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Abstract

We study negative thermal expansion (NTE) in model lattices with multiple atoms per cell

and first- and second-nearest neighbor interactions using the (anharmonic) Morse potential. By

exploring the phase space of neighbor distances and thermal expansion rates of the bonds, we

determine the conditions under which NTE emerges. By permitting all bond lengths to expand

at different rates, we find that NTE is possible without appealing to fully rigid units. Nearly

constant, large-amplitude, isotropic NTE is observed up to the melting temperature in a classical

molecular dynamics model of a ReO3-like structure when the rigidity of octahedral units is almost

completely eliminated. Only weak NTE, changing over to positive expansion is observed when

the corner-linked octahedra are rigid, with flexible second-neighbor bonds between neighboring

octahedra permitting easy rotation. We observe similar changes to thermal expansion behavior

for the diamond lattice: NTE when second-neighbor interactions are weak to positive thermal

expansion when second-neighbor interactions are strong. From these observations, we suggest that

the only essential local conditions for NTE are atoms with low coordination numbers along with

very low energies for changing bond angles relative to bond-stretching energies.

PACS numbers: 65.40.-b,65.40.De
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I. INTRODUCTION

Negative thermal expansion (NTE) is of great technological interest because of the po-

tential to control or eliminate thermal stresses in real objects and devices. The material

ZrW2O8 has been at the focus of intensive study because it exhibits substantial isotropic

NTE over a wide temperature range.1–4 While there is an expanding literature on the micro-

scopic causes of NTE in this material, no model has proven completely adequate in making

this connection.3,5–16

The picture at the heart of the discussion in ZrW2O8 is that the essential ionic motions

leading to thermal changes in the lattice dimensions can be described by collective rotations

of groups of atoms, the foundation of the “rigid unit model” (RUM),13 the rigid units being

composed of WO4 tetrahedra and ZrO6 octahedra. Citing the exceptional rigidity of the Zr-

O-W lines in the lattice seen in x-ray absorption fine-structure experiments, yet indicating

distortion of the polyhedra, Cao and coauthors created a variation of the RUM labeled the

“tent model,” in which lattice contraction is a result of coherent motion of larger groups of

atoms in the lattice.10,11 This disagreement in interpretation motivated a molecular dynamics

study,16 employing empirical potentials from previous work,5 leading to the conclusion that

the only essentially rigid units in the lattice are individual W-O and Zr-O bonds, questioning

the validity of both the RUM and tent models.16

NTE has been observed via x-ray powder diffraction17 and coherent neutron powder

diffraction experiments in Li2B4O7.
18,19 The expansion in this material is anisotropic, with

the contraction of one lattice parameter dominating the low-temperature volume depen-

dence. The Li ions show strong T dependence of their mean-squared displacements around

100 K, temperature at which NTE vanishes in the material. In the NTE regime, it is

observed that the angle formed by Li-Li-Li chains correlates with the contracting lattice

parameter,17,18 indicating the contribution of bond-bending to NTE.

Materials with simpler structure also exhibit NTE. For example, ranges of NTE are

experimentally observed in diamond/zincblende structured materials Si, Ge, GaAs, GaSb,

InAs, and InSb.20 In a comparative numerical study of models for NTE in CuO2, classical

potentials were used to build three vibrational models based on rigid polyhedra, or rigid

two- or three-atom rods.21 The resulting phonon dispersion curves were compared to the ab

initio curves, with results suggesting that the low-energy modes correspond to rigid Cu-O
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rods.21 In a density functional theoretical study of NTE in Ag2O, Cu2O, and Au2O, the

variation in NTE across these compounds is observed to correlate with the degree to which

charge density is spherically distributed around the atoms, again supporting the importance

of bond bending as a contributing factor in NTE.

ReO3 consists of a cubic lattice of octahedral units centered on Re ions. NTE is observed

in the material over two temperature ranges, from 2 K to 220 K and from 600 K to 680 K,

in an experiment that includes temperatures up to about 800 K.22 Experimental evidence

supports ReO3 maintaining its cubic phase (Pm3̄m) down to lowest temperatures23 and up

to 800 K temperature.22 It has been suggested that NTE in ReO3 is readily explained within

the RUM.22 These neutron studies indicate that O-atom motion transverse to Re-O bonds

is significant and increases with temperature while longitudinal motion of the O atoms is

minimal and independent of temperature, as evidenced by analysis of the mean-squared

displacements of the ions.22 While this evidence supports treating ReO3 octahedral units

as rigid, attributing the contraction of the lattice to coherent rotations of the octahedra, it

does not eliminate the possibility of octahedral distortions that preserve the Re-O distances.

