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Optimizing electrically controlled echo sequences for the exchange-only qubit

Niklas Rohling∗ and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

Recently, West and Fong [New J. Phys. 14, 083002 (2012)] introduced an echo scheme for an
exchange-only qubit, which relies entirely on the exchange-interaction. Here, we compare two differ-
ent exchange-based sequences and two optimization strategies, Uhrig dynamical decoupling (UDD)
and optimized filter function dynamical decoupling (OFDD), which were introduced for a single-spin
qubit and are applied in this paper to the three-spin exchange-only qubit. The calculation shows
that the adaption of the optimization concepts can be achieved by straight-forward calculation. We
consider two types of noise spectra, Lorentzian and Ohmic noise. For both spectra, the results reveal
a slight dependence of the performance on the choice of the echo sequence.

I. INTRODUCTION

The concept of exchange-only quantum computation
[1] relies on all-electrical qubit control. Exchange-only
qubits are defined as two-dimensional subspaces of three
electron spins. Given the advantages of all-electrical con-
trol of these qubits, it is important to investigate the pos-
sible decoherence mechanisms and their mitigation using
appropriate techniques. While a homogeneous magnetic
field of unknown strength does not harm the qubit state,
an inhomogeneous magnetic field, which might occur due
to nuclear spins in the host material, can cause decoher-
ence and leakage. In the case of the resonant-exchange
qubit [2, 3], the degeneracy of the qubit (and leakage)
states is partially lifted by the always-on exchange cou-
pling. In an external magnetic field, the leakage can be
suppressed completely and dephasing may be corrected
by an echo sequence resembling the single-spin qubit spin
echo[4]. For the degenerate exchange-only qubit, the sit-
uation is more complicated due to the existence of a leak-
age state [5]. Applying spin-echo techniques to each spin
individually is not favorable as this requires magnetic
control which contradicts the concept of exchange-only
quantum computing [4]. West and Fong [6] introduced an
echo scheme for the exchange-only qubit which is based
on SWAP operations between neighboring spin states.
These operations are provided directly by the exchange
interaction. The basic idea is to average the acquired
phases of the spin states by permuting their positions
within the triple quantum dot. A sequence which also
corrects erroneous SWAP gates was introduced by Hick-
man et al. [7].

In this paper, we focus on optimization strategies for
the timing of the pulses in exchange-based echo schemes.
We assume that the pulse lengths are negligible and the
decoherence occurs between the pulses. West and Fong
[6] already applied Uhrig dynamical decoupling (UDD)
[8, 9] to their SWAP-based sequence for the exchange-
only qubit. Here, we transfer the concept of the opti-
mized filter function dynamical decoupling (OFDD) [10]
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FIG. 1. (Color online) Sketch of the system of three quantum
dots each hosting an electron represented by a large red (gray)
dot and arrow. The electron spin states in dots 1 and 2 (2 and
3) can be coupled via the exchange interaction J12 (J23), while
there is no direct coupling between dots 1 and 3. The electron
spins in each dot experience the influence of the nuclear spins,
which are represented by small yellow (light gray) arrows,
via the hyperfine coupling. We describe this influence of the
nuclear spins by fluctuating Overhauser fields.

from the single-spin to the three-spin system. Further-
more, we consider two different SWAP sequences and
compare their performance for a simple Carr-Purcell-
Meiboom-Gill (CPMG) timing of the pulse as well as
for UDD and OFDD.

The paper is organized as follows. In Sec. II, a model
for the system of interest is introduced. Sec. III contains
the calculation to obtain the fidelity in dependence of the
pulse sequence and the noise spectrum. In Sec. IV the
optimization strategies for the timing of the pulses are
discussed and the results for the fidelity compared to the
unchanged qubit are presented. Finally, we conclude in
Sec. V.

