|2
EA,00 − EB,11

|1〉j|1〉l
]}

,

|Ψ2〉 = |ΨA〉|1〉j |0〉l + |ΨB〉
{

2a1a2
√
2

[ 〈ΨB|gj |ΨA〉
EA,10 − EB,20

|2〉j |0〉l +
〈ΨB|gl|ΨA〉
EA,10 − EB,01

|1〉j |1〉l (A1b)

+
〈ΨB|g∗j |ΨA〉
EA,10 − EB,00

|0〉j|0〉l
]

+ 8|a1a2|2
[

|〈ΨB|G(2)
jl |ΨA〉|2

EA,10 − EB,21
|2〉j |1〉l +

|〈ΨB|G(3)
jl |ΨA〉|2

EA,00 − EB,01
|0〉j|1〉l

]}

,

|Ψ3〉 = |ΨB〉|0〉j |0〉l − |ΨA〉
{

2a1a2
√
2

[ 〈ΨA|gj |ΨB〉
EB,00 − EA,10

|1〉j |0〉l +
〈ΨA|gl|ΨB〉
EB,00 − EA,01

|0〉j |1〉l
]

(A1c)

−8|a1a2|2
[(

|〈ΨA|G(1)
jj |ΨB〉|2 + |〈ΨA|G(1)

ll |ΨB〉|2
EA,00 − EB,00

)

|0〉j |0〉l +
|〈ΨA|G(1)

jl |ΨB〉|2
EB,00 − EA,11

|1〉j|1〉l
]}

,

|Ψ4〉 = |ΨB〉|1〉j |0〉l − |ΨA〉
{

2a1a2
√
2

[ 〈ΨA|gj |ΨB〉
EB,10 − EA,20

|2〉j |0〉l +
〈ΨA|gl|ΨB〉
EB,10 − EA,01

|1〉j |1〉l (A1d)

+
〈ΨA|g∗j |ΨB〉
EB,10 − EA,00

|0〉j|0〉l
]

− 8|a1a2|2
[

|〈ΨA|G(2)
jl |ΨB〉|2

EB,10 − EA,21
|2〉j |1〉l +

|〈ΨA|G(3)
jl |ΨB〉|2

EB,00 − EA,01
|0〉j|1〉l

]}

.

for the jth phonon mode.

Appendix B: Calculations of Raman Scattering

Cross-Section in the Presence of Nonlinear

Electron-Phonon Coupling

The wave functions of Eq. (A1) define the single elec-
tron polaron states of quinhydrone due to linear and non-

linear e-ph coupling for the case of 2.33 eV excitation.
To calculate Raman spectra, we also introduce quantized
electromagnetic fields at the laser and Stokes scattered
frequencies, ωL and ωS , respectively. For the time per-
turbative theoretical treatment of resonant spontaneous
light scattering, as is the case in our experiments excited
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at both 1.58 eV and 2.33 eV, we only take matrix ele-
ments of the form 〈Ψi|Ā · p̄|Ψn〉〈Ψn|Ā · p̄|Ψf〉 to account
for the perturbation to the momentum of the material’s
electrons, p̄, in the presence of a quantized electromag-
netic vector potential Ā57,58. Considering the correct
creation and annihilation of photons, Eq. (A1) shows

that the states of the scattering process correspond to

|Ψi〉 = |Ψ1〉|0〉S |N〉L, (B1a)

|Ψ(1)
n 〉 = |Ψ3〉|0〉S |N − 1〉L, (B1b)

|Ψ(2)
n 〉 = |Ψ4〉|0〉S |N − 1〉L, (B1c)

|Ψf〉 = |Ψ2〉|1〉S |N − 1〉L. (B1d)

where one must sum over the intermediate states |Ψ(1)
n 〉

and |Ψ(2)
n 〉 to correctly calculate the spectra. Inspecting

the explicit form of the polaron wave functions, we see
that in order to excite fundamentals of either the jth or
lth mode, only two sets of matrix elements significantly
contribute to the scattering process. Explicitly, these
matrix elements of interest become,

〈Ψi|Ā · p̄|Ψn〉〈Ψn|Ā · p̄|Ψf〉 = (B2)

S〈0|L〈N |〈ΨA|ĀL · p̄|ΨB〉|N − 1〉L|0〉SS〈0|L〈N − 1|〈ΨB|ĀS · p̄|ΨA〉|N − 1〉L|1〉S
x
[

Aj |〈0|0〉l|2〈0|0〉j〈1|1〉j +Al|〈0|0〉j |2〈0|0〉l〈1|1〉l
]

,

where,

Aj = −16|a1a2|2a1a2
√
2

N1N2N 2
4

〈ΨA|g∗j |ΨB〉
EB,10 − EA,00

(

|〈ΨB |G(1)
jj |ΨA〉|2 + |〈ΨB|G(1)

ll |ΨA〉|2
EA,00 − EB,00

)

, (B3a)

Al = −16|a1a2|2a1a2
√
2

N1N2N 2
3

〈ΨA|gl|ΨB〉
EB,00 − EA,01

|〈ΨB|G(3)
jl |ΨA〉|2

EA,00 − EB,01
, (B3b)

and the factor Ni corresponds to the normalization constant for the ith polaron state of Eq. (A1). All other terms
that lead to fundamental excitations of either the jth or jth mode possess at least two more factors of the perturbative
coupling constants, making their contribution to the overall scattering process significantly smaller than the terms
shown in Eq. (12). Thus, from standard time-dependent perturbation theory the second order correction that leads
to scattering transitions in the presence of the linear and nonlinear electron-phonon interactions becomes proportional
to

c(2)(t) ∝
∣

∣µAB

∣

∣

2

h̄

[

Aj

ω14 − ωL + iΓj

∫ t

0

exp(−h̄Γjt
′)exp(ih̄{ωS + ωj − ωL}t′)dt′ (B4)

+
Al

ω13 − ωL + iΓl

∫ t

0

exp(−h̄Γlt
′)exp(ih̄{ωS + ωl − ωL}t′)dt′

]

,

where ωj and ωl are the angular frequencies and Γj and Γl are the phenomenological dephasing rates of the jth and
lth modes, respectively, while h̄ω13 = E1 − E3 and h̄ω14 = E1 − E4. For Eq. (B4), we have also used the relation
|〈0|0〉l|2〈0|0〉j〈1|1〉j = |〈0|0〉j |2〈0|0〉l〈1|1〉l = 1, as would be expected of harmonic oscillator eigenstates and have
accounted for the appropriate creation and annihilation of excitations of the fields at the laser and Stokes frequencies
as dictated by Eq. (B2). µAB = 〈B|µ|A〉 is the electronic transition dipole moment found by applying the uncertainty
principle between the position and momentum of the electronic state coupled to the incident and scattered fields. The
scattering transition rate is proportional to |c(2)(t)|2, which, as t→ ∞, becomes,

∣

∣

∣
c(2)(t)

∣

∣

∣

2

= c(2)(t)c∗(2)(t) ∝
∣

∣µAB

∣

∣

4

h̄2

[

|Ajj |2
{ωj − ω}2 + Γ2

j

+
|All|2

{ωl − ω}2 + Γ2
l

(B5)

+
AjjA

∗
ll

{ωj − ω}{ωl − ω}+ ΓjΓl

+
A∗

jjAll

{ωj − ω}{ωl − ω}+ ΓjΓl

]

,
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where Ajj = Aj/ω14−ωL+ iΓj, All = Al/ω13−ωL+ iΓl

and ω = ωL − ωS allows one to calculate a spectrum as
a function of frequency.
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