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Results are presented for the occupation probabilities and current densities of bulk and edge
states of half-filled graphene in a cylindrical geometry, and irradiated by a circularly polarized laser.
It is assumed that the system is closed, and that the laser has been switched on as a quench.
Laser parameters corresponding to some representative topological phases are studied: one where
the Chern number of the Floquet bands equals the number of chiral edge modes, a second where
anomalous edge states appear in the Floquet Brillouin zone boundaries, and a third where the
Chern number is zero, yet topological edge states appear at the center and boundaries of the
Floquet Brillouin zone. Qualitative differences are found for the high frequency off-resonant and
low frequency on-resonant laser with edge states arising due to resonant processes occupied with a
high effective temperature, whereas edge states arising due to off-resonant processes occupied with
a low effective temperature. For an ideal half-filled system where only one of the bands in the
Floquet Brillouin zone is occupied and the other empty, particle-hole and inversion symmetry of the
Floquet Hamiltonian implies zero current density. However the laser switch-on protocol breaks the
inversion symmetry, resulting in a net cylindrical sheet of current density at steady-state. Due to
the underlying chirality of the system, this current density profile is associated with a net charge
imbalance between the top and bottom of the cylinders.

PACS numbers: 73.43.-f, 03.65.Vf, 72.80.Vp

I. INTRODUCTION

Topological systems are characterized by edge excita-
tions that are remarkably robust to perturbations. They
arise due to a bulk-boundary correspondence, where ge-
ometric properties of the bulk band-structure control the
nature of excitations at the edge when the system is
placed in a confined geometry. Thus perturbations that
cannot affect the bulk topological properties, cannot per-
turb the edge states either. For an integer quantum Hall
system for example, bulk bands have a non-zero Chern
number C, which also equals the number of chiral edge
modes1–3. The topological nature of the system is re-
sponsible for the highly precise quantization of the Hall
conductance at Ce2/h.4

Chern insulators are topological insulators (TIs) which
show quantum Hall physics in the absence of a mag-
netic field, where time-reversal symmetry is broken by
introducing complex hopping amplitudes5. This can be
achieved by doping with magnetic impurities6. Chern
insulators can also be realized by the application of a
circularly polarized laser7–10, where TIs arising out of
such time-periodic perturbations are referred to as Flo-
quet TIs (FTIs)10.

The field of FTIs has grown in recent years be-
cause of several experimental realizations ranging from
periodically shaken lattices of cold-atomic gases11, to
graphene12,13, Dirac fermions on the surface of 3D TIs14

under external irradiation, and photonic systems15,16. In
fact FTIs are extremely rich, showing a variety of topo-
logical phases as the amplitude, frequency, and polariza-
tion of the periodic drive is varied17–20.

The topological properties of time-periodic Hamilto-

nians are extracted by studying the spectral properties
of an effective time-independent Hamiltonian known as
the Floquet Hamiltonian,21 which captures the time-
evolution of the system over one period. Since energy
is not conserved upto integer multiples of the driving fre-
quency, the eigen-energies of the Floquet Hamiltonian are
known as quasi-energies. Much like spatially periodic
systems, here too, the Floquet description leads to an
over-counting where quasi-energies separated by integer
multiples of the laser frequency represent identical eigen-
modes. Thus in order to avoid this over-counting, one
restricts the quasi-spectrum to one frequency of the pe-
riodic drive, the so called Floquet Brillouin zone (FBZ).

Analysis of the Floquet quasi-energies and quasi-modes
shows that not only can FTIs be used to realize conven-
tional Chern insulators,7,11 they also have unique proper-
ties coming from the fact that the energy is not conserved
by integer multiples of the periodic drive. As a result of
this, the Chern number of the Floquet bands simply in-
form us of the difference between the number of chiral
edge modes above and below the Floquet band. Effec-
tive (2+1) D topological invariants need to be defined to
account for the the periodicity in the additional temporal
direction, and to uniquely determine the number of edge
modes at a given quasi-energy17. In particular, for FTIs
it is possible to have anomalous edge states appearing
at the boundaries of the FBZ. FTIs can therefore realize
topological systems where even though the Chern num-
ber of the band is zero, yet equal number of chiral edge
modes appear above and below it.

When the laser frequency is larger than the band-
width, conventional Chern insulators are realized for
moderate laser amplitudes, where by conventional we
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FIG. 1. Sketch of the four topological phases studied, and la-
beled by P1,2,3,4. Laser frequency Ω is in units of the hopping
strength th with 6th being the bandwidth of graphene. Laser
amplitude A0 is in units of the lattice spacing. Solid lines are
edge states from the center of the FBZ, while dashed lines
are edge states from the boundary of the FBZ. The arrows
indicate the chirality of the edge states.

mean that there are edge states only at the center of
FBZ, and the Chern number equals the number of chi-
ral edge modes. The anomalous edge states at the Flo-
quet zone boundaries typically appear for resonant lasers
where the resonance creates effective band-inversions10,
with the anomalous edge states appearing at these band-
inversion points. Edge states at the FBZ boundaries os-
cillate in time at higher frequencies relative to those edge
states at the center of the FBZ22,23. This leads to a situ-
ation where not all the edge states contribute equally to
dc transport when the samples are connected to leads24.

With all these unusual properties, one has to have a
clear picture of how all the different edge modes, the ones
appearing at the center of the FBZ, and the anomalous
ones appearing in the boundaries of the FBZ, affect mea-
surable quantities. Thus we need to explore how these
edge modes are occupied, and the current densities car-
ried by them. Remarkably, despite the intense activity
in the field, this study has not been done, and we plan
to undertake it here for a closed system in the absence of
external dissipation.

We present results for a FTI realized by irradiating
half-filled graphene in a cylindrical geometry with zig-
zag edges, by a circularly polarized laser. We assume the
system is closed so that the occupation of all resulting
Floquet quasi-energy states is completely determined by

the laser switch on protocol.

We study the four different topological phases sum-
marized in Fig. 1 and labeled as P1,2,3,4. Of these four
phases, one of them corresponds to an off-resonant high
frequency laser (P1), and the remaining (P2,3,4) corre-
spond to resonant low frequency lasers. Moreover, of
these four cases, two (P1,2) are conventional Chern insu-
lators in that edge states appear only at the center of the
FBZ, while for the other two phases (P3,4), anomalous
edge states appear at the boundaries of the FBZ.

For the above phases we determine the occupation
probability of the bulk and edge states following a laser
quench. Moreover from the edge state population, we
give simple Landauer based arguments to estimate the
conductance of the edge modes. In doing so we arrive
at estimates that are consistent with a Kubo formalism
computation of the dc Hall conductance of a bulk system
with no boundaries20,25. Thus even though the conduc-
tance is not Ce2/h for resonant lasers due to nonequilib-
rium occupation of bands, we uncover a bulk-boundary
correspondence that persists even in the nonequilibrium
system, where the Hall response for a spatially extended
system without edges is of the same magnitude as the
transport via edge states populated in a nonequilibrium
way for precisely the same system but now with spatial
boundaries.

In addition to edge state occupation, we also study
the average current density, a quantity that can be lo-
cally measured using magnetometers such as SQUIDs.
We find that the nonequilibrium population following the
laser quench breaks inversion symmetry and creates a net
sheet of circulating current flowing on the cylinder. We
show that since the individual eigenstates are chiral, such
a current density profile results in a charge imbalance be-
tween the top and bottom edges of the cylinder.

In order to understand the symmetries of the current
density following the laser quench, we explore the symme-
tries of the current density carried by individual Floquet
eigenstates, and in the process highlight how even though
the instantaneous Hamiltonian has no special symmetries
other than particle-hole symmetry, the Floquet Hamilto-
nian, on averaging over one laser cycle, shows some addi-
tional emergent symmetries such as inversion symmetry.
We discuss the role of these symmetries on the current
and charge densities generated by the laser quench.

We now briefly discuss the relation between our work
and existing literature. Our study is in a regime com-
plementary to Ref. 24 where a small sample in contact
with leads was studied, and where the role of the anoma-
lous edge modes is determined by how well they hy-
bridize with lead states. In contrast our study is for
larger systems and also closed systems such as those re-
alized in ultra cold atomic gases11. Our results are also
relevant for pump-probe spectroscopy of solid-state sys-
tems14, where time-resolved and angle resolved photoe-
mission (ARPES) is a very effective way of probing edge-
state occupation probabilities.