Lending support to this view are the results of experimental and theoretical work reported

on isostructural ScF3, in which the strong NTE observed is explained partly in terms of

the distortions of the ScF6 octahedra.24 Additionally, the expansion of the Sc-F bonds with

temperature is demonstrated in a recent density-functional molecular dynamics study that

produces thermal expansion of ScF3, comparing well with experimental results.25

All vibration in materials is based on the fact that atoms sit in potential wells determined

by their interactions with their neighbors, i.e. through the intervening chemical bonds. As

the temperature is increased, the nuclei vibrate with greater amplitude. Because of the

strong repulsion between atoms at close range, the potential between atoms is anharmonic.

Thermal vibrations of atoms interacting through such an anharmonic potential generally

drive neighboring atoms farther apart as temperature increases. In solids, the expansion of

bonds is evident as thermal expansion. So how can contraction arise?

Especially as noted above in the discussion of modeling NTE in ZrW2O8, no simple model

proves to be universally capable of explaining all NTE behavior, leading us to consider that

by resolving a material into these units, some essential physics may have been neglected.

Perhaps another approach may shed light on the situation. One aspect common to any

rigid unit related model is the assumption that expansion of some bonds can be neglected,
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while molecular dynamics calculations indicate that more flexibility is necessary.16 A model

without the rigidity requirement may help connect the influence of all-bond expansion to

NTE.

Theoretical investigations of the general features of NTE include an analytical calcula-

tion of rigid corner linked squares26 and of rigid squares and octahedra joined together with

flexible links,27 demonstrating that such models can exhibit NTE as well as elastic con-

stants that decrease with temperature and pressure. In an alternative model, Rechtsman

et al. devise an isotropic interaction potential that leads to NTE at low temperatures in

close-packed structures of single-component many-particle systems, an effect demonstrated

through constant-pressure Monte Carlo simulations.28 Their designed potential rises rapidly

as the components (or atoms) move farther apart and less rapidly as they move closer to-

gether, in contrast to the commonly-accepted negative anharmonicity.

In this paper we present an investigation of model materials consisting of atoms all

linked by bonds of variable flexibility. The flexibility is implemented through the Morse

potential,29 providing known thermal expansion between atoms. (We note that NTE has

been documented in an early lattice dynamics study employing several pair potentials, in-

cluding the Morse potential.30) We show how the ratios of interatomic equilibrium lengths

and their temperature dependences control the presence and extent of NTE. We examine

three-dimensional models that are designed to illuminate the physics; we explore the rela-

tionships to existing simpler analytic models, the effect of enhanced flexibility of all bonds,

and relationships to real NTE materials.

II. MODELS

We employ a three-dimensional model (Fig. 1) that bears some resemblance to previous

two- and three-dimensional work,11,26,27 however we replace fully rigid units with seven-

atom octahedra. The octahedra form a cubic lattice, with interactions (bonds) between

pairs of atoms represented by Morse potentials,29 which exhibit thermal expansion. Each

now-flexible octahedron possesses interactions between the central atom (A) and each of the

six vertex atoms (X). The rigidity of the octahedra is controlled by interactions between

each X atom and the four nearest X atom vertices on the same octahedron. Second-

neighbor interactions betweenX atoms of different octahedra provide bond-bending stiffness,
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FIG. 1. (Color online) One unit cell of the three-dimensional model structure contains eight

octahedra, connected by adjustable r2 links, and pairs of second-neighbor links to provide the means

to rotate the octahedra. A staggered arrangement of the second-neighbor links enables rotation of

the rigid octahedra. The lengths of bonds between the center and vertex of an octahedron is r1, r2

is the distance of the link between octahedra, and r3 is the distance between the pairs of parallel

links being pushed apart by the second-neighbor interactions indicated with dashed lines. Only

two pairs of second-neighbor links are shown in order to enhance clarity.

stabilizing the lattice. The center-to-vertex distance of an octahedron is denoted r1. The

distances between the vertices of nearest-neighbor octahedra are denoted as r2, and the

second- neighbor bonds as dashed lines. We specify the second-neighbor distance in terms

of its projection r3 onto the nearest Cartesian axis. When we perform calculations for

corner-connected octahedra, r2 = 0, the projection r3 coincides with the second-neighbor

interactions, and atoms are removed from the calculation to avoid doubled atoms at the

vertices.