II. EXCHANGE-ONLY QUBIT IN A RANDOM
MAGNETIC FIELD

The system which we consider here consists of three
quantum dots hosting one electron spin each, see Fig. 1.
The electron spins are coupled by the exchange interac-
tion and influenced by local magnetic fields,

H =
J12

4
σ1 · σ2 +

J23

4
σ2 · σ3 +

3∑
i=1

Bi · σi (1)



2

where the exchange couplings J12 and J23 can be elec-
trically controlled [11, 12]. Here, σi = (σix, σiy, σiz)

T

denotes the vector of Pauli operators for the spins in
dots i = 1, 2, 3. The magnetic field Bi = Bextez + BO

i

consists of an external magnetic field Bext in z direc-
tion and the Overhauser field as a classical model for
the interaction with the nuclear spin bath. In the case
Bext � |BO

i |, the dephasing is dominated by the z com-
ponent of the Overhauser field under the condition that
it is time independent, see Appendix A. This still holds
for the Overhauser field changing slowly in time com-
pared to the Larmor precession caused by Bext within a
rotating wave approximation [13]. In the following we
consider only the magnetic field in z direction. Thus,
states with different total spin in z direction will not be
coupled. The qubit subspace of the exchange-only qubit
is the two-dimensional space characterized by the total
spin s = 1/2 and the spin in quantization (z) direction
sz = 1/2, see [1]. Therefore, leakage is possible to the
state with s = 3/2 and sz = 1/2 in the presence of a
magnetic field gradient in z-direction [4]. In this work we
assume that the exchange coupling is only switched of for
the negligibly short time of an echo pulse and the dephas-
ing in the Overhauser field happens for J12 = J23 = 0.
Dephasing in the presence of a nonzero exchange coupling
have been considered by Ladd [14].

III. ECHO SEQUENCES

West and Fong [6] introduced an echo scheme rely-
ing only on the exchange interaction in agreement with
the concept of the exchange-only qubit. They suggested
to interchange the spin information of neighboring dots
in such a way that any spin state spends equal time
in each of the three dots. The operations which are
needed are SWAP gates for the dots 1 and 2 and for
the dots 2 and 3, SWAP12 and SWAP23. These oper-
ations are provided directly by the exchange coupling.
It is assumed that this coupling can be tuned to values
much larger than the differences in the Zeeman splitting
between the dots. In this case, the exchange coupling
is not disturbed by the Overhauser field and the gate
times can be negligibly short. West and Fong consid-
ered sequences using the gates P = SWAP23SWAP12

and P−1 = SWAP12SWAP23 in alternating pairs, P →
P → P−1 → P−1 → P → P → P−1 → P−1 and so
on. They showed that the concept of UDD [8, 9] re-
moving the influence of the noise up to mth order in
time (m = 0, 1, 2, 3, . . .) can be applied to this three-spin
problem. In the present paper, we compare the sequence
of alternating pairs of P and P−1 to the sequence using
only the cyclic permutation of the spin states, P . Fur-

thermore, we additionally use the concept of optimized
noise filtration [10]. Both, OFDD and UDD, were orig-
inally introduced for a single qubit dephasing without
leakage states.

We now consider the sz = +1/2 subspace, starting
from the product basis {|↑↑↓〉 , |↑↓↑〉 , |↓↑↑〉}. In this ba-
sis the term in the Hamiltonian describing the effect of a
time-dependent magnetic field in z direction is diagonal.
The corresponding time evolution for the states |↑↑↓〉,
|↑↓↑〉, and |↓↑↑〉 evokes the phase factors, e−i(φ1+φ2−φ3),
e−i(φ1−φ2+φ3), and e−i(−φ1+φ2+φ3), respectively. For-
mally, we track the spin state when a SWAP gate trans-
fers it to another quantum dot. The time evolution at
time T for the spin state which is in the first dot at time
t = 0 is

U1(T ) = e−iφ1σ̃1z with φ1 =

T∫
0

dt h1(t), (2)

where σ̃1z is the Pauli matrix for the individual spin state
labeled here with 1 although the state is stored in dots
2 and 3 for some time. This spin state experiences the
magnetic field h1(t), which is the field in the dot where
the spin state is stored at time t. For the spin states
initially stored in the dots 2 and 3, the time evolution is
given in full analogy by U2(T ) and U3(T ). We use the
states

|±〉 =
|↑↑↓〉+ e±i2π/3 |↑↓↑〉+ e∓i2π/3 |↓↑↑〉√

3
(3)

as an orthogonal basis of the qubit subspace. In the cor-
responding Bloch sphere, with the poles |±〉, the eigen-
states of the exchange interactions between neighboring
dots lie in the equatorial plane. Therefore, SWAP23 and
SWAP12 interchange |+〉 and |−〉, i.e., SWAP12 |±〉 =
|∓〉 and SWAP23 |±〉 = e±i2π/3 |∓〉. Thus P and P−1

change only the phase when applied to the states |+〉
and |−〉, P |±〉 = e∓i2π/3|±〉 and P−1 |±〉 = e±i2π/3|±〉.
If the initial quantum state is a superposition of |+〉 and
|−〉, the different phase factors can lead to a different
state at the end of the sequence. In the following we will
assume that those changes are reversed at the end of the
sequence by applying further exchange pulses. The only
relevant leakage state is

|L〉 =
|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉√

3
(4)

with the quantum numbers s = 3/2 and sz = 1/2. In the
basis {|+〉 , |−〉 , |L〉} the time evolution is represented by
the matrix
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U(T ) =
1