Note that how edge states are occupied after a quench
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between two different static Hamiltonians with different
topological invariants has been studied.26,27 In our work
we study quench dynamics for a case where the final
Hamiltonian after the quench is not static but is periodic
in time. By virtue of this time-periodicity the edge state
structure is far richer than in conventional TIs, leading
to richer dynamics. Ref. 28 studied dynamics in a similar
system as ours, however they focused only on the high fre-
quency off-resonant case where the edge state structure
is more conventional. Here in contrast we study both
off-resonant and resonant laser frequencies, thus high-
lighting how the anomalous edge states are populated.
In addition even for the off-resonant laser, our results
are qualitatively different from Ref. 28 as our geometry,
filling factor, and laser switch-on protocol results in a
completely different steady-state current density profile.

The paper is organized as follows. In Section II, we
present the model and derive expressions for the occupa-
tion probabilities and current densities. In Section III we
present our results, while we conclude in Section IV, and
give additional details in three appendices.

II. MODEL

We consider graphene at half-filling in a cylindrical ge-
ometry with zig-zag edges that support edge states. The
graphene sheet is irradiated by a circularly polarized and
spatially uniform laser of amplitude A0 and frequency Ω.
Choosing x to be the spatially uniform direction wrap-
ping the cylinder, with kx being the momentum along
this direction, and labeling the sites along the cylinder
by ny = 1 . . . Ny, where Ny is even, the Hamiltonian of
graphene without the laser is,

HG = −th
∑

kx,ny=1...Ny/2

[
c†2ny−1,kx

c2ny,kx

×
(
e−ikxδ1x + e−ikxδ2x

)
+ h.c

]
+

[
c†2ny+1,kx

c2ny,kx + h.c.

](
1− δny=Ny/2

)
. (1)

Above odd and even sites are the A and B sub-lattices
respectively, and the nearest-neighbor vectors measured
from the B sub-lattice are,

~δ1 =
a

2

(√
3,−1

)
; ~δ2 =

a

2

(
−
√

3,−1
)

; ~δ3 = a (0, 1) .(2)

The laser enters through the replacement c†~r′+~rc~r′ →

c†~r′+~rc~r′e
−i

∫ ~r′+~r
~r′

~A·d~l. Thus in the presence of a laser, the

Hamiltonian gets modified to,

H = −th
∑

kx,ny=1...Ny/2

[
c†2ny−1,kx

c2ny,kx

×
(
e−ikxδ1x−i

~A·~δ1 + e−ikxδ2x−i
~A·~δ2
)

+ h.c.

]
+

[
c†2ny+1,kx

c2ny,kxe
−i ~A·~δ3 + h.c.

](
1− δny=Ny/2

)
,(3)

where ~A = f(t)A0 [cos(Ωt),− sin(Ωt)] is the circularly
polarized laser, and f(t) is a function that determines
how the laser was switched on. In this paper we will
study the effect of a sudden quench which corresponds to
f(t) = Θ(t), Θ(x) being the Heaviside function. Physi-
cally this corresponds to time-evolving the ground state
of graphene by the Hamiltonian H(t > 0+).

Before the laser is switched on, the wavefunction cor-
responds to the half-filled ground-state of graphene |Ψin〉
which in Fock-space we write as,

|Ψin〉 =
∏

kx,l=occ

ε†l,kx |0〉. (4)

Above l labels the exact eigenstates of graphene, there
are Ny of them for each kx, and l = occ implies the
lowest Ny/2 occupied levels. These exact eigenstates can
be expanded in the position basis as,

ε†l,kx =
∑

ny=1...Ny

akx,l,nyc
†
ny,kx

, (5)

where akx,l,ny are complex coefficients.
In the Heisenberg representation, the switching on of

the laser implies the time-evolution,

d

dt
cny,kx = i

[
H(t), cny,kx(t)

]
= −i

∑
n′
y

[
hkx(t)

]
ny,n′

y

cn′
y,kx

(t), (6)

where we have denoted the full Hamiltonian as H =∑
kx,ny,n′

y
c†ny,kx [hkx ]ny,n′

y
cn′
y,kx

. The solution of the

above equation is

cny,kx(t) =
∑
n′
y

[
Ukx(t, 0)

]
ny,n′

y

cn′
y,kx(0), (7)

where Ukx is an Ny×Ny unitary matrix representing the
time-evolution operator,

i
∂

∂t
Ukx(t, t′) = H(t)Ukx(t, t′), (8)

and obeys Ukx(t, t) = 1.
At times after the complete switch-on of the laser

(t, t′ > 0+ for the quench) ,

Ukx(t, t′)=
∑

α=1...Ny

e−iεkxα(t−t′)|φkx,α(t)〉〈φkx,α(t′)|,(9)
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εkxα being the quasi-energies, while |φkx,α(t)〉 are the
time-periodic Floquet quasi-modes21. In our representa-
tion these are Ny component vectors whose components
we label as φkx,α,ny . Note the distinction between the
time-periodic quasi-modes, and the exact solution of the
time-dependent Schrödinger equation |ψkx,α(t)〉, where
the latter is obtained from the former by multiplication
by a time-dependent phase,

|ψkx,α(t)〉 = e−iεkxαt|φkx,α(t)〉. (10)

We obtain the quasi-energies and quasi-modes using
standard methods21. The time-periodicity of the Floquet
modes allows an expansion in Fourier components,

|φkx,α(t)〉 =
∑
m

eimΩt|φmkx,α〉. (11)

Eq. (8) implies that the Fourier components φmkx,α,ny
obey, ∑

m

[
Hn,m +mΩδm,n

]
|φmkx,α〉 = εkxα|φnkx,α〉, (12)

Hn,m =
Ω

2π

∫ 2π/Ω

0

dte−i(n−m)ΩtH(t). (13)

Thus the time-dependent problem of Eq. (8), has been
traded for a time-independent problem, albeit in an ex-
panded Hilbert space due to the Fourier expansion.

In practice how many harmonics |φm〉 need to be kept
depends on the laser parameters. Denoting the range of
harmonics retained as m = −M . . .M , we need to ef-
fectively solve for the eigen-system of a Ny(2M + 1) ×
Ny(2M + 1) dimensional Hamiltonian. High frequency
and low amplitudes usually require retaining fewer har-
monics than low frequency and large amplitudes. For the
four cases studied by us, we find good numerical conver-
gence for M = 6 for phases P1,2,3, and M = 12 for the
phase P4. Once the Fourier components |φm〉 are known,
the Floquet modes at any time can be obtained from
Eq. (11), and the corresponding time-evolution operator
can be determined from Eq. (9).

A key physically relevant quantity entering in the ex-
pectation value of observables is the occupation proba-
bility Oα(kx) of the Floquet eigenstates labeled by kx, α.
For the quench this is simply given by overlaps between
the Floquet eigenstate at t = 0, and the half-filled
ground-state of graphene. To see this consider the sim-
ple case where initially only a single mode of graphene
labeled by l is occupied. Thus the initial wave-function

is |ψkx,in(0)〉 = ε†l,kx |0〉. The quench implies, that from
t > 0, the state is

|Ψkx(t)〉 = Ukx(t, 0)|ψkx,in(0)〉

=
∑
α

e−iεkxαt|φkx,α(t)〉〈φkx,α(0)|ε†l,kx |0〉. (14)

where in the last line we have used Eq. (9) for the time-
evolution operator. What the above expression implies is
that the amplitude for being in the exact eigenstate of the

time-periodic Hamiltonian |ψkx,α(t)〉 = e−iεkxαt|φkx,α(t)〉
(which is the Floquet mode multiplied by a phase), is a
time-independent quantity and simply given by the over-
lap of the initial state and the exact eigenstate at the
time when the laser was switched on. We chose this time
to be t = 0. Thus the probability of being in the exact

eigenstate kx, α is |〈φkx,α(0)|ε†l,kx |0〉|
2

Accounting for the fact that initially not just one mode
l, but many modes are occupied, the occupation proba-
bility of the α quasi-energy level is simply obtained from
summing over all the initially occupied states,

Oα(kx) =
∑
l=occ

|〈φkx,α(0)|ε†l,kx |0〉|
2

=
∑

l=occ,ny,n′
y

[
φ∗kx,α,ny (0)akx,l,ny

][
φkx,α,n′

y
(0)a∗kx,l,n′

y

]
.(15)

One way to understand the meaning of these occupa-
tion probabilities is that since the final Hamiltonian is
quadratic, it has many conserved quantities, which by
definition do not evolve in time. Oα(kx) should be viewed
as these conserved quantities. As shown further below,
these are also the natural quantities entering in physi-
cal observables. It is also useful to study the momentum
averaged occupation of the Floquet levels,

Oα =
1

Nx

∑
kx

Oα(kx), (16)

where Nx is the number of points in the kx direction.

