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We derived and thoroughly tested a bond order potential (BOP) for body-centered-cubic (BCC) magnetic 
iron that can be employed in atomistic calculations of a broad variety of crystal defects that control 
structural, mechanical and thermodynamic properties of this technologically most important metal. The 
constructed BOP reflects correctly the mixed nearly-free electron and covalent bonding arising from the 
partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the BCC 
structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the 
tight-binding bond model with the Green’s function of the Schrödinger equation determined using the 
method of continued fractions terminated at a sufficient level of the moments of the density of states. This 
makes the BOP an O(N) method usable for very large numbers of particles. Only dd bonds are included 
explicitly but the effect of s electrons on the covalent energy is included via their screening of the 
corresponding dd bonds. The magnetic part of the cohesive energy is included using the Stoner model of 
itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding 
scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in 
FCC solid argon under very high pressure where the repulsion originates from overlapping s and p closed-
shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core 
under the influence of the large covalent d-bonding. Testing of the transferability of the developed BOP to 
environments significantly different from those of the ideal BCC lattice was carried out by studying crystal 
structures and magnetic states alternative to the ferromagnetic BCC lattice, vacancies, di-vacancies, self-
interstitial atoms (SIAs), paths continuously transforming the BCC structure to different less symmetric 
structures and phonons. The results of these calculations are compared with either experiments or 
calculations based on the density functional theory (DFT) and they all show very good agreement. 
Importantly, the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an 
exception within BCC transition metals, controlled by magnetism. Moreover, the migration energy of 
interstitials is very significantly lower than that of vacancies, which is essential for correct analysis of the 
effects of irradiation. Finally, the core structure and glide of ½<111> screw dislocations that control the 
plastic flow in single crystals of BCC metals was explored. The results fully agree with available DFT 
based studies and with experimental observations of the slip geometry of BCC iron at low temperatures.  
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I. INTRODUCTION 

Computer simulations have become one of the major 
methodologies for studying structural, thermodynamic and 
other properties of crystal defects including their role in 
various physical and mechanical properties of materials. In 
particular, investigations of extended defects, such as 
dislocations, grain and phase boundaries, nanovoids or 
cracks have been very widespread owing to the important 
role these defects play in broad variety of properties of 
crystalline materials. An obvious precursor for such 
calculations is a physically justified description of 
interatomic interactions in the system studied. The present 
state of the art calculations are based on the density 
functional theory (DFT) and if every calculation could be 

carried out in this way there would be no need for further 
elaboration on interatomic interactions. However, this is not 
the case owing to rather stringent limitations on the number 
of particles that can be used in DFT calculations and, most 
importantly, the three-dimensional periodic boundary 
conditions required in practically all the available DFT 
codes.1 This problem can be circumvented by coarse 
graining the electronic structure that determines the 
cohesion into interatomic potentials describing interactions 
between atoms.2 The crucial property of such potentials is 
that they must comprise all the essential aspects of the 
cohesion. In the case of transition metals it means that such 
potentials reflect correctly the mixed nearly-free electron 
and covalent bonding arising from the partially filled d 
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band.3 This also applies to iron but an additional important 
aspect is the ferromagnetism that is actually responsible for 
the stability of the body-centered-cubic (BCC) structure of 
iron (α-iron) at low temperatures.4    

In this paper we present the bond-order potential (BOP) 
for iron together with a detailed testing of its transferability 
to environments very different from that of the equilibrium 
BCC lattice. Iron is indubitably one of the technologically 
most important metals involved in a broad variety of 
structural applications. Hence, atomic level investigation of 
the mechanical behavior of iron and its alloys is of 
paramount importance and had been pursued over many 
years using various interatomic potentials. First were pair 
potentials (e.g. Ref. 5), and in more recent years central-
force potentials of the embedded atom (EAM) or Finnis-
Sinclair (F-S) type were advanced (e.g. Refs. 6 and 7). 
None of these interatomic potentials includes an 
appropriate description of directional bonding of covalent 
type arising from the partially filled d band. Bond 
directionality has been included empirically in the modified 
embedded atom method8 and it is automatically a part of 
the empirical potentials proposed in Ref. 9 and discussed 
recently in Ref. 10 that employ the functional form 
originally developed by Tersoff for Si.11 These potentials 
do not include any interactions arising from 
ferromagnetism and the only attempt to include magnetic 
effects into the central force F-S type potential was made in 
Ref. 12. The only potential that includes both the 
directionality of bonding and magnetism in iron is the BOP 
proposed in Ref. 13. The potential presented in this paper is 
a significant enhancement of this model. It employs the 
same approach when treating the ferromagnetism, namely 
the Stoner model,14,15 but augments considerably the 
description of bonding arising from the partially filled d 
band and includes the effect of s electrons on the d bonds. 
Similarly, the repulsion between atoms, represented in Ref. 
13 by a pair potential, is significantly upgraded by 
including its dependence on the local atomic environment, 
which allows exact reproduction of all three cubic elastic 
moduli when parameterizing the potential. The only 
empirical data in this development are the cohesive energy, 
the lattice parameter and three second order elastic moduli 
of the ideal BCC lattice. These are used when determining 
the coefficients of the functional form describing repulsion 
between atoms. No empirical data has been employed in the 
development of both the attractive covalent part of the 
energy and the magnetic contribution but some parameters 
in these parts of the cohesive energy have been obtained 
from DFT calculations. 

The paper is organized as follows. In section II we 
describe in some detail the attractive covalent part of the 
cohesive energy arising from the partially filled d band, the 
magnetic contribution as well as the repulsive part of the 
cohesive energy. The important aspect of the covalent part 
is inclusion of the effect of s electrons into the calculations 
in which only dd bonds are involved explicitly. In the 

repulsion the most important aspect is that it consists of a 
combination of environment dependent central force term 
and a pair potential. In the section III we present an 
extensive investigation of the transferability of the 
developed BOP. This involves study of crystal structures 
and magnetic states alternative to the ferromagnetic BCC 
lattice, vacancies, di-vacancies, self-interstitials, paths 
continuously transforming the BCC structure to different 
less symmetric structures, phonons and atomistic modeling 
of the structure and glide of ½<111> screw dislocations 
that dominate the plastic deformation of single crystals of 
all BCC metals.  