A. Rigid mechanical model

We analytically examine the effects of permitting expansion of the second-neighbor bonds

only, treating them as expanding rods that rotate rigidly-linked and rigid octahedra. Rota-

tion would not be permitted with these rigid rods if they coincide with the bonds defined

above because the symmetrically arranged second-neighbor links between octahedra would

compete with each other. To permit coherent rotation of the octahedra, we temporarily

eliminate all but selected second-neighbor interactions. One set of these second-neighbor
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interactions lies in the xz-plane, with the long direction along the z-axis (see Fig. 1). Two

additional similar sets of second-neighbor interactions lie in the yz-plane with a long z-axis

and in the xy-plane with a long x-axis. Because of the asymmetry of this arrangement, the

rotation pattern represents a tetragonal distortion of the unit cell (space group I4/mmm).

The contraction of the lattice parameters are functions of the angle θ describing the coher-

ent rotations of octahedra about axes along alternating 〈110〉 directions. To simplify the

expressions below, we define reduced parameters r̃2 = r2/r1 and r̃3 = r3/r1. The relation

between θ and bond lengths, normalized to r1, is

r̃3 = r̃2 +
√
6 cos(θ − θmax) , (1)

where θmax = tan−1(
√
2/2) ≈ 35.26◦ is the angle for which r2 bonds lie in planes formed by

parallel second-neighbor bonds. In this configuration, there will be no torque produced by

further expansion of second-neighbor bonds. If the second-neighbor bonds are to continue

expanding, the octahedra and/or r2 bonds would be required to distort or expand. (The

limits on r̃3 are 2 + r̃2 ≤ r̃3 ≤
√
6 + r̃2. Reducing r̃3 to less than 2 + r̃2 simply reverses the

sense of rotation of the octahedra, also yielding a contraction of the lattice.) The unit cell

parameters in terms of the rotation, also normalized to r1, are

ã = b̃ = 2 (cos θ + r̃2 + 1) (2)

and

c̃ = 2 (2 cos θ + r̃2) . (3)

The dimensionless volume of the unit cell within the physically allowed limits is

Ṽ = 8(cos θ + r̃2 + 1)2(2 cos θ + r̃2) . (4)

In Fig. 2 we plot Ṽ /Ṽ0 as a function the rotation θ for several values of r̃2. Because the

octahedra are rotating into the available open space of the lattice, the greatest possible

fractional contraction corresponds to the condition of corner-sharing octahedra, r̃2 = 0.

However, even if r̃2 ≈ 1, substantial contraction is accessible. Because the slopes of the

curves in Fig. 2 are vanishingly small for small octahedral rotations, lattice contraction is

only possible if the rotations are sufficiently large enough to compensate for any expansion

of the octahedra.
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/Ṽ

0

r̃2 = 0.0

r̃2 = 0.5

r̃2 = 1.0

r̃2 = 1.5

0 20 40

θ (degrees)

3.2

3.6

4.0
Latt. const. (r̃2 = 0)
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FIG. 2. (Color online) The relative volume of the three-dimensional model with tetragonal distor-

tions due to octahedral rotations. The maximum rotation angle (≈ 35.3◦) corresponds to alignment

of parallel r̃2 and r̃3 links, rendering further octahedral rotation impossible. The magnitude of vol-

ume contraction is maximal when the octahedra are corner-connected. The contraction for small

angle rotation is vanishingly small. See Fig. 1 for a depiction of the angle. Inset: Normalized

lattice constants of the corner-connected-eight-octahedra unit cell showing its tetragonal distortion

for non-zero octahedral rotations are visible.