We are interested in the current density operator as
this directly measures the nature of the chiral eigenstates
of the periodically driven system. In order to define a

current operator, we apply a weak vector potential ~Apr,
and expand the Hamiltonian to leading order in it. Thus,

H(t)→ H(t)− i
∑
rr′ab

c†r′+r,ah
ab
r′+r,r′(t)cr′,b

×~r · ~Apr(r
′ +

r

2
), (17)

where a, b is the graphene sublattice index. For sim-
plicity, let us say that the vector potential is spatially
uniform and applied along the x-direction, then H(t) =

H(Apr = 0) + JxApr, where Ĵx is the current operator in
the x-direction,

Ĵx = −i
∑
r′rab

rxc
†
r′+r,ah

ab
r′+r,r′(t)cr′,b. (18)

Because the system is spatially uniform along the x-
direction, we perform a Fourier transform and write,

Ĵx = −i 1

Nx

∑
k1xk2xab,r,r′

c†k1x,r′y+ry,a
ck2x,r′y,brx

×eik2xr
′
x−ik1x(r′x+rx)habr′+r,r′(t). (19)
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Since habr′+r,r′ depends only on r, the sum on r′x gives
k1x = k2x. Then,

Ĵx =
1

Nx

∑
kx,a,b,r′y,ry

c†kx,r′y+ry,a
ckx,r′y,b

×∂kx
∑
rx

e−ikxrxhabrx,ry (t),

=
1

2

∑
ny=1...Ny/2

(
Ĵ2ny−1 + Ĵ2ny

)
, (20)

where Ĵny is the current density at site ny. Note that
the current density in a unit-cell is the average of the
current density from the A (J2ny−1) and B sub-lattice
(J2ny ). Using Eq. (3), current densities from the A and
B sub-lattice are equal, and given by

Ĵ2ny−1 =
tha

Nx

√
3
∑
kx

[
c†2ny−1,kx

c2ny,kxe
−iA0a

2 sin(Ωt)

× sin

(√
3a

2

{
kx +A0 cos(Ωt)

})
+ h.c.

]
= Ĵ2ny . (21)

It is convenient to expand the time-periodic matrix
elements of the current operator in the Fourier basis,

ei
A0a
2 sin(Ωt) sin

[√
3a

2

{
kx +A0 cos(Ωt)

}]
=
∑
m

e−imΩtJ̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)
, (22)

where J̃m are the Bessel functions. Thus the current
density operator is

Ĵ2ny−1 =

√
3
tha

Nx

∑
kx,m

[
J̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)]

×
[(
eimΩtc†2ny−1,kx

c2ny,kx + h.c

)]
. (23)

It is interesting to note that if one retains only the m = 0
harmonic, the current density operator is the same as
that for the undriven case, but with the effective hopping
amplitude th renormalized to thJ̃0(A0a) by the laser. For
non-zero m, the above expression for the current operator
highlights that the electron tunneling between neighbor-
ing sites can be accompanied by m-photon absorption or
emission processes, with thJ̃m(A0a) controlling the am-
plitude of such processes.

The expectation value of the current density operator
at a time t after the quench is

J2ny−1(t) = 〈Ψin|T̃ ei
∫ t
0
dt′H(t′)Ĵ2ny−1T e−i

∫ t
0
dt′H(t′)|Ψin〉

=
√

3
tha

Nx

∑
kx,m

[
J̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)]

×
[
〈Ψin|

(
eimΩtc†2ny−1,kx

(t)c2ny,kx(t) + h.c

)
|Ψin〉

]
. (24)
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FIG. 2. Spectrum and occupation probabilities due to a
quench for the case P1 where A0a = 0.5,Ω = 10th, and the
Chern number is C = 1. The system supports a pair of chiral
edge modes at the center of the FBZ. The area of the circles
are proportional to the occupation probability Oα(kx).
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FIG. 3. Spectrum and occupation probabilities due to a
quench for the case P2 where A0a = 1.5,Ω = 5th, and the
Chern number is C = 1. The system supports a pair of chiral
edge modes at the center of the FBZ. The area of the circles
are proportional to the occupation probability Oα(kx).

Above T , T̃ are the time and anti-time ordering oper-
ators respectively, and the time-dependent behavior of
c2ny,kx(t) are obtained from Eq. (7).

In Eq. (24) we need to evaluate expectation values of

the kind nj1,j2,kx(t) = 〈Ψin|c†j1,kx(t)cj2,kx(t)|Ψin〉, which



6

using the time-evolution operator may be written as,

nj1,j2,kx(t) = 〈Ψin|c†j1,kx(t)cj2,kx(t)|Ψin〉

=
∑
j′j′′

[
Ukx(t, 0)

]
j2j′

[
Ukx(0, t)

]
j′′j1

×〈Ψin|c†j′′,kx(0)cj′,kx(0)|Ψin〉

=
∑

j′j′′,l=occ

[
Ukx(t, 0)

]
j2j′

[
Ukx(0, t)

]
j′′j1

akx,l,j′a
∗
kx,l,j′′

=
∑

j′,j′′,αβ,l=occ

e−iεkxαt+iεkxβtφkx,α,j2(t)φ∗kx,α,j′(0)

×φkx,β,j′′(0)φ∗kx,β,j1(t)akx,l,j′a
∗
kx,l,j′′ . (25)

At long times, we need only keep α = β terms, as the
α 6= β terms oscillate in time with different frequencies
for the different momenta kx. Thus on summing over kx
the α 6= β terms vanish as a power-law due to dephas-
ing. Thus at long times, after the dephasing has set in,
the current density is given by the “diagonal ensemble”
corresponding to keeping only α = β,

J2ny−1(t→∞) =

√
3
tha

Nx

∑
kx,m,j′,j′′,α,l=occ

[
eimΩtφkx,α,2ny (t)φ∗kx,α,2ny−1(t)

×φ∗kx,α,j′(0)φkx,α,j′′(0)akx,l,j′a
∗
kx,l,j′′ + h.c.

]
×
[
J̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)]
. (26)

This result is still oscillatory over the period of the
laser on account of the time periodicity of the Floquet
modes. Expanding the Floquet modes in their Fourier
basis φ(t) =

∑
m e

imΩtφm, and time averaging over one
cycle of the laser, we find, the quench current density to
be,

Jny (t→∞) =
1

Nx

∑
kx,α=1...Ny

Oα(kx)jα,ny (kx), (27)

where jα,ny (kx) is the current density carried by an indi-
vidual Floquet eigenstate labeled by α, kx and time av-
eraged over a laser cycle,

jα,2ny−1(kx) =

√
3tha

∑
m,n

[
J̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)]

×2Re

[
φnkx,α,2ny

(
φn+m
kx,α,2ny−1

)∗]
, (28)

jα,2ny (kx) = jα,2ny−1(kx). (29)

Above we see the key role played by the occupation
Oα(kx) as the current density at site ny is the cur-
rent density jα,ny (kx) from all Floquet eigenstates (α, kx)
weighted by the occupation of the states. In what follows

we will not only discuss the quench current density de-
fined in Eq. (27), but also the current density of a single
Floquet eigenstate α when the occupation is the same for
all kx. This is defined as,

Jα,ny =
1

Nx

∑
kx

jα,ny (kx), (30)

and is simply the momentum average of the current den-
sity operator of a Floquet eigenstate.

Note that the current density is not what is directly
measured in transport such as Hall response. For the
latter, a proper Kubo formula or Landauer formalism
approach needs to be employed. Employing Kubo for-
malism, one finds that the Hall current is determined by
topological properties such as the time-averaged Berry
curvature, but now weighted by the occupation proba-
bilities of the quasi-energy bands20. The average current
density on the other hand is far more sensitive to mi-
croscopic details, and can be probed using other meth-
ods such as sensitive magnetometers like SQUIDs that
respond to the local magnetization generated by local
currents29,30.

III. RESULTS

The laser frequency and amplitude can be used to drive
a series of topological phase transitions, and in this pa-
per we focus on the four topological phases summarized
in Fig. 1. Of these four phases, P1 corresponds to a high-
frequency off-resonant laser where the laser frequency is
larger than the bandwidth of graphene (Ω > 6th). The
other three phases correspond to low-frequency resonant
lasers (Ω < 6th). We first discuss the occupation proba-
bilities for these four cases separately below, followed by
a discussion of the current densities.