 
II. DEVELOPMENT OF THE BOND-ORDER 

POTENTIAL 

The general theory of bond-order potentials (BOPs), 
originally advanced by Pettifor and co-workers,16-18 has 
been elucidated in several recent reviews.19-24 Hence, we 
summarize only briefly the main aspects, in particular those 
important for the BCC iron. 

Within BOPs the cohesive energy of the BCC 
ferromagnetic iron is written as 

 coh cov mag repE E E E= + + . (1) 
The covalent energy arising owing to the partially filled d 
band is25 

 , ,
, , ,

cov
i j j i

i i j
E Hσ σ

α β β α
σ α β

ρ
=↑ ↓ ≠

= ∑ ∑∑ , (2) 

where ,i j
σ
α βρ  is the density matrix element for the bond 

between the orbital α centered at atom i and the orbital β 
centered at atom j and ,j iHσ

β α  is the corresponding element 
of the Hamiltonian matrix; σ represents the two possible 
spin states. In the development of BOPs for transition 
metals only dd bonds are included explicitly (see the above 
mentioned reviews and Ref. 26). Using the Slater-Koster27 
analysis the Hamiltonian elements are expressed via bond 
angles and corresponding bond integrals (BIs). magE  is 
treated within the Stoner model of itinerant magnetism15 
introduced to the development of BOPs in Ref. 25; it is 
discussed in more detail below. The repulsive part of the 
cohesive energy is composed of two contributions, a 
pairwise interaction ( pairE ) and an environment dependent 
central force contribution ( envE ) using the same approach 
as in Ref. 26, and also summarized below.  

  
A. Covalent part of the cohesive energy: covE  

The bond integrals and their dependence on the 
interatomic distance, Rij, between atoms i and j were 
obtained from DFT calculations via a projection 
scheme.28,29 In this scheme the DFT calculations are first 
performed for a variety of atomic configurations (several 
diverse crystal structures and volumes) that correspond to 
different bonding environments and material densities. 
Subsequently, a minimal basis of atomic orbitals (AOs) is 
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constructed such as to give the best representation of the 
wave functions found in the DFT calculations. The Slater-
Koster two-center BIs are then obtained using this basis of 
the AOs and the Hamiltonian obtained from the self-
consistent DFT calculations. The dd bond integrals as 
functions of interatomic separation R, obtained from the 
orthogonalized s and d basis, are shown in Fig. 1 as empty 
circles. The important feature is that different values of 
bond integrals, in particular ddπ and ddδ, are found for the 
same interatomic spacing attained in calculations for BCC 
lattices with different densities as the separation of the 
nearest (red) or the second nearest neighbors (blue), 
respectively. This non-uniqueness of the R dependence of 
bond integrals, which manifests itself as discontinuities, 
results from the environmental dependence of bond 
integrals. Such discontinuities, found also in earlier 
studies,30,31 originate from screening effects of 
electrons/orbitals (primarily of s-type) associated with 
atoms neighboring the dd bond considered. Instead of 
including explicitly the full sd basis this effect can be taken 
into account implicitly via screening of the dd bond 
integrals as proposed in Ref. 32. The screened bond 
integrals are then  
 ( )( )1

ij ij
ijR Sτ τ τβ β= − , (3) 

where ijR  is the separation of atoms i and j, τ means ddσ, 

ddπ or ddδ, ijSτ  is the screening function and ( )ijRτβ  is the 
unscreened BI. A detailed description of these quantities is 
presented in Appendix A.33 
 

 
FIG. 1. (Color online) BIs used in BOPs for BCC Fe. 

Circles: BIs determined from the sd basis of AOs and the 
Hamiltonian obtained from the self-consistent DFT 
calculations. Solid lines: Screened bond integrals calculated 
according to Eq. (3). Dashed lines: ( )ijRτβ , given by Eq. 
(A1). The red and blue colors correspond to R from regions 
of the first and second nearest neighbors in BCC lattices of 
different densities.  

 
A crucial requirement imposed in both the development 

and use of BOPs is the condition of the local charge 
neutrality (LCN), which is a sensible constraint for metals 
where any charge variation is rapidly screened. This 
condition is written as  

 ,
,

0atom
i i iNσ
α α α

α σ
ρ

=↑ ↓

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
∑ ∑ , (4) 

where atom
iN α  is the occupancy of the atomic-like orbital 

iα  in the free atom. The number of d electrons on every 

atom ( atom
d iN N αα

=∑ ) is set to 7.1 (the same as in Ref. 
13), which is a reasonable value considering that the 
electronic configuration of an isolated Fe atom is [Ar] 3d6 
4s2. The LCN is attained in calculations by adjusting self-
consistently the diagonal elements of the Hamiltonian, 

,i i iHσ σ
α α αε= . As explained below, this is done in 

conjunction with the self-consistent adjustment of the 
magnetic moment associated with the atom i. In order to 
smear the sharp cut-off of the energy at the Fermi level and 
to damp down the associated long-range Friedel oscillations 
a fictitious electronic temperature (Tf) is introduced;34 as in 
the previous study13,31 we set kBTf = 0.1 eV where kB is the 
Boltzmann’s constant. This method increases the rate of the 
convergence of both the energy and forces when employing 
BOPs. 