3

 eiϕ3+eiϕ2+eiϕ1 eiϕ3+ei(ϕ2+ 2π
3 )+ei(ϕ1− 2π

3 ) eiϕ3+ei(ϕ2− 2π
3 )+ei(ϕ1+ 2π

3 )

eiϕ3+ei(ϕ2− 2π
3 )+ei(ϕ1+ 2π

3 ) eiϕ3+eiϕ2+eiϕ1 eiϕ3+ei(ϕ2+ 2π
3 )+ei(ϕ1− 2π

3 )

eiϕ3+ei(ϕ2+ 2π
3 )+ei(ϕ1− 2π

3 ) eiϕ3+ei(ϕ2− 2π
3 )+ei(ϕ1+ 2π

3 ) eiϕ3+eiϕ2+eiϕ1

 (5)

with ϕj = 2φj − φ1 − φ2 − φ3. In this matrix, we denote
the upper left 2× 2 block, which describes the dynamics
within the qubit subspace, by UQ(T ). We compare this
operation with the perfect storage of the qubit, UQ(T ) =
1. In this context, T denotes the desired storage time of
the qubit. The fidelity of the time evolution with respect
to the identity operation is [15]

F =
Tr(U†QUQ) + |Tr(UQ)|2

6
. (6)

Note that UQ is not unitary. From Eq. (5), we obtain

F =
4

9
+

5

27

∑
i<j

cos(2[φi−φj ]) (7)

We assume that the Overhauser fields can be described
by a Gaussian distribution. Then the same holds for the
acquired phases, thus we obtain

〈cos(2[φi − φj ])〉 = e−2〈(φi−φj)2〉, (8)

in analogy with the case of a single spin [9]. In order to
calculate 〈(φ1 − φ2)2〉, West and Fong [6] introduced the
functions fj(t), j = 1, 2, 3, which are defined according
to the position of the spin states: For the initial posi-
tions, (1,2,3), where the numbers 1, 2, and 3 are the
labels of the spin states, the values of the functions are
{f1, f2, f3} = {1,−1, 0}. For the positions (2,3,1), the
functions are {f1, f2, f3} = {−1, 0, 1} and for the po-
sitions (3,2,1), they are {f1, f2, f3} = {0, 1,−1}. The
Overhauser fields are labeled according to the quantum
dot where they can be found by Bj(t) for dot number j,
see Eq. (1). Then the phase difference between two spin
states at time T is given by [6]

φ1(T )−φ2(T ) =

T∫
0

dt [h1(t)− h2(t)]

=

T∫
0

dt [f1(t)B1(t)+f2(t)B2(t)+f3(t)B3(t)].

(9)

The expressions for φ2−φ3 and φ3−φ1 can be obtained
by permuting the indices of the functions fj(t). The vari-

ance is

〈(φ1(T )− φ2(T ))2〉

=

〈 T∫
0

dt1 [f1(t1)B1(t1)+f2(t1)B2(t1)+f3(t1)B3(t1)]

×
T∫

0

dt2 [f1(t2)B1(t2)+f2(t2)B2(t2)+f3(t2)B3(t2)]

〉

=
∑

i,j∈{1,2,3}

T∫
0

dt1

T∫
0

dt2fi(t1)fj(t2)〈Bi(t1)Bj(t2)〉

=
1

π

∑
i,j∈{1,2,3}

∞∫
0

dω yi(ωT )y∗j (ωT )
pij(ω)

ω2

(10)

with yj(ωT ) := ω
i

∫ T
0
dt eiωtfj(t) being, up to the

factor of ω/i, the Fourier transform of the switch-
ing function fj(t), j = 1, 2, 3. The function pij(ω)
is the power spectrum of 〈Bi(t)Bj(0)〉, pij(ω) =
2
∫∞

0
dt cos(ωt)〈Bi(t)Bj(0)〉. Under the assumption that

the Overhauser fields in the dots have the same variance
and the same power spectrum while being independent
of each other, pij(ω) = δijp(ω), the variance of the phase
differences can be written as

〈(φ1(T )− φ2(T ))2〉
=〈(φ2(T )− φ3(T ))2〉
=〈(φ3(T )− φ1(T ))2〉

=
1

π

∞∫
0

dω [|y1(ωT )|2 + |y2(ωT )|2 + |y3(ωT )|2]︸ ︷︷ ︸
=FF (ωT )

p(ω)

ω2
.