The present model in the limit of corner-shared octahedra (r̃2 = 0) is identical to the

structure of ReO3. The discussion above suggests that the RUM model for NTE in ReO3

requires the rotations of the octahedra to be large enough to compensate for any expansion

of the octahedral length. (Although in the present simple rigid mechanical model cubic

symmetry is broken, it must be true that any rigid unit rotation causes volume contraction

proportional to the cosine of some angle of rotation, which will have a similar vanishingly

small effect for small rotations.) The changeover to positive thermal expansion (PTE)

is understandable as being a result of octahedral expansion overwhelming the contracting

effect of rotations. If octahedral expansions have begun to overwhelm the effect of rotations

at 220 K, then what might cause the observed return to NTE in the 600 K to 680 K

range? More generally, we ask if there are microscopic material properties that might be

manipulated to control the magnitude and temperature range of NTE? While the rigid

mechanical model presented thus far has provided some insight, the dynamics of these simple

systems is necessary to gain a more complete understanding.
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B. Classical molecular dynamics

Even though octahedra are relatively stiff, they still expand and/or distort as a result

of thermal motions. In order to assess the effects of these distortions on the volume of the

crystal, we implemented molecular dynamics simulations for the present three-dimensional

model using lammps.31 Interactions between atoms were modeled with Morse potentials,

with energy given by

EMorse(r) = D
[
e−2α(r−r0) − 2e−α(r−r0)

]
, (5)

where D is the dissociation energy, α controls the width of the well, and r0 is the zero

temperature equilibrium distance. The parameters used in this work are displayed in Table I.

We employ strong Morse bonds between the central A atom of the octahedra and the X

atoms forming the octahedral vertices. To provide controllable rigidity of the octahedra, we

also include Morse interactions between each X atom and its four nearest-neighbor X atoms

on the same octahedron. We performed two separate sets of calculations with different

arrangements of second-neighbor interactions. In the first case, we include only second-

neighbor interactions between specific pairs of second-neighbor X atoms corresponding to

the mechanical links that we described in Section IIA. In the second case, we include

interactions between each X atom and all six of its second nearest-neighbor X atoms in a

lattice of corner-connected octahedra.

Simulations, at fixed number, temperature, and pressure, were run for 13 ns (6.5 million

steps) in supercells consisting of 19, 208 atoms and 65, 856 bonds. In all cases, the starting

configuration was at the the global minimum of the potential energy, corresponding to the

maximum volume arrangement, with octahedral vertices aligned with the cubic supercell

lattice directions. Average values of the lattice parameters were computed by sampling

every 10, 000 steps after the first two million steps.

1. Tetragonal second-neighbor bond arrangement

Simulations for octahedra without shared corners readily exhibited NTE. (See the ex-

amples in Figs. 3 and 4.) The volume change with T is found to be proportional to
√
T .

We studied arrangements of the second-neighbor interactions in our models. In one ar-

rangement, there remained a near-zero-energy pathway for the octahedra to rotate, which
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TABLE I. Morse potential parameters used in molecular dynamics simulations presented in this

work.

Bond D (eV) α (Å−1) r0 (Å)

Non-corner-connected rigid octahedra

A-X 5.00 5.53 2.00

X-X (1st neighbor-onsitea) 5.00 5.53 2.83

X-X (1st neighbor-offsiteb) 5.00 5.53 1.50

X-X (2nd neighbor) 5.00 5.00 5.70

Corner-connected rigid octahedra

A-X 5.00 5.53 2.00

X-X (1st neighbor) 5.00 5.53 2.83

X-X (2nd neighbor) 5.00 0.50 4.00

Corner-connected flexible octahedra

A-X 5.00 5.53 2.00

X-X (1st neighbor) 0.30 0.50 2.83

X-X (2nd neighbor) 0.30 0.50 4.00

aX atoms on the same octahedron. bX atoms on different octahedra.
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FIG. 3. The volume decreases from the reference volume as the square root of the temperature T .