Within the BOP scheme the density matrix ,i j
σ
α βρ  is 

determined by employing the expansion of the local density 
of states into its moments35 and using the method of 
continued fractions for the Green’s function of the 
Schrödinger equation.36-38 The continued fractions were 
limited to nine moments of the local density of states, 
which was found in previous studies to reproduce the 
density of states with a satisfactory accuracy when 
compared to full TB calculations.13,30,31 The limitation to 
the finite number of moments of the density of states is the 
reason why BOPs are an O(N) method while full tight 
binding is an O(N3) method. The algorithms for evaluation 
of the Green’s function elements are implemented in the 
Oxford order-N package (OXON)17,18,39 that has been used 
in both the development and application of BOPs.   

 
B. Magnetic part of the cohesive energy: magE  

Within the Stoner model different collinear magnetic 
states, up and down spins of electrons, are introduced via 
different on-site energies, ,

iαε ↑ ↓ , corresponding to two 
possible spin states. Since in the BOPs for iron only d 
electrons are included explicitly, the corresponding 
diagonal elements of the Hamiltonian are25 

 , 0 1
2id id iImε ε↑ ↓ = ± , (5) 

where im  is the magnitude of the difference in the number 
of d electrons on site i with spin parallel and antiparallel to 
the local magnetic moment, I  is the Stoner exchange 
integral and + and – correspond to spin antiparallel ( ↑ ) and 
parallel ( ↓ ) to the local magnetic moment at site i, 
respectively. We use I  = 0.8 eV as in Ref. 13 where I  
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was first obtained on the basis of DFT calculations but 
slightly re-adjusted to attain a correct magnetic behavior 
within d-only model. The local exchange splitting on atom 
i, i iImΔ = , is determined self-consistently from 
calculations of the number of up and down electronic spins 
for each site using the spin-polarized version of the method 
of continued fractions for the Green’s function of the 
Schrödinger equation when evaluating the density matrix 

,i j
σ
α βρ . The magnetic contribution to the energy is then25 

 ( )2 21
4

mag
i atom

i
E I m m= − −∑ , (6) 

where atomm  is the magnetic moment of the free atom. 
Furthermore, the LCN condition (Eq. (4)) has to be 
satisfied concomitantly and since the diagonal Hamiltonian 
elements contain im  (Eq. (5)) both the self-consistency of 
the local exchange splitting and charge neutrality have to be 
attained concurrently. The corresponding algorithms are all 
implemented in the Oxford order-N package (OXON).   

 
C. Repulsive part of the cohesive energy: repE  

In any version of tight-binding, and therefore also in 
BOPs, the repulsive part of the cohesive energy is not 
derived rigorously using a quantum mechanical treatment. 
Instead, it is formulated empirically by fitting a physically 
justified functional form to reproduce the experimental 
and/or DFT-calculated values of some basic properties of 
the materials studied. In the current development we follow 
the same route as in the case of non-magnetic transition 
metals presented in more detail in Ref. 26. In this case,  

 rep env pairE E E= + . (7) 
Both parts of repE  depend only on the separation of 

particles but envE  has a many–body character whilst pairE is 
a pairwise repulsion. Our conjecture is that the functional 
form for envE  is analogous to that proposed by Aoki and 
Kurokawa40 in their study of the repulsion in FCC solid 
argon under very high pressure that originates from 
overlapping of s and p closed-shell electrons. The physical 
reason is that, in transition metals, including iron, envE  also 
arises from the overlap repulsion of s electrons that are 
squeezed into the ion core regions under the influence of 
the large covalent d-bonding forces.41 The adjustable 
parameters in both envE  and pairE  are determined such that 
the resulting BOP reproduces exactly the experimental 
values of the lattice constant, cohesive energy and three 
elastic constants ( 11C , 12C  and 44C ) of the equilibrium 
BCC iron. Details of evaluation of envE  and pairE  are 
presented in Appendix B.  

While both covE  and magE  contribute to the Cauchy 
pressure their contribution is not equal to its experimental 
value ( 1

2[ ]12 44C C− ). However, the presence of the 
environmental dependence allows us to attain the 
experimental value of the Cauchy pressure by fitting fully 

the elastic moduli. The same cannot be achieved using a 
pairwise potential only since this does not contribute to the 
Cauchy pressure.42,43 In the earlier development13 only a 
repulsive pair potential was used and thus the Cauchy 
pressure was not fully reproduced. 
 

D. Determination of the force on an atom 

The force on an atom k, grad
k

coh
k E= − rF . As shown in 

previous studies (see reviews in Refs. 19-22), the force 
arising from covE  can be determined to a good 
approximation using the Hellmann-Feynman theorem.44 
Moreover, it was proved in Refs. 25 and 45 that the force 
arising from magE , treated within the Stoner model, can 
also be included into the Hellmann-Feynman type 
expression so that  

 ( ), ,
,

grad
k

cov+mag
k i j j i

i j
Hσ

α β β α
σ α β

ρ
=↑ ↓ ≠

= − ∑ ∑ rF . (8a) 

Thus there is no force arising independently from magE  but, 
of course, the effect of local self-consistent magnetic 
moments is concealed in ,i j

σ
α βρ . The force arising from the 

repulsive term is simply 
 ( )grad

k

rep rep
k E= − rF   (8b) 

 
III. TESTING OF TRANSFERABILITY OF THE 

DEVELOPED BOP FOR BCC IRON 

The main purpose of the developed BOP is to investigate 
structures and properties of atomic ensembles that deviate 
significantly from the ideal BCC lattice. Specifically, these 
are centers of crystal defects, in particular the extended 
ones such as dislocations, grain boundaries and other 
interfaces. Obviously, the crucial requirement for such 
demanding studies is the capability of the BOP model to 
describe accurately distorted environments far away from 
equilibrium. While this can never be guaranteed 
unequivocally a thorough testing of the transferability 
involving a variety of atomic environments that differ 
significantly from the equilibrium BCC lattice enhances 
considerably our confidence in employing the BOPs. For 
this purpose we investigate the energy of lattice structures 
other than the BCC lattice, including alternate magnetic 
states, the energy variation when the BCC lattice is 
deformed along several transformation paths,46,47 formation 
energies of vacancies, di-vacancies and self-interstitial 
atoms (SIAs), phonon spectra, γ-surface for {101} planes, 
which relates to the core structure of ½<111> screw 
dislocations that govern the plastic deformation of BCC 
metals.48,49 Results of these tests can be compared with 
those obtained by DFT calculations or appropriate 
experiments.    
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A. Alternate crystal structures and magnetic states 