(11)

Here FF (ωT ) is the filter function of the SWAP-based
echo sequence which determines the values of fj(t) at
times t ∈ (0, T ). The assumption that the Overhauser
fields are described by the same random distribution also
lead to a further simplification of the expression Eq. (7)
for the fidelity, which assumes the form

F =
4

9
+

5

9
e−2〈(φ1−φ2)2〉. (12)

The value for 〈(φ1−φ2)2〉 will depend on the noise spec-
trum p(ω), the pulse sequence, and the time T . Here we
focus on Ohmic noise,

pOhm(ω) = ωΘ(ω1 − ω), (13)
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with a cutoff described by the Heaviside function Θ(·),
and Lorentzian noise,

pLorentz(ω) =
ω1

1 + ( ωω1
)2
. (14)

The latter has been used for a model to explain experi-
ments with a nuclear spin bath [16]. In the situation con-
sidered in this paper, the random field is also assumed to
originate from the nuclear spins. Nevertheless, we per-
form the calculations for the Ohmic noise spectrum as
well to demonstrate that the method can be applied to
different noise spectra. Note that the parameter ω1 is
a sharp cutoff in Eq. (13) while it is a parameter deter-
mining the width of the spectrum in Eq. (14). Here we
are interested in the scaling behavior of the fidelity with
respect to the parameter ω1. Therefore, it is possible to
set the relative noise strength to one, see Ref. [10]. The
generalization to an arbitrary noise strength is straight-
forward. As done by Uys et al. in Ref. [10] we express
the integral in Eq. (11) by using the dimensionless vari-
ables T ′ = Tω1 and ω′ = ω/ω1. Then the variance of the
phase difference reads

〈(φ1 − φ2)2〉 =

∞∫
0

dω′ FF (ω′T ′)
p̃(ω′)

ω′2
, (15)

where the noise spectrum is rescaled,

p̃(ω′) = p̃Ohm(ω′) = ω′Θ(1− ω′) (16)

or

p̃(ω′) = p̃Lorentz(ω′) =
1

1 + ω′2
. (17)

The filter function depends on the sequence of ap-
plied SWAP operations via the switching functions fj(t),
j = 1, 2, 3. First we consider the same operation P =
SWAP23SWAP12 applied at the times Tδj , j = 1, . . . , n.
Then the switching functions are periodic with respect
to the time intervals [δj , δj+1) with period three. The
switching functions f1 and f2 at time t are given by

{f1, f2} =


{1,−1} if t/T ∈ [δj , δj+1), j mod 3 = 0,

{−1, 0} if t/T ∈ [δj , δj+1), j mod 3 = 1,

{0, 1} if t/T ∈ [δj , δj+1), j mod 3 = 2.

(18)
The third function is always determined by f3(t) =
−(f1(t) + f2(t)). For convenience, δ0 = 0 and δn+1 = 1
have been introduced. For the sequence with alternating
pairs of P and P−1, which was considered in Ref. [6], the
switching functions at time t are

{f1, f2} =


{1,−1} if t/T ∈ [δj , δj+1), j mod 4=0,

{−1, 0} if t/T ∈ [δj , δj+1), j mod 4=1 or 3,

{0, 1} if t/T ∈ [δj , δj+1), j mod 4=2,

(19)

and again f3(t) = −(f1(t) + f2(t)). We compare the re-
sults for the exchange based SWAP sequences to individ-
ual spin echoes, where a σx gate is applied on each spin at
times δjT , j = 1, . . . , n. This single spin manipulation is
not compatible with the concept of exchange-only quan-
tum computing as it requires single-spin manipulation
with a time-dependent local magnetic field. It is con-
sidered here for comparison of the efficiency of the echo
sequences only. In the notation used here, the switching
functions for the single-spin operations are f1(t) = (−1)j

if t/T ∈ [δj , δj+1), f2(t) = −f1(t), and f3(t) = 0. For
more details on the computation of the fidelities see Ap-
pendix B.