A. Occupation probability and bulk-boundary
correspondence in transport

The phase P1 corresponds to an off-resonant laser with
parameters A0a = 0.5,Ω = 10th and Chern number
C = 1. The quasi-energies for this case are shown in
Fig. 2, and include a pair of chiral edge modes at the
center of the FBZ. Thus for this case, the Chern number
equals the number of chiral edge modes. A key quan-
tity is the occupation probabilities of the edge and bulk
modes. For a quench switch-on protocol these are given
by Eq. (15), and are quite simply determined by the over-
lap of the Floquet modes at t = 0 with the occupied
states of graphene.

The occupation probabilities of the Floquet levels for
P1 are indicated by circles in Fig. 2, with the area of
the circles proportional to the occupation Oα(kx). The
effect of the quench on the occupation can also be sum-
marized by simply taking the momentum average as de-
fined in Eq. (16), and as plotted in the top left panel of
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Fig. 6. These figures show that for the off-resonant laser,
to a good degree, only the lower Floquet band is occu-
pied even though the laser was switched on as a quench.
Fig. 6 in fact shows that the distribution function for P1

looks like a zero temperature Fermi-function of a half-
filled state.

For all the phases studied here, one finds the following
symmetry between the occupation probabilities for quasi-
levels with quasi-energies of the opposite sign,

Oα(kx) +ONy−α+1(kx) = 1. (31)

We have proven the above relation in Appendix A, where
we show that it arises as a consequence of the particle-
hole symmetry of the Hamiltonian before the quench, and
the Floquet Hamiltonian. The momentum average of the
above expression is Oα+ONy−α+1 = 1, a behavior which
is clearly reflected in all the panels of Fig. 6.

In Ref. 20 the effect of a quench switch-on of the laser
was studied on bulk graphene, where there are no edge
modes. Several topological phases were studied, and the
Hall conductance from a Kubo formula approach was
computed. For the P1 phase, the Hall conductance was
found to show a value close to the maximum value of
e2/h. This result is consistent with our observation here
that for the off-resonant laser, the quench occupation is
very close to that of an ideal half-filled Floquet band.

The results of Ref. 20 for an extended system with no
boundaries, and our results here for a finite system which
hosts edge states show signatures of the bulk-boundary
correspondence of TIs, where Hall response in a bulk sys-
tem can alternately be described in terms of transport by
chiral edge states when a infinitesimal chemical potential
difference is applied to them. This is because we find
here that for P1, the edge states in the center of the FBZ
survive the quench, and are occupied with a very low
effective temperature. Thus this pair will contribute to
a conductance of O(e2/h) within a Landauer formalism
that assumes there is no inelastic scattering. Any devia-
tions from this value is due to the small, albeit non-zero
excitations of the bulk states which have the opposite chi-
rality to the edge states (see further discussion below).
The Hall response in closed systems without leads can be
measured experimentally in cold-atomic gases along the
lines of Ref. 11 where an application of an external po-
tential gradient leads to a transverse drift of atoms due
to a non-zero Chern number of the atomic bands.

We make similar observations for the phase P2 which
now corresponds to a resonant laser where A0a =
1.5,Ω = 5th, C = 1. The spectrum is shown in Fig. 3.
Thus this phase is similar to phase P1 in being like a
conventional Chern insulator where the Chern number
equals the number of chiral edge modes. An interest-
ing observation is the asymmetry in kx, i.e., Oα(kx) 6=
Oα(−kx). This exists even for P1, but is less visible
there. The asymmetry in the occupation was also no-
ticed in Ref. 31 where the effect of a quench switch-on
of the laser was studied on a bulk system (with no edge
modes). The asymmetry arises because the laser breaks

inversion symmetry. For our case in particular, at the
switch-on time t = 0, the laser is pointed entirely along
the x-direction, thus breaking the inversion symmetry in
x̂.

Both the Oα(kx) in Fig. 3, as well as its momentum
average in the top right panel of Fig. 6 show that the P2

case corresponds to a slightly higher effective tempera-
ture in comparison to phase P1, with both lower (ε < 0)
and upper (ε > 0) edge modes getting occupied, and a
larger fraction of the bulk states being occupied. Yet the
bulk excitation density is still quite low like P1. A bulk
Kubo formula computation for the dc Hall conductance
in a spatially extended system for this case revealed20

a result of O(e2/h), consistent with the low excitation
density of bulk states generated by the quench even for
this phase. We would arrive at the same conclusion if
we were to alternately attribute the entire Hall response
as due to the chiral edge-state studied here, where the
bulk excitations degrade the maximum possible value by
a small amount.

While it is simple to understand why a pair of counter-
propagating edge states at zero effective temperature
(such as those encountered so far) will give a linear re-
sponse conductance of O(e2/h), we now briefly explain
why a pair of counter-propagating edge states at infinite
effective temperature will give zero contribution to dc
transport. If we think of the dc transport as a linear
response to a small chemical potential difference, a net
current flows because the population of say the left mover
is increased slightly over the right mover. If now the pair
were such that all states were uniformly occupied, a small
voltage bias will not change the net occupation between
left and right movers, leading to zero conductance. This
simple picture will come in handy when understanding
the bulk-boundary correspondence in the phases P3,4 be-
low.

The phase P3 is also a resonant laser corresponding to
A0a = 0.5,Ω = 5th, C = 3, but it is very different from
the resonant case P2 discussed above. The spectrum for
P3 is shown in Fig. 4, and reveals the unusual properties
of the Floquet Chern insulator, where anomalous edge
states appear at the Floquet zone boundaries. The chi-
ralities of these edge modes are shown schematically in
Fig. 1, and explicitly via the current densities in Fig. 8.
Thus for this case the Chern number now equals the dif-
ference between the number of chiral edge modes above
and below the band, where there are two right movers
above and one left mover below the band on one of the
two spatial boundaries. A clear signature of the laser
resonance is seen in both Fig. 4 and the lower left panel
of Fig. 6. The resonance shows up as a selective deple-
tion of the lower Floquet band, and the corresponding
selective occupation of the upper band. Note that the
points in kx where the occupation changes suddenly due
to the resonance condition, are also the points in kx at
which anomalous edge states appear. This is because the
laser resonance effectively produces a band crossing at
|kx|a ∼ 0.5 in Fig. 4. This band crossing is accompanied
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by a change in the Chern number and a corresponding
change in the number of edge modes.

Thus phase P3 is special in that in the same phase one
has edge modes that arise due to off-resonant and reso-
nant processes. The pair of edge modes located at ε = 0
have the same origin as in the high frequency laser (phase
P1) as they arise due to off-resonant virtual processes,
while the two pairs of anomalous edge modes arise due
to resonant processes. This is also reflected in the fact
that the edge modes at ε = 0 are occupied at a very low
effective temperature (see the sharp step at α = Ny/2
in lower left panel of Fig. 6), while the anomalous edge
modes are at a much higher effective temperature. Note
that anomalous edge modes are not so clearly visible in
Fig. 4 as the quasi-energy gap in which they live are
rather small. However the corresponding current densi-
ties carried by them is shown in Fig. 8 and indeed show
the current density to be localized at the boundary.

Interestingly for a quench in a bulk system, the case
P3 showed a Hall conductance of approximately e2/h in
Ref. 20. This is a far deviation of 3e2/h for the Hall con-
ductance if only the lower Floquet band was fully occu-
pied. This came about because in the bulk computation
of Ref. 20, and as can also be seen here in Fig. 4, the
resonance significantly populates portions of the upper
Floquet band. Since the upper Floquet band has the op-
posite Berry curvature to the lower one, it reduced the
Hall conductance to almost 1/3 of its maximum value of
3e2/h in Ref. 20.

As a signature of the bulk-boundary correspondence in
topological systems, a dc Hall conductance of ∼ 1e2/h is
consistent with our observation here that for the phase
P3, of the 3 pairs of edge states likely to participate in
transport, 2 of them, in particular the ones that reside
at the boundaries of the FBZ are at a much higher ef-
fective temperature as they arise due to resonant pro-
cesses. Thus these two pairs contribute relatively little
to dc transport. Most of the dc transport in an edge state
picture comes from the off-resonant pair of edge states lo-
cated at the center of the FBZ. Any further deviations
from 1e2/h is due to residual bulk excitations that have
the opposite chirality to the edge-state.