The structures investigated are BCC, FCC and HCP each 
with three possible magnetic states, namely non-magnetic 
(NM), ferromagnetic (FM), and antiferromagnetic (AFM).  
The results are summarized in Table I, which shows that 
the state with the lowest energy is FM BCC. Importantly, in 
the non-magnetic (NM) state, the FCC and HCP lattices are 
more stable than the BCC lattice. Moreover, using the 
developed BOP we calculated the elastic moduli for the 
NM BCC state and found that the shear modulus 
1

2 ( )11 12C C−  is negative; the shear modulus 44C  is 
positive. This implies that the NM state is not only a high 
energy state but is in fact unstable. 

This demonstrates that introducing magnetism into the 
BOP for Fe is crucial for attaining the correct ground state, 
namely ferromagnetic BCC (see Ref. 4 which proves that 
the ferromagnetism stabilizes the BCC structure of iron at 
low temperatures). We have also compared the energy 
versus atomic volume dependences calculated using the 
BOPs to the results of the DFT calculations carried out in 
Ref. 50. These results are presented in Fig. 2 and it is seen 
that the BOP results are in an excellent agreement with the 
DFT calculation. 

 

TABLE I. Equilibrium energies (meV/atom) of BCC, 
FCC and HCP structures in different magnetic states 
relative to that of FM BCC structure. All structures were 
relaxed with respect to the corresponding lattice parameter. 

 FM AFM NM 
BCC 0 431 498 
FCC 99 271 339 
HCP 97 197 331 

 

 
FIG. 2. (Color online) Comparison of energies of 

different magnetic states in BCC lattice of iron relative to 
that of the equilibrium FM BCC lattice, plotted as 
dependences on the volume per atom. The DFT results are 
taken from Ref. 50. 

 

B. Vacancies and di-vacancies 

A supercell of dimensions 3a×3a×3a, where a is the 
equilibrium lattice parameter, was used and the atomic 
arrangement was always fully relaxed. Table II compares 
the formation energies of vacancies and di-vacancies 
obtained by the BOP with DFT calculations51-54 and 
experimental measurements.55,56 Clearly, BOP calculations 
reproduce very well the formation energies of both 
vacancies and di-vacancies found in DFT calculations and 
experiments. Table II also contains the vacancy migration 
energy evaluated using the nudged elastic band (NEB) 
method.57 In this case the agreement with DFT calculations 
is only tentative but important is the comparison with the 
migration energy of interstitials discussed below. 

 
TABLE II. Formation energies of vacancies (Evac), 

nearest neighbor (NN) and 2nd nearest neighbor (2NN) di-
vacancies (Edivac) and migration energies of vacancies (Emig) 
calculated using the developed BOP, DFT and measured 
experimentally. Units are in eV. 

 BOP DFT Experiment 
Evac  1.99 1.95 – 2.15a,b 1.6 – 2.2g,h 
Edivac (NN) 3.51 3.85 – 4.08c,d  
Edivac (2NN) 3.61 3.83 – 4.01c,d  
Emig  1.03 0.64 – 0.67b,c,e,f 0.55g 
a: Ref. 51; b: Ref. 52; c: Ref. 53; d: Ref. 54; e: Ref. 57; f: Ref. 
58; g: Ref. 55; h: Ref. 56. 
 

C. Self-interstitial atoms (SIAs) 

Based on the crystallography and symmetry of the BCC 
lattice Johnson5 proposed six possible configurations of 
SIAs: <111> dumbbell, <111> crowdion, <110> dumbbell, 
tetrahedral interstitial, <100> dumbbell and octahedral 
interstitial. These configurations were used as the starting 
configuration in the relaxation calculations determining 
their final configurations and corresponding energies. The 
calculations were always started with the supercell 
composed of 4×4×4 ideal BCC lattice unit cells with the 
equilibrium lattice parameter containing one SIA; the 
number of atoms in the supercell was 129. The periodic 
boundary conditions were applied in all three dimensions. 
The energy was then minimized with respect to both the 
positions of atoms using a steepest descent method and the 
volume of the supercell. The latter allows for the volume 
expansion/contraction associated with SIAs. 

In starting configurations the separations between the 
interstitial atoms and other atoms of the ideal lattice (or the 
separations between interstitial atoms) is often much 
smaller than the nearest neighbor spacing in the ideal 
lattice. This is seen in Table III that summarizes the 
minimum interatomic separations, 0

minR , found in each 
unrelaxed SIA configurations. These separations range 
from 0.5 – 0.7 of the first nearest neighbor spacing in the 
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ideal BCC lattice.   
Formation energies of SIAs calculated using the 

developed BOP and using a DFT method,53 respectively, 
are presented in Table IV together with minimum 
interatomic separations, minR , in the relaxed structures 
obtained using the BOP. Formation energies of <111> 
dumbbell and <111> crowdion were always found to be 
within the numerical errors the same and are not, therefore, 
presented separately. Relaxations generally lead to an 
increase of the minimum interatomic separations associated 
with SIAs, which, presumably, results from the expansions 
in their vicinity as can be expected. 