IV. WAITING TIME OPTIMIZATION
STRATEGIES

In this section we apply different concepts for optimiz-
ing {δ1, . . . , δn}. These concepts have been introduced
for single-spin echoes but can be applied for the three
spin system as well. The calculation of the filter function
is straight forward for a given sequence and 〈(φ1 − φ2)2〉
can be calculated with Eq. (15) by solving the respective
integrals.

A. CPMG sequence

The CPMG sequence [17, 18] is defined by δ1 = 1/(2n),
δj = δj−1 + 1/n for j = 2, . . . , n. The waiting times tw
between consecutive pulses are always the same. The
waiting time between initialization and the first pulse
equals the waiting time between the last pulse and the
measurement at time T and is half as long as tw. We do
not expect this timing to be ideal for the exchange-based
echos because it does not necessarily lead to a situation
where each spin state spends the same time in each quan-
tum dot during the storage time, i.e., in general, y1, y2,
and y3 do not vanish in first order. Nevertheless, we in-
clude CPMG timed pulses here for comparison with UDD
and OFDD timing, see below. The infidelity 1−F for the
CPMG timing is presented in Fig. 2. The fidelity F can
be increased with an increasing number of pulses. Ap-
plying the echo sequences is more effective for the Ohmic
noise, which is stronger at higher frequencies compared
to the Lorentzian noise. Note that the better scaling be-
havior of the infidelity in Fig. 2 for the all cyclic sequence
and n = 3 (P → P → P ) originates from the fact that yj
(j = 1, 2, 3) vanishes up to first order for this sequence
if n is an integer multiple of 3. But for larger values of
T ′, the sequences with n = 4 and n = 10 can have more
significant larger effect on the fidelity than n = 3.
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FIG. 2. (Color online) Infidelity 1 − F for Ohmic noise (a)
and Lorentzian noise (b) in dependence of dimensionless stor-
age time T ′ for pulse times chosen according to the CPMG
scheme. The number of applied pulses n are n = 3 (cyan,
light gray), n = 4 (green, dark gray), and n = 10 (black).
The applied sequences are the all-cyclic permutations realized
by applying P = SWAP12SWAP23 at every time Tδj (solid
lines), the sequence of pairs of P and P−1 (dotted lines) and
the single spin operations (dashed lines).

B. Applying Uhrig-type dynamical decoupling

The concept of UDD [8, 9] requires that the functions
yj(ω

′T ′) (j = 1, 2, 3)should be zero up to an order m,i.e.,(
∂

∂(ω′T ′)

)k
yj(ω

′T ′)

∣∣∣∣∣
ω′T ′=0

= 0, (20)

for k = 0, . . . ,m. The equation for k = 0 is fulfilled by
the definition of yj . If Eq. (20) is fulfilled for j = 1
and j = 2, it automatically holds for j = 3. Uhrig
showed that the respective condition for single spin stor-
age can be achieved by n = m pulses [8]. Moreover,
the values for δj are given by the analytical expression
δj = {1 − cos(πj/[n + 1])}/2 [8] in this single-spin case.

10-1 100 10110-6
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10-2
10-1
100
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F

(a)
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T ′

10-6
10-5
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10-3
10-2
10-1
100

1−
F

(b)

∼(T ′ )3

FIG. 3. (Color online) Infidelity 1−F in dependence of dimen-
sionless storage time T ′ for Ohmic noise (a) and Lorentzian
noise (b) for pulse times chosen according to the UDD opti-
mization strategy. The number of applied pulses n are n = 2
(orange, light gray), n = 4 (green, dark gray), and n = 10
(black). The applied sequences are plotted in the same line
styles as in Fig. 2. In (b) the results for the exchange-based
pulses with the all-cyclic permutations and the pairs of P and
P−1 are very similar, thus the solid and the dotted lines are
on top of each other. For n = 2 these sequences are identi-
cal by definition. The better performance of the single-spin
pulses (dashed lines) compared to the SWAP-based sequences
for the same number of pulses, n, is due to the fact that it
allows for the filter function to be zero up to the order n while
it is only order n/2 for the SWAP-based pulse sequences.