The third resonant case corresponds to phase P4 with
laser parameters A0a = 10,Ω = 0.5th, C = 0. As the
spectrum in Fig. 5 shows, this case also highlights a pe-
culiarity of Floquet Chern insulators in that it is possible
to have bands with zero Chern number, and yet topolog-
ical edge states appear above and below the quasi-band.
For this case there are 4 pairs of edge states with the
same chirality, with two of these residing above the Flo-
quet band, and two residing below the Floquet band.
Lower right panel of Fig. 6 shows that P4 is like an infi-
nite temperature state as the occupation probabilities of
all the levels are almost the same. This is not surpris-
ing given that the laser frequency is much smaller than
the band-width, leading to many pockets of resonances.
These pockets are not sharp like in phase P3, but get
smoothened out due to the large laser amplitude that in-
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FIG. 4. Spectrum and occupation probabilities due to a
quench for the case P3 where A0a = 0.5,Ω = 5th, and the
Chern number is C = 3. The system supports a pair of chiral
edge modes at the center of the FBZ, and two pairs of chi-
ral edge modes on the Floquet zone boundaries (see Fig. 1
and Fig. 8). The area of the circles are proportional to the
occupation probability Oα(kx).
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FIG. 5. Spectrum and occupation probabilities due to a
quench for the case P4 where A0a = 10,Ω = 0.5th, and the
Chern number is C = 0. The system supports two pairs of
chiral edge modes at the center of the FBZ, and two pairs of
chiral edge modes on the Floquet zone boundaries (see Fig. 1
and Fig. 8). The area of the circles are proportional to the
occupation probability Oα(kx).

creases the matrix elements for multi-photon processes.
The dc and optical Hall conductance for a bulk sys-

tem for the same laser parameters as P4 was studied in
Ref. 25. It was found that a small albeit non-zero Hall
conductance is possible for a laser quench, even though
an ideal occupation of the Floquet bands would lead to a
zero Hall conductance. This non-zero conductance comes
about because of the nonequilibrium occupation of the
Floquet bands, each of which have a net chirality (see
further discussion below) leading to a non-zero Hall re-
sponse. The magnitude of the Hall response is much
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FIG. 6. Quench occupation probabilities of the Floquet
quasi-energy levels averaged over the momenta kx. Clockwise
from top left, phases P1, P2, P4 and P3 (see Fig. 1). P4 has an
almost infinite effective temperature, while P1 has an almost
zero effective temperature.
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FIG. 7. Upper panel: Case P1 where A0a = 0.5,Ω =
10th, C = 1. Lower-panel: Case P2 where A0a = 1.5,Ω =
5th, C = 1. Both correspond to strip width Ny = 40. Cur-
rent densities of three exact Floquet eigenstates: one from
the Floquet band edge (α = 1), another from the center of
the Floquet band (α = Ny/4 = 10) and a third from the edge
state located at the center of the FBZ (α = Ny/2 = 20). The
current densities from the two bulk states α = 1, 10 are much
smaller than that from the edge states, and are also of the
opposite chirality from that of the edge state.

smaller than e2/h, and consistent with all 4 pairs of edge
modes being occupied at an infinite effective tempera-
ture. This qualitative similarity between the results in
this paper and the bulk computation of Refs. 20 and
25 based on the Kubo formalism, is a signature of the
bulk-boundary correspondence that exists in topological
systems, and appears to persist even out of equilibrium.

B. Current density

Finally we turn to the question of the current densi-
ties, a key quantity that directly probes the chiral nature
of the system. Jα,ny , defined in Eq. (30), is the current
density of the α Floquet level given that all kx states are
equally occupied. In contrast, the quench current den-
sity given in Eq. (27) is the current density of the Floquet
eigenstates, but weighted by the occupation probabilities
Oα(kx) of these states. We first discuss the current den-
sities of the Floquet eigenstates before we turn to the
quench current density which has contributions from all
Floquet eigenstates.

It is first useful to make some general observations. For
a fully occupied band, the current density is zero. This
manifests in many ways, for example the two bulk-bands
have opposite Chern number20 so that when both bands
are fully occupied, there is no Hall response. For our
system with edges, this implies∑

α=1...Ny

Jα,ny = 0. (32)

An important point to note is that even though the in-
stantaneous H(t) has no particular symmetry other than
particle-hole symmetry, the Floquet Hamiltonian shows
additional symmetries such as inversion symmetry when
the Floquet modes are averaged over one cycle of the
laser (see Appendices A, B). This is also seen by noting
that in the high-frequency limit, a Magnus expansion of
the Floquet Hamiltonian yields the Haldane model with
particle-hole symmetry, inversion symmetry, but broken
time-reversal symmetry.7,9 As shown in Appendix C, a
consequence of these symmetries is that the current den-
sity carried by a Floquet eigenstate time-averaged over a
laser cycle is exactly anti-symmetric in position,

Jα,ny = −Jα,Ny−ny+1. (33)

Furthermore, there exists an exact symmetry between
current densities from lower (1 ≤ α ≤ Ny/2) and upper
(1 +Ny/2 ≤ α ≤ Ny) Floquet bands,

Jα,ny = JNy−α+1,ny . (34)

The implications of this for the Floquet states is that
for an exactly half-filled Floquet band, the current den-
sity vanishes, ∑

α=1...Ny/2

Jα,ny = 0. (35)

Figs. 7 and 8 show the current densities (all our results
are time-averaged over a laser cycle) for three Floquet
eigenstates, one corresponding to the lowest Floquet level
α = 1, the second a level from the middle of the lower
band α = Ny/4, and the third being the edge mode at
α = Ny/2. While Fig. 7 is for the two topological phases
P1,2 which correspond to a conventional Chern insula-
tor, Fig. 8 is for the cases P3,4 where anomalous edge
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FIG. 8. Upper panel: Case P3 where A0a = 0.5,Ω = 5th, C =
3 with strip width Ny = 200. Lower-panel: Case P4 where
A0a = 10,Ω = 0.5th, C = 0 with strip width Ny = 100. For
each panel, current densities of three exact Floquet eigen-
states, one state from the Floquet band edge (α = 1), another
from the Floquet band center (α = Ny/4 = 50(P3), 25(P4))
and a third from the edge state(s) located at the center of the
FBZ (α = Ny/2 = 100(P3), 50(P4)) are shown. The current
density from the bulk state α = Ny/4 is much smaller than
that from the edge states (α = 1, Ny/2). The current density
over only half the strip has been plotted as for the other half
the current is anti-symmetric to the first half.
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FIG. 9. Current density flowing in the x̂ di-
rection and plotted as a function of the y ≡ ny,
at long times after the laser quench for clockwise
from top-left P1 ≡ [A0a = 0.5,Ω = 10th, C = 1],
P2 ≡ [A0a = 1.5,Ω = 5th, C = 1], P4 ≡
[A0a = 10,Ω = 0.5th, C = 0], and P3 ≡
[A0a = 0.5,Ω = 5th, C = 3]. The quench current is sym-
metric in ny, hence for the lower two panels, the current
density is plotted over only half the strip. For a half-filled
Floquet band, the current density is zero due to particle-hole
symmetry.

states appear at the Floquet zone boundaries. For Fig. 8
therefore, α = 1 is also an edge state. Note that since
the edge state localization length for phases P3,4 is quite
long, for this reason we had to work with cylinders of
longer lengths so as to prevent the edge states at the
boundaries of the FBZ from hybridizing.

As noted above, the current density of the exactly half-
filled case is zero. The way this cancellation comes about
for the Chern insulators P1,2 (Fig. 7) with a single edge
state corresponding to α = Ny/2 is that the current den-
sity of that edge state is opposite in sign to the cur-
rent density of all the bulk states α = 1 . . . (−1 +Ny/2).
Thus while each bulk state contributes a relatively small
amount to the current density, all their contributions add
up to a net value such that it exactly cancels the current
density from the edge state.

For the phase P3 the edge states from the FBZ bound-
aries (α = 1) have the opposite chirality to the edge state
from the FBZ center (α = Ny/2), and this can be clearly
seen in the top panel of Fig. 8. This figure also shows
that for P3, the magnitude of the edge-currents from the
states in the zone-boundary are much smaller than those
from the center.

For the phase P4 the edge states from the FBZ bound-
aries (α = 1) have the same chirality as the edge-state
from the FBZ center (α = Ny/2). This is reflected in the
lower panel of Fig. 8 where the peak values of the current
densities from the edge states at α = 1 and α = Ny/2 are
indeed of the same sign, although they may have opposite
signs within a few lattice spacings of the boundary.