The formation energies of SIAs found using the 
developed BOP are close to those found in DFT 
calculations.53 The most important is that the configuration 
with the lowest formation energy is the <110> dumbbell, as 
predicted by DFT calculations. In contrast, in non-magnetic 
transition metals DFT calculations predict the lowest 
energy structure to be the <111> dumbbell.51 Liu et al.25 
employed a TB model enhanced by the Stoner model of 
magnetism and their results qualitatively reproduce 
prediction of DFT calculations, in particular the order of 
formation energies for various structures of SIAs. This 
suggests that it is the magnetism that is responsible for the 
lowest energy interstitial configuration in Fe to be different 
than in non-magnetic BCC transition metals. The 
constructed BOP that includes the magnetism in the same 
way clearly leads to the same finding for the lowest energy 
structure of SIAs. Additionally, the order of increasing 
formation energies with different configurations found by 
BOP is the same as that found using DFT. 

In order to further demonstrate that it is the magnetism 
which governs the structure and energy of SIAs in BCC 
iron we removed magE  from evaluation of the cohesive 
energy while keeping covE  the same and re-adjusting repE  
so as to reproduce the five fitting parameters as in the 
developed BOP. For this BOP that does not contain 
magnetism the lowest energy configuration was found to be 
the <111> dumbbell with the energy of 1.22eV while the 
<110> dumbbell has appreciably higher energy 2.14eV. 
Thus the lowest energy structure for non-magnetic iron is 
the same as in all non-magnetic transition metals.  
 

TABLE III.  The minimum interatomic separations, 0
minR , 

in the units of the first nearest neighbor spacing of the ideal 
BCC lattice (D), in the unrelaxed configurations of SIAs. 

 <111> 
dumbbell 

<111> 
crowdion 

<110> 
dumbbell 

0
minR  (D) 0.567 0.500 0.693 

    
 Tetrahedral 

interstitial 
<100> 

dumbbell 
Octahedral 
interstitial 

0
minR  (D) 0.645 0.722 0.577 

TABLE IV. Formation energies of SIAs (eV) together 
with minimum separations of atoms, minR , in the structures 
relaxed using the BOP. In the calculations of minR , only 
atomic relaxation was carried out without any total volume 
relaxation. 

 Formation energies (eV) 
minR  (D) 

 BOP DFTa  
<111> 

dumbbell 4.22 4.61 0.801 

<110> 
dumbbell 3.87 3.93 0.813 

Tetrahedral 
interstitial 4.24 4.32 0.836 

<100> 
dumbbell 4.44 5.05 0.797 

Octahedral 
interstitial 5.05 5.21 0.817 

a: Ref. 53. 
 

Using the NEB method the migration energy of the [110] 
dumbbell between two nearest positions along the [110] 
direction was found to be 0.28 eV. The DFT calculations 
give 0.34 eV58 and the experimental values are in the range 
0.27 – 0.33 eV.59 Again, the agreement between BOP 
calculations, experiments and DFT calculations is very 
good. However, the most important result is that the 
migration energy of SIAs is about a quarter of the migration 
energy of vacancies. This implies that SIAs migrate much 
faster than vacancies, which is a well known phenomenon 
in irradiated materials in which vacancies and interstitials 
annihilate only partially and a surplus of vacancies 
ensues.60,61 

 
D. Transformation paths 

The transformation paths studied connect the BCC lattice 
with FCC, simple cubic (SC), HCP and body centered 
tetragonal (BCT) structures via continuously distorted 
configurations. The four paths investigated are tetragonal, 
trigonal, hexagonal and orthorhombic. The tetragonal path, 
also known as the Bain path,62 corresponds to extending the 
lattice along the [001] direction while keeping the volume 
per atom fixed. On the trigonal path the lattice is deformed 
by extending along the [111] direction while keeping the 
volume per atom fixed. During the orthorhombic path the 
lattice is deformed by extending in the [001] direction 
while compressing in the [110] direction. The hexagonal 
path is qualitatively different from the previous three paths 
in that it does not correspond only to a homogeneous 
straining but to straining accompanied by simultaneous 
shuffling of alternative close packed atomic planes in 
opposite directions; these shuffles are linearly coupled to 
the strain. A rigorous definition of tetragonal, trigonal and 
hexagonal paths, using the Lagrange strain tensor, is found  
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FIG. 3. (Color online) Deformation paths calculated 

using the constructed BOP (full curves) and DFT (circles). 
The positions (values of p) for which the structures are 
BCC, FCC, simple cubic (SC), BCT and HCP are marked. 

 
in Ref. 46 and the orthorhombic path is defined in the same 
way in Ref. 31. 

All four paths can be characterized by one parameter p. 
We calculated for these paths the energy as a function of p 
using both the developed BOP and spin polarized DFT as 
included in the VASP code.63-65 Results of these 
calculations are presented in Fig. 3. In general, the 
agreement between BOP and DFT calculations is very 
good, which demonstrates that the BOP describes with a 
good precision the interaction between atoms for structures 
that deviate very significantly from the ideal BCC lattice. 

 
E. Phonon dispersions 

The phonon dispersion curves for the equilibrium BCC 
lattice of iron were calculated using the constructed BOP 
by employing the frozen phonons method.66 The 
calculations were done for Γ-H, H-P-Γ and Γ-N cross 
sections of the Brillouin zone. The results, compared with 
the available experimental data,67 are presented in Fig. 4. 
The calculated dispersion curves are in an excellent 
agreement with experiments. They do not show any 
tendency towards soft phonons that would indicate possible 
instabilities. This demonstrates the robustness of the 
developed BOP since no information associated with the 
phonon spectra (besides elastic moduli) has been included 
into the fitting database when developing the BOP. 