West and Fong [6] extended this concept to the exchange-
only qubit for the sequence P → P → P−1 → P−1 . . ..
In this situation the number of pulses has to be n = 2m.
Here, we also apply the concept to the sequence P →
P → P . . . again with n = 2m. For both sequences,
the sequence introduced by West and Fong and the all
P sequence, one has to solve a system of 2m polynomial
equations for δ1, . . . , δ2m with powers up to m. Find-
ing these systems of equations is straightforward for the
given switching functions. The values of δj for the P only



6

m δj all cyclic West-Fong sequence

1 δ1
1
3

1
3

2 δ1
3−
√
5

6
1
6

δ2
1
3

1
3

δ1
3−
√
6

9
4−
√
10

9

3 δ2
9−
√

33
18

5−
√
10

9

δ3
6−
√
6

9
4
9

δ1 0.033987060628007174 1
3
−

√
2
27

4 δ2 0.10778050263957079 5
12

−
√

35
432

δ3 0.24541246139134222 7
12

−
√

35
432

δ4 0.40712677534489696 2
3
−

√
2
27

δ1 0.0197219731840097 0.0422244245173296

δ2 0.0671399277438179 0.0940587956886883

5 δ3 0.1583859791807335 0.2172228408817372

δ4 0.27816415473255296 0.2838895075484039

δ5 0.42457938477024890 0.4518343711713587

δ1 0.013679963095182367 0.0313685011617312

δ2 0.046973639574998944 0.0691609286752199

6 δ3 0.11189155743938264 0.1617103538537611

δ4 0.19981242938137375 0.2161866929592387

δ5 0.31156471269738840 0.3514848584641742

δ6 0.43493416837050681 0.4258827585118745

δ1 0.0094699468692662485 0.0239219438795333

δ2 0.033350661076818913 0.0535688803938237

δ3 0.080564753596069461 0.1262566342290569

7 δ4 0.14684156194511558 0.1675244212375237

δ5 0.23329457080574879 0.2761133079137736

δ6 0.33333333333333333 0.3417044666375784

δ7 0.44366705640151921 0.4698392155798953

TABLE I. UDD-optimized pulse times for the all cyclic se-
quence and the West-Fong sequence from Ref. [6]. Note
that the pulse times not included in the table are given by
δj = 1 − δ2m+1−j . The numerical results for West-Fong se-
quence (m = 5, 6, 7) are from Ref. [6]. The all cyclic and
the West-Fong pulse times only coincide for m > 1 if the
sequences are identical.

sequence are different from the values in the West-Fong
sequence for n > 2. In Tabel IV B we present the values
for δj for orders m = n/2 = 1, . . . , 7. For n = 2 the
two sequences are identical. In Fig. 3, we also present
the infidelities for n = 4 and for n = 10. In general, the
values of δj can be found numerically while a closed ex-
pression is unknown for the SWAP-based sequences, see
also [6]. Comparing Fig. 3 to Fig. 2, we see that UDD
can outperform the CPMG sequence where the improve-
ment is more significant for the Ohmic noise than for the
Lorentzian noise. Experimental constrains might set a
lower limit to the time between two pulses. Therefore,
it can be useful to consider the minimum pulse interval
[19, 20], which is always δ1T for the sequences considered
here. In Fig. 4 we consider δ1 in dependence of the order

1 2 3 4 5 6 7
m

10-2

10-1

100

δ 1

∼(m+1)−2

∼(m+1)−3

FIG. 4. (Color online) Double logarithmic plot of δ1, which is
the smallest pulse interval, in dependence of the order m for
UDD applied to the all cyclic sequence (black circles), to the
West-Fong sequence (red (gray) circles, values from Ref. [6]),
and for comparison to a single spin problem (gray squares).

m. For the all cyclic sequence, δ1 is always smaller than
for the West-Fong sequence for m > 1. Furthermore, this
difference becomes more significant with increasing m.

C. Applying optimized noise filtration

Another strategy for minimizing the dephasing,
OFDD, was introduced by Uys et al. [10]. In this concept,
the integral

1∫
0

dω′ FF (ω′T ′) (21)

is minimized by finding a suitable set of {δ1, . . . , δn}. In
Ref. [10] OFDD was explicitly considered for a single
spin. Here we apply the method for the three-spin prob-
lem. The integrals included in (21) can be treated ana-
lytically, see Appendix B. The values of δ1, . . . , δn have
to be determined by numerical minimization of (21). As
starting values for this minimization we use the CPMG
values. Presumably, using UDD values as initial val-
ues would be an improvement but we included n = 3
where UDD values are not available and we want to use
the same strategy for all n to avoid dependences of the
results on details which are not essentially part of the
OFDD optimization condition. The minimization pro-
gram uses standard Broyden-Fletcher-Goldfarb-Shanno
algorithm. If the numerical found minimum lies outside
the allowed values, δj < 0 or δj > 1 we replace this value
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10-1 100 10110-6
10-5
10-4
10-3
10-2
10-1
100