Note that even though current densities carried by the
anomalous edge states at the FBZ boundaries can be of
the same magnitude as those of the edge states at the cen-
ter of the FBZ, it does not imply that they affect physi-
cal observables in the same way. This is because physical
observables, such as the quench current density, are ob-
tained by averaging over all the Floquet states, where
each state gets weighted by their respective occupation
probabilities. Moreover note that this current density
is not what one measures in transport such as Hall re-
sponse, where the latter is a linear response to an external
voltage difference, and given by the Kubo or Landauer
formalism. As argued in the previous sub-section, an ef-
fective high temperature of the anomalous edge states
imply they contribute relatively little to transport.

We now discuss the quench current density i.e., the cur-
rent density carried by the wavefunction at long times af-
ter the quench. This is shown in the four panels in Fig. 9
for the four phases. Even though the current density of
each exact eigenstate is anti-symmetric in position along
the cylinder, the quench current density is symmetric in
position.

JNy−ny+1(t→∞) = Jny (t→∞). (36)

Why this is so is explained in Appendix C. Here we give
another quick way to understand this.

It is convenient to define the time-averaged local den-
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sity in the diagonal ensemble, which using Eq. (25) is,

ρny =
1

Nx

∑
kx

nny,ny,kx(t)

=
1

Nx

∑
kx,α=1...Ny

Oα(kx)
∑
m

∣∣∣∣φmkx,α,ny ∣∣∣∣2. (37)

As shown in Appendix B, the combination of being at
half-filling, the particle-hole and inversion symmetry of
the Floquet Hamiltonian, and the fact that the quench
breaks inversion symmetry causing Oα(kx) 6= Oα(−kx),
results in a local deviation of the density from half-filling,
which is anti-symmetric in position. In particular, defin-
ing, δρny = ρny − 1/2, we have the relation,

δρny = −δρNy−ny+1. (38)

Semi-classically, the current density is a product of
δρnyvny where vny is the velocity. Since the perfect chi-
rality of the exact Floquet eigenstates implies vny is anti-
symmetric in position, and δρny is also anti-symmetric in
position, this implies a net quench current density which
is symmetric in position. If the quench had preserved
inversion symmetry by providing an occupation proba-
bility with the symmetry Oα(kx) = Oα(−kx), then we
would have had δρny = 0, and consequently the time-
averaged quench current density would have been zero at
half-filling.

A simple way to see why all this comes about due to
the breaking of inversion symmetry, note that at the time
of the laser quench at t = 0, the vector potential is com-
pletely pointing along the x̂ direction. Thus inversion
symmetry in x̂ is broken resulting in an unequal popula-
tion of states at +kx and −kx. This implies that for ev-
ery |kx|, there is a net current flowing in the system due
to periodic boundary conditions in x̂. Since individual
eigenstates are exactly chiral along the ŷ direction, this
current density has to also imply that some net charge
be moved from one end of the cylinder to the other. A
slower quench will reduce the magnitude of this effect.

To generate this quench current density, all we needed
was to break inversion symmetry. If we had no particle-
hole symmetry for example due to next-nearest-neighbor
hopping, then we would have still generated a quench
current density, but this current density would not have
been exactly symmetric in position.

Thus we find that the quench current density appears
as a sheet of circulating current on the surface of the
cylinder. Such a current density profile will generate
a local magnetization, and is therefore detectable using
sensitive magnetometers such as SQUIDs29,30. This re-
sult may also be useful for using a fast quench as a tool
to generate dissipationless current flow in a carbon nan-
otube.

We now briefly discuss how our results depend on the
the length of the cylinder. We have taken care to ensure
that the length is sufficiently long so as to clearly iden-
tify the bulk and edge states. As the length is further

increased from our chosen lengths, the edge states are
not modified, while the bulk spectrum fills out more as
more states are being added. The physical observables we
study are properly normalized to account for this effect,
and therefore do not depend sensitively on the length of
the cylinder.

IV. CONCLUSIONS

One of the properties that make FTIs unique is a rich
structure of edge states, with edge modes appearing both
at the center of the FBZ as well as the boundaries. For
a low amplitude laser, one can identify the former with
off-resonant, and the latter by resonant processes. In
this paper we have highlighted how these qualitatively
different edge modes behave, the current densities carried
by them, and how they are occupied in a closed quantum
system where the laser was switched on as a quench.

We find that for an off-resonant laser, despite the laser
quench, the Floquet level occupation is remarkably close
to a half-filled zero temperature Fermi function. This
is consistent with a bulk Kubo-formula computation for
the Hall conductance20 which found it to be quite close
to e2/h. For the resonant laser, we find a selective de-
pletion and occupation of the Floquet modes, i.e., a laser
induced population inversion for selected regions in mo-
mentum space. As a consequence we find that in the
same phase (phase P3 for example) the edge states at
the center of the FBZ are occupied at a low effective
temperature, while the edge states at the boundaries of
the FBZ, and arising due to resonant processes, are occu-
pied with a high effective temperature. A slower quench
will not qualitatively affect this result because the laser
resonance condition does not depend on the amplitude of
the laser, but only on its frequency32.

By simply looking at how the edge states are occupied,
and what fraction of the bulk is excited, we can use the
Landauer formalism to make a simple estimate for the
conductance of the edge states and hence the Hall re-
sponse. We find this estimate to be consistent with the
Hall response for a spatially uniform system where no
edge modes exist and the entire Hall response is purely
due to bulk states and was computed using the Kubo
formalism20,25. This is a signature of the bulk-boundary
correspondence in FTIs where Hall response can be cap-
tured by two complementary ways, one entirely involving
bulk states in an infinite system, and the second involving
effective 1D transport along chiral edge states. Moreover
this correspondence and in particular the edge state pic-
ture also explains why the Hall response for some phases
like P3, when accounting properly for the nonequilibrium
occupation is only ∼ 1/3 of its maximum possible value
of Ce2/h.

We also find that the expectation values of the time-
averaged quench current density shows some special sym-
metries, for example it is exactly symmetric along the
length of the cylinder. We have shown that these have to
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do with the underlying particle-hole and inversion sym-
metry of the Floquet Hamiltonian and of graphene, where
for the former the inversion symmetry manifests itself
only after time-averaging over one cycle of the laser.

We also showed that the quench current density arises
because the laser quench breaks inversion symmetry say
in the x-direction, leading to an asymmetric occupation
of +kx and −kx states. Thus when periodic bound-
ary conditions are imposed in the x-direction, this leads
to a circulating current on the surface of the cylinder.
This current density profile is markedly different from the
naive expectation of having clockwise currents at the top,
and anti-clockwise currents at the bottom of the cylin-
der, where the latter would be the profile only in an exact
eigenstate of the system. Since each eigenstate is chiral,
we also showed that the quench current density profile
leads to a removal of charge from one end of the cylinder
to the other. This unusual current density profile can be
detected using magnetometers such as SQUIDs. More-
over laser quenches can be used as a tool for generating
a net dissipationless current flow in carbon nanotubes.
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supported by the US Department of Energy, Office of
Science, Basic Energy Sciences, under Award No. DE-
SC0010821.

Appendix A: Particle-hole symmetry of occupation
probabilities (proof of Eq. (31))

The proof of this equation is based on the particle-
hole symmetry of graphene and the Floquet Hamilto-
nians. According to this symmetry, energy eigenvalues
appear in pairs of opposite signs, and the correspond-
ing eigenstates are not independent, but can be obtained
from one another. This relation in general depends on
the representation of the Hamiltonian and in our geome-
try it has the following common form for graphene (|a〉)
and Floquet eigenstates (|φ〉),

φkx,α,ny (t) = (−1)nyφ∗kx,Ny−α+1,Ny−ny+1(t), (A1a)

akx,l,ny = (−1)nya∗kx,Ny−l+1,Ny−ny+1. (A1b)

Among the three subscripts, the second label α denotes
energy/quasi-energy while the third label ny denotes po-
sition along the cylinder. There are a total of Ny values
for each of these labels. We now justify Eq. (A1), and
then use it to derive Eq. (31).