The dashed line represents the fit of the data to the square root of the temperature. Above the

temperature displayed, thermal motions drive the system into a much lower volume as a result of

an unstable arrangement of the pattern of second-neighbor bonds. We note that zero-point motion

would be important in an accurate treatment at these temperatures.
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FIG. 4. Second-neighbor bond arrangement was updated to ensure lattice stability. Again, the

volume decreases from the reference volume as the square root of the temperature T , however the

magnitude of expansion is somewhat less than that displayed in Fig. 3. The dashed line is a fit of

the data to the square root of the temperature. We note that the magnitude of NTE is nearly 3.3

times smaller than it is for the unstable lattice (see Fig. 3).

led to a collapse of the lattice to a low volume configuration. At low enough temperatures,

the collapse is avoided and NTE is observed; above the collapse temperature, NTE is still

found. The collapse is a result of vibrationally-induced coherent shifts of layers of octahedra

in an alternating pattern along a 〈100〉 direction in the lattice. Above the collapse, the NTE

coefficient is lower. In the second arrangement of second-neighbor bonds, the instability is

removed and NTE is retained, with the supercell contracting tetragonally, similar to the

rigid mechanical modeling discussed above. However, although the number of bonds and

their parameters are the same for both the unstable and stable lattices, the magnitude of

NTE of the stable lattice is smaller than that of the unstable lattice by a factor of ∼ 3.3.

Evidently, the instability assists NTE.

The positions of the octahedral vertex X-atoms are distributed more broadly perpen-

dicular to the A-X bonds, with transverse mean-squared displacements about five times

larger than the mean-squared displacements along the bond. Furthermore, the transverse

mean-squared displacements also display a temperature dependence proportional to
√
T .

Angular deviations of the bonds grow with temperature, deviating by a mean of about 2◦

and a standard deviation of about 1◦ at the highest temperature shown in Fig. 4, consistent

with larger motions of the vertex ions in the directions transverse to the bonds to central
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FIG. 5. Percentage relative volume change is plotted as a function of temperature T using the Morse

parameters for corner-connected rigid octahedra (see Table I). The lattice of corner-sharing rigid

octahedra results in a thermal expansion curve moving from (weak) NTE to PTE, a distribution

typical of many NTE materials. Further calculations at higher T resulted in strong PTE.

atoms.

A lattice of corner-sharing octahedra was also constructed, corresponding to the struc-

ture of ReO3. Also included were selected second-neighbor interactions imposing tetragonal

symmetry. Simply transferring the Morse potential parameters that produced NTE in the

case of separated octahedra resulted in positive thermal expansion (PTE), with the volume

linearly increasing with temperature; the octahedral expansion clearly had overwhelmed

any contraction due to rotations. We changed the Morse parameters of the second-neighbor

interaction, reducing the restoring force to ≈ 1% of the first-neighbor restoring force. Subse-

quent simulations produced weak NTE that gives way to PTE as the temperature is increased

(Fig. 5). This behavior is strikingly similar to the low-temperature thermal expansion in

many materials that exhibit NTE, especially the case of ReO3.
22

The volume contraction behavior (∝
√
T ) indicates a relationship to the typical speeds

of the particle motions or, equivalently, to the typical mean-squared displacements of the

atoms bound in a Morse potential. We also note the above observation that the velocities of

vertex atoms are biased into directions perpendicular to their bonds with the central atoms

of the octahedra. The bond-expansion inherent in the Morse potential provides the force

that drives atoms farther apart.29 In the present model, the nearest-neighbor coordinations,

combined with weak second-neighbor interactions, guide the vertex atoms into the open
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spaces of the lattice, resulting in the observed NTE. In shared-corner octahedral structures,

the transverse motions become overwhelmed by the expansion of bonds to the central atoms

at sufficiently high temperatures, leading to the eventual change-over to positive thermal

expansion. Adding links that separate the octahedra enables stronger NTE and pushes to

much higher T the eventual changeover to positive thermal expansion.

2. Isotropic second-neighbor interactions

When all interactions between X-atoms and their six second-neighbor vertex X-atoms

for corner-connected octahedra are included, eliminating the artificially imposed tetragonal

symmetry, NTE is still observed. In this arrangement, lattice contraction is only possible

when the strength of theX-X nearest-neighbor interaction is reduced to the same magnitude

as the second-neighbor interactions, producing readily deformable octahedra and compro-

mising the stability of the lattice. The NTE observed is isotropic, has a strong magnitude,

and exists over wide temperature range up to the point where the material begins to melt

(see Fig. 6). We observe that NTE is linear in temperature, contrasting with the behavior

for the results displayed above. The mean-squared displacements of the vertex atoms trans-

verse to their nearest-neighbor bonds expand linearly in temperature, contrasting with the

square-root dependence observed for rigid octahedra. The linearity of NTE in temperature

is a result of the octahedra being much more flexible to angular distortions than in the

examples above. Linearity is also a characteristic of the thermal expansion of a two-atom

system bonded in the Morse potential. Varying the strength of the X-X interactions, by

adjusting the Morse α (see Eq. 5) permits control of thermal expansion in the model from

NTE to PTE (see Fig. 7).