1−
F

(a)

10-1 100 101

T ′

10-6
10-5
10-4
10-3
10-2
10-1
100

1−
F

(b)

∼(T ′ )3

FIG. 5. (Color online) Infidelity 1−F in dependence of dimen-
sionless storage time T ′ for Ohmic noise (a) and Lorentzian
noise (b) for pulse times chosen according to OFDD. The color
codes and the line styles are identical to Fig. 2.

with 0 or 1 respectively. This typically happens at large
values of T ′ where the infidelity 1 − F becomes large.
Moreover, the found minimum is not necessarily a global
minimum. This clearly happens for the single-spin echo
at small T ′ shown in Figure 6 where the OFDD values
are apart from the UDD values although we know that
UDD is ideal in the limit T ′ → 0. The results for the in-
fidelity in dependence of the dimensionless storage time
T ′ are shown in Fig. 5. The kink in the infidelity for
the single-spin operation for n = 10 (black dashed line)
is also a consequence of finding a non-global minimum.
Despite this numerical behavior, we find that similar to
the results for the single spin [10], OFDD leads to im-
proved fidelities compared to UDD, see Fig. 7. where
we compare the infidelities 1 − F for pulse times opti-
mezed with OFDD and UDD for n = 10 pulses. For all
echo sequences OFDD outperformes UDD for the Ohmic
noise while the results are very close to each other for
the Lorentzian noise spectrum. In Fig. 6 we present the
values of δ1, . . . , δn for n = 3, 4 in dependence of the di-

0 2 4

T ′

0

0.5

1

δ 1
,
,δ

3
/δ

4

(a)

0 2 4

T ′

(b)

FIG. 6. (Color online) OFDD values of δ1, . . . , δn for n = 3
(a) and n = 4 (b) in dependence of the dimensionless stor-
age time T ′ considering single spin echo (black dashed lines),
all cyclic operations (red solid lines), and the West-Fong se-
quence (dotted lines) where applying P is indicated by red
color and P−1 by blue color. For comparison the UDD values
of δj (j = 1, . . . , n) are shown with gray lines in the respective
linestyle. Note that for n = 3 UDD solution exists only for
the single spin operations.

mensionless storage time. The results show a symmetric
behavior with respect to half of the storage time except
the n = 3 values for the West-Fong sequence including
two P and one P−1 pulse. Comparing the values of δ1 in
Fig. 6 (b), we see that again for the all cyclic sequence, δ1
assumes smaller values than for the West-Fong sequence.

V. CONCLUSIONS

In this paper, we have considered exchange-only based
echo sequences for three electron spins. We have shown
that, in addition to the UDD-like optimized sequences in-
troduced by West and Fong [6], the concept of OFDD can
be applied to this three-spin case as well. We compared
two different sequences of SWAP-based echo sequences,
the one used in Ref. [6] and one which applies the same
operation at every time δjT . The optimal times accord-
ing to UDD and OFDD depend on the choice of the se-
quence. The fidelity depends slightly on this choice with
a small advantage for the all-cyclic permutation while
the larger value of the minimum pulse interval can be
an advantages of the West-Fong sequence in a realistic
system. The improvement of the fidelity by the opti-
mization strategies UDD and OFDD compared to the
CPMG sequence is more significant for Ohmic noise than
for Lorentzian noise. This could have been expected with
respect to results for a single spin under the influence of
high- and low-frequency noise [10].
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100 10110-610-510-410-310-210-1100

1−
F

(a)

10-1 100 101

T ′

10-610-510-410-310-210-1100

1−
F

(b)

FIG. 7. (Color online) Comparison of UDD (gray) and
OFDD (black) optimized values of infidelity 1 − F in de-
pendence of the dimensionless storage time T ′ for Ohmic (a)
and Lorentzian (b) noise. For results are shown with dashed
lines for single spin echos, with solid lines for the all-cyclic
sequence, and with dotted lines for the West-Fong sequence.
The number of pulses is n = 10.
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APPENDIX A: FIDELITY OF A SPIN 1/2 IN A
QUASI STATIC MAGNETIC FIELD

The fidelity of a quantum gate U acting on a single
qubit in comparison to a desired gate U0 is given by [15]

F =
2 + |Tr(U0U

†)|2

6
. (A1)