 
F. Core structure and glide of ½<111> screw 

dislocations 

It is now firmly established that the plastic deformation 
of pure single crystals of all BCC metals is governed by 
½<111> screw dislocations that possess non-planar cores 
(for reviews see Refs. 48, 49, and 68). The most important 
features of these cores can be assessed using the concept of 
γ-surfaces that are plots of energies of single layer 
generalized stacking faults formed by displacing relative to 
each other two parts of a crystal cut along a  

 
FIG. 4. (Color online) Phonon dispersion curves. Lines: 

Calculations using the constructed BOP. Circles: 
experimental data from Ref. 67. The black color 
corresponds to the longitudinal mode L, red to the 
transversal modes T and T1, and green to the transversal 
mode T2 for both the BOP results and the experimental 
data. 

 
crystallographic plane. When calculating a γ-surface the 
relaxation of atomic planes perpendicular to the plane of 
the fault has to be carried out. Such calculations were made 
for many BCC crystals using a variety of interatomic 
potentials as well as DFT. For BCC iron the latter was 
used, for example, in Refs. 69-71. In all these studies γ-
surfaces do not display any minima that would indicate 
existence of metastable stacking faults. Calculations 
employing the constructed BOP for BCC iron give the 
same results. Comparison between BOP and DFT69 
calculated [111] cross-sections of γ-surfaces for the (101)  
plane, shown in Fig. 5, demonstrates that the two 
calculations are very close to each other even numerically. 
Nonexistence of metastable stacking faults is, of course, a 
general characteristic of all BCC metals.68   
 

 
FIG. 5. (Color online) [111] cross-sections of γ-surfaces 

for the (101)  plane calculated by BOP and DFT. Lines: 
BOP; dashed and solid lines correspond to calculations with 
and without the relaxation perpendicular to the (101)  
plane, respectively. Filled and open circles are results of 
DFT calculations69 with and without the relaxation 
perpendicular to the (101)  plane, respectively. 

 
The core structure of the ½[111] screw dislocation was 

computer modeled using the constructed BOP in the same 
way as in a number of previous studies (see for example 
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Ref. 72). The relaxed block of atoms consisted of three 
consecutive, periodically repeated, (111) planes of the bcc 
lattice. It comprised two regions: An “active” region in the 
center surrounded by an “inert” region. The dislocation was 
centered in the active region in which all the atoms are 
relaxed using the steepest decent molecular statics method 
while the atoms in the “inert” region are fixed but displaced 
away from the ideal bcc lattice in accordance with the 
elastic anisotropic displacement field of the dislocation 
studied. This arrangement corresponds to the simulation of 
an infinitely long ½[111] screw dislocation located in the 
bulk of the material.73 Within the core the largest 
displacements in the [111] direction are confined to three 
intersecting {101} planes of the [111] zone. The core 
structure is invariant with respect to the [111] three-fold 
screw axis and also with respect to the [101]  diad 
(reflection in the (111) plane followed by reflection in the 
(121)  plane). This core structure is unique and called non-
degenerate. (More details about the depiction of the core 
structure can be found in the review 68). The same core 
structure was found for BCC iron in several DFT 
studies.69,74-76 In fact the same core structure was also found 
in non-magnetic BCC metals studied using DFT and/or 
bond-order potentials (for references see Refs. 72 and 77) 
and thus the principal aspects of the structure of the core of 
½<111> screw dislocations are the same in the BCC iron as 
in non-magnetic transition BCC metals. 

The motion of the dislocation under the effect of an 
applied stress at 0 K was investigated as follows. We 
applied the chosen stress to the block with the relaxed 
atomic configuration of the ½[111] screw dislocation by 
imposing on all the atoms of the block the displacement 
evaluated for the given applied stress tensor via the 
corresponding strain tensor using the anisotropic Hook’s 
law. The level of the applied stress always started well 
below the stress at which the dislocation moved. The stress 
was then increased incrementally and at each stress level 

the atoms in the active region were fully relaxed as in the 
unstressed case. The stress level keeps increasing until the 
dislocation starts to glide at a critical stress. 

The stresses we imposed were pure shear stress in the 
direction of the Burgers vector in several planes making an 
angle χ with the (101)  plane (called maximum resolved 
shear stress planes – MRSSPs) and tensile/compressive  
stresses for a number of loading axes within the standard 
stereographic triangle with the corners [001], [011] and 
[111] . In all cases the {101} plane most highly stressed by 
the shear in the [111] direction was the (101)  plane. The 
shear stress driving the dislocation attains in each case a 
maximum at a MRSSP making an angle χ with the (101)  
plane. The corresponding shear stress at which the 
dislocation starts to move is called the critical resolved 
shear stress (CRSS). For crystallographic reasons all non-
equivalent angles χ are in the range 30 30o oχ− ≤ ≤ + . The 
procedure of stress applications is described in more detail 
in Ref. 72. 

Table V summarizes the glide planes of the ½[111] screw 
dislocation found when applying the pure shear stress in the 
[111] direction in different MRSSPs and 
tension/compression for eight different loading axes. The 
dependence of the CRSS (normalized by 44C ) on the angle 
χ is presented in Fig. 6. Similarly as for non-magnetic BCC 
transition metals,72,77 the Schmid law breaks down for all 
loadings and the orientation dependence of the CRSS 
always displays the asymmetry between twinning (χ < 0) 
and antitwinning  (χ > 0) sense of shearing. Moreover, there 
is also a significant difference between tension and 
compression for a fixed χ that cannot be related just to the 
effect of pure shear in the direction of the Burgers vector 
and it was shown in Refs. 72 and 77 that the shear stress 
components perpendicular to the Burgers vector are likely 
to play an important role in this asymmetry.78 Hence, the   

 
TABLE V. Glide planes of the ½[111] screw dislocation for pure shear stress applied in the [111] direction in different 

MRSSPs and tension/compression applied for eight different loading axes. In each case the MRSSP is characterized by the 
angle χ. 

 Pure shear            Tension           Compression 
χ (deg) Glide plane Axis Glide plane Axis Glide plane 
− 26.33 (101)  [0 1 14]  (101)  [5 8 9]  (101) & (110)  
− 19.11 (101)  [1 6 34]  (101)  [8 20 27]  (101)  
− 8.95 (101)  [1 3 10]  (101)  [5 9 17]  (101) & (110)  

0.00 (101)  [2 3 8]  (101)  [0 1 2]  (101)  
0.00 --- [0 1 2]  (101)  [2 3 8]  (101) & (110)  
8.95 (101)  [5 9 17]  (101)  [1 3 10]  (101)  

19.11 (101)  [8 20 27]  (101)  [1 6 34]  (101)  
26.33 (101)  [5 8 9]  (101)  [0 1 14]  (101)  
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FIG. 6. (Color online) The dependence of the CRSS on χ 

calculated using the developed BOP for the BCC iron. 