Both graphene and the time-dependent Hamiltonian
H(t) have only nearest-neighbor hopping. Thus an oper-
ation P which simply changes the sign of the wave func-
tion on the B sublattice relative to the A sublattice, is
equivalent to reversing the sign of the Hamiltonian (in
this appendix the Hamiltonian is the first quantized ver-
sion of Eq. (1) for graphene and Eq. (3) for the time-
periodic system),

PH(kx, t)P−1 = −H(kx, t). (A2)

Let us now consider a second operation Iy that inverts
the system along the length of the cylinder, i.e., inter-
changes sites ny ⇔ Ny − ny + 1. Under this operation,

IyH(kx, t)I−1
y = H∗(kx, t). (A3)

The above two transformation can be combined into
a single one which is simply the charge-conjugation or
particle-hole transformation(

PIy
)
H∗(kx, t)

(
PIy

)−1

= −H(kx, t). (A4)

Now the Floquet modes obey the Schrödinger equation
for the Floquet Hamiltonian H − i∂t[

H(t)− i∂t − ε
]
φ(t) = 0. (A5)

Let us complex-conjugate the above equation,[
H∗(t) + i∂t − ε

]
φ∗(t) = 0. (A6)

Now let us apply the operation Iy,[
IyH∗(t)I−1

y + i∂t − ε
]
Iyφ∗(t)

=

[
H(t) + i∂t − ε

]
Iyφ∗(t) = 0. (A7)

Next we apply P to the above to obtain,[
PH(t)P−1 + i∂t − ε

]
PIyφ∗(t) = 0,[

−H(t) + i∂t − ε
]
PIyφ∗(t) = 0. (A8)

The above implies[
H(t)− i∂t + ε

]
PIyφ∗(t) = 0. (A9)

Thus Eqs. (A5), (A9) together give that if φ(t) is a Flo-
quet mode with quasi-energy ε, then PIyφ∗(t) is a Flo-
quet mode with the opposite quasi-energy −ε. Thus the
components of φ in a cylindrical geometry, which we de-
note by φkx,α,ny , with kx labeling momentum, α labeling
quasi-energy, and ny labeling position along the cylinder,
must be related as Eq. (A1)

In the following we drop kx in the subscript to shorten
the equations. Since in the definition of Oα(kx) there is
a summation over the occupied energies of graphene, we
also need the completeness equation of these eigenstates∑

l=1···Ny

|al〉〈al| = 1, (A10)

where 1 is the Ny × Ny identity matrix. We can split
this sum into the upper half (l = Ny/2 + 1 . . . Ny)
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which includes unoccupied states and the lower half
(l = 1 . . . Ny/2) which includes occupied states∑

l=unocc

al,nya
∗
l,n′

y
+
∑
l=occ

al,nya
∗
l,n′

y
= δny,n′

y
. (A11)

Applying the particle-hole symmetry to the first sum we
obtain∑

l=unocc

(−1)ny+n′
ya∗Ny−l+1,Ny−ny+1aNy−l+1,Ny−n′

y+1

+
∑
l=occ

al,nya
∗
l,n′

y
= δny,n′

y
. (A12)

Since l is a dummy index in the sum, we relabel l in the
first sum with Ny − l + 1. Therefore both sums will be
over occupied states and we obtain,∑

l=occ

al,nya
∗
l,n′

y
= δny,n′

y

−
∑
l=occ

(−1)ny+n′
ya∗l,Ny−ny+1al,Ny−n′

y+1. (A13)

Now we can apply this result to prove the required
relation for Oα(kx). Starting with the definition of
ONy−α+1(kx) we have

ONy−α+1(kx) =
∑
ny,n′

y

φ∗Ny−α+1,ny (0)φNy−α+1,n′
y
(0)

×
∑
l=occ

al,nya
∗
l,n′

y
. (A14)

Now we apply the particle-hole symmetry on the Floquet
states to get

ONy−α+1(kx) =∑
ny,n′

y

(−1)ny+n′
yφα,Ny−ny+1(0)φ∗α,Ny−n′

y+1(0)

×
∑
l=occ

al,nya
∗
l,n′

y
. (A15)

We can insert Eq. (A13) in the above to obtain

ONy−α+1(kx) =
∑
ny,n′

y

φα,Ny−ny+1(0)φ∗α,Ny−n′
y+1(0)×

[
(−1)ny+n′

yδny,n′
y
−
∑
l=occ

a∗l,Ny−ny+1al,Ny−n′
y+1

]
.(A16)

After relabeling the sum variables ny and n′y, and per-
forming some straightforward algebra, one finds that this
equation can be rewritten in the following bra-ket nota-
tion

ONy−α+1(kx) = 〈φkx,α(0)|φkx,α(0)〉

−
∑
l=occ

〈φkx,α(0)|akx,l〉〈akx,l|φkx,α(0)〉, (A17)

where we have restored the kx indices again. This proves
the desired equation

ONy−α+1(kx) = 1−Oα(kx). (A18)

Appendix B: Anti-symmetry of density deviations
(proof of Eq. (38))

To prove Eq. (38), in addition to Eq. (A4) which im-
plies a particle hole symmetry of the Hamiltonian spec-
trum, we need another relation which relates the eigen-
states of the Hamiltonian at kx and −kx. This can be
done using the properties of the system under inversion
around the center of one of the hexagons. Under inver-
sion in both x and y directions,

H(kx, t) = H∗(−kx, t+ π/Ω). (B1)

Note that since the momentum is odd under inversion
symmetry, on the right the wave vector argument is −kx.
This also explains why the time argument of the Hami-
tonian on the right, is shifted by π/Ω. This is because

our circularly polarized field obeys ~A(t + π/Ω) = − ~A(t)
which is what we need for inversion symmetry to be sat-
isfied. Therefore, although inversion symmetry is not
satisfied between Hamiltonians at equal times, a weaker
version of this symmetry which relates two Hamiltonians
at different times, still holds.

Now consider the Floquet equation after the operation
Iy [

IyH(kx, t)I−1
y − i∂t − ε

]
Iyφ(kx, t) = 0. (B2)

Inserting Eq. (A3) in the above, one finds[
H∗(kx, t)− i∂t − ε

]
Iyφ(kx, t) = 0. (B3)

Now we use Eq. (B1) to obtain[
H(−kx, t+ π/Ω)− i∂t − ε

]
Iyφ(kx, t) = 0. (B4)

That is to say we can identify Iyφ(kx, t) with φ(−kx, t+
π/Ω) up to a phase factor. In components this becomes

φkx,α,ny (t) = φ−kx,α,Ny−ny+1(t+ π/Ω). (B5)

After squaring this equation, we get

|φkx,α,ny (t)|2 = |φ−kx,α,Ny−ny+1(t+ π/Ω)|2. (B6)

Now as usual we can expand the Floquet eigenstates in
their Fourier harmonics, |φα(t)〉 =

∑
m |φmα 〉eimΩt. This

will give∑
m,m′

φmkx,α,nyφ
m−m′∗
kx,α,ny

eim
′Ωt =

∑
m,m′

(−1)m
′
φm−kx,α,Ny−ny+1φ

m−m′∗
−kx,α,Ny−ny+1e

im′Ωt.(B7)

Since the Fourier harmonics with different exponents are
orthogonal, it is possible to equate the coefficients of the
same harmonics on the two sides. However, for our pur-
pose, only m′ = 0 would be required. Therefore we define

Sα,ny (kx) =
∑
m

∣∣∣∣φmkx,α,ny ∣∣∣∣2, (B8)
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where according to the above reasoning, one finds

Sα,ny (kx) = Sα,Ny−ny+1(−kx). (B9)

The Floquet Hamiltonian also has particle-hole symme-
try which relates the energy eigenvalues and eigenfunc-
tions of the lower and upper Floquet bands at the same
kx and at every instant of time. As noted in App. A this
symmetry imposes

φkx,α,ny (t) = (−1)nyφ∗kx,Ny−α+1,Ny−ny+1(t). (B10)

We can square this relation to obtain

|φkx,α,ny (t)|2 = |φkx,Ny−α+1,Ny−ny+1(t)|2. (B11)

As for the inversion symmetry, here too we can expand
the two sides of this equation in Fourier harmonics and
after equating the coefficients obtain

Sα,ny (kx) = SNy−α+1,Ny−ny+1(kx). (B12)

We may write the local density after the quench in the
diagonal ensemble, defined in Eq. (37), as

ρny =
1

Nx

∑
kx,α

Oα(kx)Sα,ny (kx), (B13)

where Nx denotes the total number of points in the kx
sum. As shown in App. A, particle-hole symmetry both
for graphene and the Floquet eigenstates give,

Oα(kx) = 1−ONy−α+1(kx). (B14)

Changing variables in Eq. (B13) from α → Ny − α + 1,
and using the above relation for Oα, we get,

ρny =
1

Nx

∑
kx,α

ONy−α+1(kx)SNy−α+1,ny (kx)

=
1

Nx

∑
kx,α

[
1−Oα(kx)

]
SNy−α+1,ny (kx). (B15)

Using Eq. (B12)

ρny =
1

Nx

∑
kx,α

[
1−Oα(kx)

]
Sα,Ny−ny+1(kx)