III. DISCUSSION

The common feature across all the materials exhibiting NTE is an open lattice. However,

the fact that different materials with the same lattice possess different thermal expansion

characteristics demonstrates the importance of bond strength ratios to thermal expansion.

Bonding is essential in determining the equilibrium structure of a material. In addition,

when there are competing phases with low enough energy differences, states with higher
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FIG. 6. Percentage relative volume change is plotted as a function of temperature corner-connected

flexible octahedra. All vertex atoms interact with all six second-neighbor vertex atoms. Weak

first- and second-neighbor interactions produce substantial NTE over a wide temperature range.

A straight line is fit to the data.
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FIG. 7. (Color online) Percentage relative volume change is plotted as a function of temperature

for several X-X interaction strengths, as controlled by the Morse α parameter. Thermal expansion

is shown to vary from NTE to PTE as the strength of the X-X interactions increase. In all these

plots, the well depths are held fixed at the values used for corner-connected flexible octahedra.

entropy will be favored as temperature increases. The present model calculations, in which

the structural stability is maintained by second-neighbor interactions, demonstrate that

reducing the strength of second-neighbor interactions leads to NTE, which possibly is due to

increased accessibility to competing phases. Materials with large unit cells, such as ZrW2O8

and Li2B4O7 readily provide support for this picture. ZrW2O8 is known to be metastable32
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and metastability such as this has been cited as a likely underlying reason for NTE.33 It is

furthermore noted that synthesis of good Li2B4O7 samples is hampered by the existence of

a number of (meta-)stable phases under growth conditions.18

In contrast to these complex materials, which have competing metastable states and pro-

vide one view of NTE, we point out that NTE is observed even in the simplest materials,

such as those with diamond or other low-coordination lattices. In early lattice dynamics

modeling with spherically symmetric potentials, the diamond lattice was observed to ex-

hibit NTE.30 We reproduced this observation in our own molecular dynamics calculations.

Furthermore, we found that by increasing the strength of second-neighbor interactions, sta-

bilizing the lattice, we can eliminate NTE in this lattice as we did for corner-connected

octahedral model discussed above. Experimentally, NTE in Ag2O has a greater magnitude

than in Cu2O, while it is nearly nonexistent in Au2O, and this magnitude was observed to

correlate, in DFT calculations, with the degree to which the charge density is spherically

distributed,34 which again supports the view that lower directionality of bonds is important.

In all of these examples as in our model calculation, the open lattice and the weak second-

neighbor bond potentials, implying highly flexible bond angles, are the essential ingredients

that yield NTE. The reasonable success of the RUM in describing NTE is a result of the

fact that there are strong bonds within the polyhedra, minimizing their expansion, coupled

with low resistance to rotations. We observe from the current calculations that reducing the

resistance to changing bond angles within polyhedra yields stronger NTE behavior with a

constant coefficient of expansion, such as that seen in ZrW2O8, lending further support to

previous findings16 that models involving coherent motions of atoms, such as the RUM, are

not consistent with the NTE in this material. Finally, from the observation in the current

model that angular deviations within the octahedra is a key to the emergence of NTE leads

us to suggest that the observed reappearance of NTE in ReO3 at higher temperature could

be a result of temperature-induced reduced rigidity of the octahedra permitting more atomic

motions to expand into remaining lower-density regions of the lattice. However, confirmation

of this is beyond the scope of the present work.
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IV. CONCLUSION

We constructed model systems consisting of point masses joined by anharmonic springs,

analytically showed that the RUM is a decent description of NTE as long as coherent ro-

tations of the rigid units is sufficient to outweigh any uniform expansion of the same rigid

units. We showed that NTE can be strongly enhanced by increasing the flexibility of previ-

ously considered to be rigid units. Finally, we demonstrated that a merely modest reduction

in this flexibility is enough to restore positive expansion.
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