 
CRSS vs χ dependence and the asymmetries this 
dependence demonstrates are in the BCC iron very similar 
to those in non-magnetic BCC transition metals.30,31,72,77 
However, a noticeable difference is found in the case the 
slip planes. In non-magnetic BCC transition metals the slip 
planes are {101} planes of the [111] zone that may but need 
not be most highly stressed,72,77 depending on loading 
conditions. In contrast, for BCC iron the slip plane is 
almost always the (101)  plane, which is the most highly 
stressed {101} plane. Only for some orientations of the 
compressive axis the combination of (101)  and (110)  is 
found that represents effectively the slip along the (211)  
plane sheared in the twinning sense. 

The general experimental finding is that in single crystals 
of BCC iron the preferred slip planes at low temperatures 
are {101} planes and, just like in non-magnetic transition 
metals, the CRSS always shows a significant twinning-
antitwinning asymmetry (see for example Refs. 79-84). 
Moreover, for some orientations of the loading axes, when 
χ < 0, the slip plane for the [111] slip direction is the (211)  
plane. Our calculations of the glide of ½[111] screw 
dislocation fully support these experimental observations. 
Furthermore, the anomalous slip, i. e. the slip on a system 
with a very low Schmid factor, has been observed to 
various extent, sometimes even as dominating, in non-
magnetic BCC transition metals deformed at cryogenic 
temperatures.85-87 This aspect of the low temperature 
behavior is supported by recent atomistic calculations of the 
glide of the screw dislocation in non-magnetic BCC 
transition metals.77 However, calculations of the glide of 
½[111] screw dislocation in the BCC iron do not indicate 
existence of such slip. Indeed, the anomalous slip has never 
been observed in the BCC iron. This demonstrates that 
atomistic studies using the developed BOP for the BCC 
iron are reproducing correctly the experimentally observed 
dislocation behavior. 

 

IV. CONCLUSIONS 

In this paper the bond-order potential for ferromagnetic 
BCC iron (α-iron) was developed that comprises the most 
important aspects of bonding in this important metal. In the 
attractive part of the cohesive energy it is the mixed nearly 
free electron and covalent bonding, the former mainly due 
to s electrons and the latter owing to a partially filled d 
band. The ferromagnetism, which is essential for the 
stability of the BCC structure,4 is taken into account aptly 
within the Stoner model of itinerant magnetism14,15 and, 
importantly, the repulsive part of the cohesive energy, 
albeit principally empirical, contains an environmentally 
dependent term that is essential for exact reproduction of 
the elastic moduli. While only dd bonding is considered 
explicitly, the influence of s electrons is included implicitly 
via screening of dd bonds.32 Neither the influence of s 
electrons on dd bonds nor the environmental dependence of 
the repulsion were included in the earlier development of 
the bond-order potential for the BCC iron.13 Naturally, none 
of these aspects is captured by any potentials including only 
central-force interactions even if these have a many body 
character, as in EAM or F-S potentials. 

The testing of the transferability of the developed bond-
order potential to atomic environments significantly 
different from those of the ideal BCC lattice compared 
either with experiments or analogous DFT calculations, 
shows indubitably that the potential can be employed with 
high confidence in large-scale atomistic computer modeling 
of crystals with defects. The most important aspect is that 
its applicability extends from simplest point defects to large 
extended defects. Thus it is possible to model glide of 
individual dislocations as well as their mutual interactions 
and interactions with interfaces equally well as with 
localized defects such as interstitials and vacancies. This 
implies, for example, that the developed bond-order 
potential may be employed equally in studies of plastic 
deformation, grain boundary migration or sliding, effects of 
radiation damage associated with formation and movement 
of self-interstitial atoms and vacancies and other defects in 
the crystalline structure. While no empirical or semi-
empirical potential can be entirely all-embracing and some 
limits of its applicability always exist, the present study 
suggests that the applicability of the developed bond-order 
potential for BCC iron is, indeed, very wide-ranging. 
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APPENDIX A: SCREENED BOND INTEGRALS 

In Eq. (3), 

 ( ) ( ) 0
0 exp ij

ij
c c

RRR R
R Rτ τβ β

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (A1) 

This is a simplified form of the more general Goodwin, 
Skinner and Pettifor88 (GSP) form that was used in previous 
developments of BOPs. Both 0R  and cR , as well as 

( )0Rτβ , are adjustable parameters used when fitting the R-
dependence of the bond integrals shown in Fig. 1. The 
screening function is taken as  

 1 2
2

2

( ) ( )
1 ( ) 2( )

ij ij
ij

ij
ij

cS
O R

τ τ
τ

τ τ

μ
μ

−=
+ −

, (A2) 

which is a simplified form of ijSτ  derived in Ref. 32. 

( )ijO Rτ  is the dd overlap integral of the type τ between 
atoms i and j; it is assumed to have the same functional 
form as τβ . 0( )O Rτ  is then one of the adjustable 
parameters used to reproduce both the environmental 
(discontinuities) and R-dependence of the bond integrals of 
the dd type. 1( )ijc τ  is the contribution of the interference 
between atoms i and j that results from the electrons 
hopping between d orbitals on atoms i and j through the s 
orbital centered on a neighboring atom k. Following Ref. 32 
it is 
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∑

 

( ) ( ) ( ) ( )}2                            ij
ij ds jk sd kj ijkO R O R R gτ σ σ τβ θ− . 