Here we define U0 as the single-qubit rotation around
the z axis about the angle Bextt, i.e. the time evolution
operator at time t for BO = 0. The operator U is the time
evolution under the Hamiltonian H = (Bextez + BO) ·σ
with an unknown, in general non-zero Overhauser field
BO. We find at time t

Tr(U0U
†) = 2 cos((ω−Bext)t)

− (cos((ω−Bext)t)− cos((ω+Bext)t))(1− Bext+B
O
z

ω )
(A2)

with ω =
√

(Bext+BOz )2 + (BOx )2 + (BOy )2. For Bext �
|BO| in lowest order,

1− Bext+B
O
z

ω
≈

(BOx )2 + (BOy )2

(Bext)2
(A3)

which is negligible. Therefore the respective term in
Eq. (A2) is small and can be neglected for all times t.
The fidelity F is therefore approximated by

F ≈ 2 + 4 cos2(BOz t)

6
(A4)

for times t <∼ 2π/(ω−Bext) where we expanded ω in linear
order in BO. This means that on relevant time scales,
i.e. where the gate fidelity F is still close to one, the
dephasing due to an Overhauser field is determined by
the component parallel to the (strong) external magnetic
field. Therefore, we have to deal only with commuting
operators within the echo schemes discussed in this pa-
per.

APPENDIX B: DETAILS ON THE FILTER
FUNCTION AND THE FIDELITY

CALCULATIONS

Here we give further details on our calculations. We
present the filter functions for the three echo pulse se-
quences considered in this work. To avoid confusion we
use the upper indices SO, WF, and AC for the sequence
with single-spin operations, the sequence introduced by
West and Fong [6], and the all cyclic sequence, respec-
tively. We can always write

yk(ωT ) =

n+1∑
j=0

αkje
iωTδj (B1)

with k = 1, 2, 3 and αkj being real. For the filter function
we obtain

FF (ωT ) =

n+1∑
j,j′=0

βjj′ cos(ωT [δj − δj′ ])

=

n+1∑
j,j′=0

βjj′{cos(ωT [δj − δj′ ])− 1}.

(B2)

with βjj′ =
∑3
k=1 αkjαkj′ . The second relation in

Eq. (B2) holds because |yk(0)|2 =
∑n+1
j,j′=1 αkjαkj′ = 0.

For all sequences, α10 = −α20 = 1 and α3j = −α1j−α2j .
For the single-spin operations the coefficients αkj are

given by αSO
1,n+1 = (−1)n, αSO

1j = 2(−1)j (1 ≤ j ≤ n),

and αSO
2j = −αSO

1j . For the sequence introduced by West
and Fong [6], the coefficients are

{αWF
1,n+1, α

WF
2,n+1} =


{−1, 1} if n mod 4 = 0,

{1, 0} if n mod 4 = 1 or 3,

{0,−1} if n mod 4 = 2,



9

and for j ∈ {1, . . . , n}

{αWF
1j , αWF

2j } =


{−2, 1} if j mod 4 = 1,

{1, 1} if j mod 4 = 2,

{−1,−1} if j mod 4 = 3,

{2,−1} if j mod 4 = 0.

The all P sequence has the coefficients

{αAC
1,n+1, α

AC
2,n+1} =


{1,−1} if n mod 3 = 0,

{−1, 0} if n mod 3 = 1,

{0, 1} if n mod 3 = 2,

and for j ∈ {1, . . . , n}

{αAC
1j , α

AC
2j } =


{−2, 1} if j mod 3 = 1,

{1, 1} if j mod 3 = 2,

{1,−2} if j mod 3 = 0.

For OFDD we need to compute the integral

∫ 1

0
dω′ FF (ω′T ′) which can be easily done as

∫ 1

0

dω′ cos(ω′T ′∆) =
sin(T ′∆)

T ′∆
. (B3)

To compute the integral in Eq. (15) we use for the Ohmic
noise spectrum the integral

∫ 1

0

dω′
1− cos(ω′T ′∆)

ω′
= Cin(T ′∆), (B4)

where Cin(t) =
∫ t

0
dt′ [1−cos(t′)]/t′ is the cosine integral.

For calculating the fidelity in the case of Lorentzian noise
the following integral is used

∫ ∞
0

dω′
1− cos(ω′T ′∆)

ω′2(1 + ω′2)
=
π

2
(e−T

′∆ − 1 + T ′∆). (B5)
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