=
1

Nx

∑
kx,α

Sα,Ny−ny+1(kx)− ρNy−ny+1. (B16)

At every instant of time, the Floquet eigenstates form
a complete basis. Thus∑

α

|φkx,α(t)〉〈φkx,α(t)| = 1, (B17)

where 1 is the Ny ×Ny identity matrix. After a Fourier
expansion we obtain∑

α,m,m′

ei(m−m
′)Ωtφmkx,α,ny

[
φm

′

kx,α,n′
y

]∗
= δny,n′

y
.(B18)

Since the r.h.s. is time-independent, the only non-
vanishing terms arise for m = m′. Thus,∑

α,m

φmkx,α,ny

[
φmkx,α,n′

y

]∗
= δny,n′

y
, (B19)

or, ∑
α,m

φmkx,α,ny

[
φmkx,α,ny

]∗
= 1. (B20)

The above implies,∑
α

Sα,ny (kx) = 1, (B21)

and similarly for the momentum average of the above
quantity, we may write,

1

Nx

∑
kx,α

Sα,ny (kx) = 1. (B22)

Substituting this in Eq. (B16), we obtain,

ρny + ρNy−ny+1 = 1. (B23)

Writing ρny = 1/2 + δρny , this immediately implies,

δρny = −δρNy−ny+1. (B24)

Thus we have proved Eq. (38).
Now we show that if the quench had preserved inver-

sion symmetry Oα(kx) = Oα(−kx), then there would
have been no local deviation from half-filling i.e., δρny =
0. To prove this, we start by writing

ρny =
1

Nx

∑
kx,α

Oα(−kx)Sα,ny (−kx). (B25)

Using the inversion symmetry of the Floquet eigenmodes
in Eq. (B9), the above implies,

ρny =
1

Nx

∑
kx,α

Oα(−kx)Sα,Ny−ny+1(kx). (B26)

If Oα(kx) = Oα(−kx), the above leads to ρny =
ρNy−ny+1. But we also have the constraint in Eq. (B23),
so that for this case δρny = 0. Thus if Oα(kx) =
Oα(−kx), this would lead to no local deviation from half-
filling. As we show in the next appendix, this will also
lead to a zero time-averaged quench current density at
half-filling.

Appendix C: Symmetries of the current density of
Floquet eigenstates and the quench current density

In this section, using the symmetry relations of the
eigenstates obtained in previous appendices, we prove
Eqs. (33) and (34). We also prove that the quench cur-
rent density is symmetric i.e., Jny = JNy−ny+1, where
Jny is defined in Eq. (27).
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First let us consider Eq. (33). To derive this equation,
we will apply the inversion symmetry properties of the
eigenstates i.e., Eq. (B5). By Fourier expanding the two
sides of this equation, one finds

φmkx,α,ny = (−1)mφm−kx,α,Ny−ny+1. (C1)

Consider the current density carried by a Floquet eigen-
state α (Eq. (28), (29)). Under inversion in jα,2ny−1(kx),
its arguments kx and 2ny − 1, would be transformed to
−kx and Ny−2ny + 2. Therefore we consider the follow-
ing,

jα,Ny−2ny+2(−kx) =

√
3tha

∑
m,n

[
J̃−m (A0a) sin

(
−
√

3kxa

2
− mπ

3

)]
×2Re

[
φn−kx,α,Ny−2ny+2

(
φn+m
−kx,α,Ny−2ny+1

)∗]
. (C2)

We insert Eq. (C1) above to obtain,

jα,Ny−2ny+2(−kx) =

√
3tha

∑
m,n

(−1)m
[
J̃−m (A0a) sin

(
−
√

3kxa

2
− mπ

3

)]
×2Re

[
φnkx,α,2ny−1

(
φn+m
kx,α,2ny

)∗]
. (C3)

After using J̃−m = (−1)mJ̃m, one can relabel m and n,
to obtain

jα,Ny−2ny+2(−kx) =

√
3tha

∑
m,n

[
J̃−m (A0a) sin

(
−
√

3kxa

2
+
mπ

3

)]
×2Re

[
φnkx,α,2ny

(
φn+m
kx,α,2ny−1

)∗]
. (C4)

Comparison of the above result and the definition of
jα,ny (kx), we find

jα,ny (−kx) = −jα,Ny−ny+1(kx), (C5)

which after summing over kx proves that the average
current density carried by a Floquet eigenstate is anti-
symmetric in position Jα,ny = −Jα,Ny−ny+1.

Next, we prove Eq. (34). For this we need to Fourier
transform Eq. (A1)

φmkx,α,ny = (−1)ny
(
φ−mkx,Ny−α+1,Ny−ny+1

)∗
. (C6)

Combination of the above with Eq. (C1) gives

φmkx,α,ny = (−1)m+ny
(
φ−m−kx,Ny−α+1,ny

)∗
. (C7)

According to the definition of the current-density in a
Floquet eigenstate, we have

jNy−α+1,2ny−1(kx) =

√
3tha

∑
m,n

[
J̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)]
×2Re

[
φnkx,Ny−α+1,2ny

(
φn+m
kx,Ny−α+1,2ny−1

)∗]
. (C8)

Insertion of Eq. (C7) in the above gives

jNy−α+1,2ny−1(kx) =

−
√

3tha
∑
m,n

(−1)m
[
J̃−m (A0a) sin

(√
3kxa

2
− mπ

3

)]
×2Re

[(
φ−n−kx,α,2ny

)∗
φ−n−m−kx,α,2ny−1

]
. (C9)

Applying J̃−m = (−1)mJ̃m and relabeling m and n gives

jNy−α+1,2ny−1(kx) =

−
√

3tha
∑
m,n

[
J̃−m (A0a) sin

(√
3kxa

2
+
mπ

3

)]
×2Re

[(
φn−kx,α,2ny

)∗
φn+m
−kx,α,2ny−1

]
. (C10)

After absorbing the minus sign, we find

jNy−α+1,2ny−1(kx) =

√
3tha

∑
m,n

[
J̃−m (A0a) sin

(
−
√

3kxa

2
− mπ

3

)]
×2Re

[(
φn−kx,α,2ny

)∗
φn+m
−kx,α,2ny−1

]
. (C11)

From above it is evident that

jNy−α+1,ny (kx) = jα,ny (−kx). (C12)

After summing over kx, we prove that pairs of Floquet
eigenstates with quasi-energy ε,−ε carry the same aver-
age current density,

JNy−α+1,ny = Jα,ny . (C13)

Next we prove that the quench current in Eq. (27) is
symmetric in position. For this we start with the defini-
tion,

Jny (t→∞) =
1

Nx

∑
kx,α=1...Ny

Oα(kx)jα,ny (kx),(C14)

and substitute Eq. (31), above. Then using that the cur-
rent in a fully occupied band vanishes, we obtain,

Jny = − 1

Nx

∑
kx,α

ONy−α+1(kx)jα,ny (kx). (C15)

Now we change variables ny → Ny − ny + 1 to obtain,

JNy−ny+1= −
1

Nx

∑
kx,α

ONy−α+1(kx)jα,Ny−ny+1(kx).

(C16)

Next we use the recently proved relations in Eq. (C5)
and C12 to show that

jα,Ny−ny+1(kx)= −jα,ny (−kx)

= −jNy−α+1,ny (kx). (C17)
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Substituting the above in Eq. (C16) and relabeling the
labels Ny−α+ 1→ α, we prove that the quench current
density is symmetric in position,

JNy−ny+1=
1

Nx

∑
kx,α

Oα(kx)jα,ny (kx)

= Jny . (C18)

Now we show that if Oα(kx) was symmetric in mo-
mentum space, Oα(kx) = Oα(−kx), the quench current
density would vanish. From using Eq. (C5), and using the
definition of the quench current density, we may write,

Jny=
1

Nx

∑
α,kx

Oα(kx)jα,ny (kx)

= − 1

Nx

∑
α,kx

Oα(kx)jα,Ny−ny+1(−kx). (C19)

But an occupation which is symmetric in kx will allow us
to rewrite the above as,

Jny= − 1

Nx

∑
α,kx

Oα(kx)jα,Ny−ny+1(kx)

= −JNy−ny+1, (C20)

implying a quench current density which is anti-
symmetric in position. Since the quench current density
cannot be both symmetric and anti-symmetric in posi-
tion, it implies that if Oα(kx) = Oα(−kx), this would
lead to a zero quench current density. Thus the breaking
of the inversion symmetry by the switch-on of the laser
is required to generate a net quench current.
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