0τδ  is 0 when τ = π or δ, and 1 when τ = σ. The functional 
dependence on R of the bond integral sdσβ  is determined 
from DFT calculations similarly as that of ddσ integrals, but 
it is further modified when fitting dd bond integrals. The 
overlap integral sdO σ  is again assumed to have the same 
functional dependence on R as sdσβ . Moreover, the bond 
integral dsσβ  and the overlap integral dsO σ  are assumed to 
be the same as sdσβ  and sdO σ , respectively. The screening 
function of bond integrals not only contains a many-body 
character but it also depends explicitly on bond angles ijkθ  
and jikθ  via angular functions32 1

4( ) (1 3cos 2 )gσ θ θ= + , 
3

2( ) sin2gπ θ θ=  and 3
4( ) (1 cos2 )gδ θ θ= − . 2( )ij

τμ  is the 
average second moment contribution and it is32  

( )2
2( )ij

ijO Rτ τμ =  

( ) ( ) ( ) ( ) ( )2 2 2 2

,

1
4 ds ik jik ds jk ijk

k i j
O R g O R gτ

σ τ σ τ
δ

θ θ0

≠

+ ⎡ ⎤+ +⎣ ⎦∑ . 

The parameters 0( )O Rτ  and 0( )sdO Rσ  in the overlap 
integrals, together with a modification of parameters in

( )Rτβ  and ( )sd Rσβ  (all represented by the functional 
form of the type as in Eq. (A1)), are used to reproduce the 
R-dependence and the environmental dependence 
(discontinuities) of the DFT determined bond integrals of 
dd type shown in Fig. 1. The solid lines in this figure show 
bond integrals calculated analytically using Eq. (3). 
Parameters entering Eq. (A1) and quantities entering the 
screening function given by Eq. (A2) are summarized in 
Table VI.  

In order to ensure that no non-physical discontinuity 
occurs when calculating the energy and forces for a finite 
range of R values, it is important that the R-dependence of 
bond integrals converges smoothly to zero at a cut-off 
distance BI

cutR . This is achieved by replacing ( )Rτβ  by a 

fifth-order polynomial when 1
BI BI

cutR R R< < . The 
coefficients of this polynomial are determined such that 

( )Rτβ  and the polynomial have the same values and the 

same first and second derivatives at 1
BIR R= , and that at 

BI
cutR R=  the value, the first derivative, and the second 

derivative of the polynomial become zero; BI
cutR  is between 

the second and third nearest neighbors which is a sufficient 
interaction range. The values of 1

BIR  and BI
cutR  are chosen 

carefully to avoid any unphysical “bump” of the 
polynomial in the interval 1

BI BI
cutR R R< <  and their values 

are also presented in the caption of Table VI. 
 

TABLE VI. Parameters entering equations for screened 
bond integrals for BCC Fe. For all four BIs (ddσ, ddπ, ddδ 
and sdσ), 0R = 2.4825 Å, 1

BIR = 2.6 Å and BI
cutR  = 4.0 Å. 

Units of ( )0Rτβ  and 0( )O Rτ  are eV; cR  is in Å. 

 ( )0Rτβ  ( )0O Rτ  cR  

ddσ – 0.620 0.040 0.71 
ddπ 0.410 – 0.030 0.47 
ddδ – 0.062 0.020 0.31 
sdσ 0.845 – 0.045 0.71 

    

APPENDIX B: REPULSIVE PART OF THE 
COHESIVE ENERGY: Eq. (7) 

The functional form for the environment dependent 
repulsion (for more details see Ref. 26) is 
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with  

 ( )expi ik
k i

g Rλ ν
≠

= −∑ , (B2) 

where A, μ, g, ν and sR  are adjustable parameters. The 
pairwise repulsion 

 
,

1 ( )
2

pair
ij

i j i
E R

≠

= Φ∑ , (B3) 

where ( )ijRΦ  is a pair potential taken in the form  

 ( ) ( ) ( )
4 3

0
ij k k ij k ij

k
R B R R H R R

=

Φ = − −∑ .  (B4) 

kB  and kR  are adjustable parameters, H is the Heaviside 
step function, and 4R  is the cut-off of the pair potential. For 
computational reason envE  needs to be cut off at a certain 
interatomic distance, rep

cutR , which is chosen to be in the 
vicinity of the third nearest neighbors. This is achieved by 
replacing the ( )expg Rν−  in Eq. (B2) by a fifth-order 

polynomial when 1
rep rep

cutR R R< < ; the coefficients of this 
polynomial are determined such that its values, first and 
second derivatives are continuous at 1

repR R=  with 

( )expg Rν−  and zero at rep
cutR R= . The 1

repR  is chosen such 
that there are no unphysical bumps occurring in the 
polynomials in the range 1

rep rep
cutR R R< < . The adjustable 

parameters in both envE  and pairE  are determined such that 
the resulting BOP reproduces the experimental values of 
the lattice constant (a), cohesive energy ( cohE ) and three 

elastic constants ( 11C , 12C  and 44C ) of the equilibrium 
BCC phase. These are summarized in Table VII. 
Parameters entering envE  are summarized in Table VIII and 
those entering the pairwise repulsion in Table IX. 

 

TABLE VII. Experimental values89,90 to which the BOP 
is fitted. The lattice parameter (a) is in Å, the cohesive 
energy ( cohE ) in eV, elastic moduli in 1011 Pa. 

a cohE  11C  12C  44C  

2.866 4.28 2.431 1.381 1.219 
 

TABLE VIII. Parameters used in the environment 
dependent repulsion, envE . A is in eV, 1

repR  and rep
cutR  in Å. 

A μ g ν 1
repR  rep

cutR  
1.297×102 7.0 20.0 6.0 3.0 4.0 

 

TABLE IX. Parameters used in the pair potential (Φ), 
given by Eq. (B4), when ijR  is in Å. 

k kR  kB  
0 2.23 30.0 
1 2.75 − 0.972 681 58 
2 2.90 2.516 912 64 
3 3.50 0.693 543 45 
4 3.80 − 0.412 698 08 
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