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We aim to understand how the van der Waals force between neutral adatoms and a graphene
layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented
for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong.
We show that the van der Waals potential can be significantly enhanced by strain, and present
applications of our results to the problem of elastic scattering of atoms from graphene. In particular
we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative
inelastic effects near the surface become of increased importance. Furthermore we introduce a
method to independently estimate the Lennard-Jones parameters used in an effective model of
He interacting with graphene, and determine how they depend on strain. At short distances, we
find that strain tends to reduce the interaction strength by pushing the location of the adsorption
potential minima to higher distances above the deformed graphene sheet. This opens up the exciting
possibility of mechanically engineering an adsorption potential, with implications for the formation

and observation of anisotropic low dimensional superfluid phases.

I. INTRODUCTION

van der Waals (vdW) or dispersion forces play an es-
pecially important role at interfaces involving atomically
thin materials, such as graphene and structurally simi-
lar materials, including transition-metal dichalcogenides
(e.g. MoSs). These can form the building blocks of the
so-called van der Waals heterostructures’. vdW inter-
actions are fundamentally and practically important, as
they reflect the polarization properties of materials and
are sensitive to Coulomb interactions. In addition, as will
be discussed below, they can depend strongly on mate-
rial deformations, both through modifications of the elec-
tronic structure which affects the polarization, and the
changes induced in the electron-electron interactions.

Two-dimensional materials can withstand large strains
without rupture, offering unique opportunity for explo-
ration of large strains. In graphene, uniaxial strain effects
(most notably along the “armchair” or the “zig-zag” di-
rections) have been studied theoretically within the non-
interacting tight-binding framework? 6. This theoretical
work was mostly motivated by experimental investiga-
tions of graphene’s mechanical properties: graphene was
confirmed to be the strongest material ever measured”,
and is able to sustain reversible elastic (uniaxial) strain
of § ~ 20%3°. In addition, strain and ripple forma-
tion can coexist and affect the functionalization proper-
ties of graphene, such as the adsorption of atomic hydro-
gen ()which quickly turns graphene into an insulator)°.
One can also imagine many possibilities for local strain
engineering, including the creation of strain profiles that
can produce desired electronic properties, such as con-
finement, and surface states.!''. Strain plays an impor-
tant role in the electronic structure of numerous two-
dimensional (2D) materials as described in a recent re-
view (Ref. [12]), and general strain configurations corre-

FIG. 1. (Color online) An adatom located a distance z above
a graphene sheet subject to mechanical strain (J) along the
indicated armchair direction.

sponding to gauge fields with different symmetries have
to be taken into account. From now on we will consider
only uniaxial strain, as it is one of the simplest deforma-
tions and is amenable to a practically complete theoret-
ical analysis of vdW forces in terms of their strain and
correlation dependence.

The electronic structure under uniaxial strain shows
strong directional dependence — in particular, the arm-
chair deformation shown in Fig. 1, results in a ten-
dency towards the system becoming more one dimen-
sional, while a zig-zag stress leads to dimer formation
beyond a critical value §, =~ 23% which generates a gap
(via a topological Lifshitz transition) in the electronic
spectrum??. For weak strain, the electronic spectrum
is anisotropic (elliptical, with different Fermi velocities
vy # V) in both cases. This behavior creates a rich va-
riety of possibilities for interplay between strain-induced
polarization and electron-electron interactions and is our
subject of interest.

Other examples of graphene-based lattices with
anisotropic Dirac excitations include: (1) graphene



superlattices’> ¢ (2) tunable honeycomb optical

lattices'?, and (3) molecular graphene, formed by ma-
nipulation of carbon monoxide molecules over conven-
tional 2D electron systems'®. For example, a high
anisotropy (ratio of Fermi velocities vy /v, =~ 0.5) has
been achieved in epitaxial graphene modulated on an is-
land superlattice!®>. These recently developed systems
provide further opportunities for manipulation and tun-
ing of the conventional graphene electronic structure and
thus exploration of the anisotropy-related effects and

their consequences for vdW forces.

van der Waals forces between graphene sheets (at
distance d, large enough to eliminate direct hopping
between layers), have been a subject of considerable
attention™'92°, For Dirac systems in 2D, in particu-
lar graphene, the force decreases as fourth power of the
distance, |Fyqw (d)| = Cypaw /d*, and is fairly weak com-
pared to relativistic systems (due to the small value of the
Fermi velocity compared to the speed of light). A fun-
damental and practical question arises: Can this force be
enhanced?

In a recent work3?, based on the random phase approx-
imation (equivalent to the Lifshitz theory)3!32) we have
found that the Dirac anisotropy (i.e. strain) can sub-
stantially enhance the force resulting from the growth of
the polarization with increased anisotropy. Experimen-
tally realizable values of strain show 10 times increases of
the force. Moreover, as emphasized in recent works?7:39,
the vdW interaction is very sensitive to the Coulomb
coupling and its renormalization; this effect is partic-
ularly strong for large strain. Additionally, exchange-
correlation phenomena is enhanced in strained graphene,
such as the tendency towards itinerant ferromagnetism33.
The absence of conventional screening of the Coulomb in-
teractions when the Fermi energy is at (or close to) the
Dirac point causes strong electron correlation effects in
graphene. This is typically the case when graphene is
produced, e.g. by mechanical exfoliation* 3. The loca-
tion of the Fermi energy can also be easily shifted to the
Dirac point by application of backgate voltage, i.e. due to
the strong electric field effect — one of the most impor-
tant characteristics of the material. A recent overview
of interactions in graphene can be found in Ref. [39].
The linear spectrum indicates the effective interaction
parameter, typically denoted by a = €2/hvp, is doping
independent. For suspended graphene, i.e. without the
dielectric screening from a substrate, the coupling reaches
its maximum value of o = 2.2.

The main goal of this paper is to investigate how
atoms of different types interact with uniaxially strained
graphene, which we consider as a prototype strained 2D
material. In the first part of the work (Section II), based
on the continuum random phase approximation, we per-
form calculations for distances larger than 2-3 nm, up to
70 nm, and restrict ourselves to T = 0 since it is well
documented?64041 that finite temperature effects are
negligible for such distances. In this distance regime we
have confidence that our results, obtained within the con-

tinuum theory, predict correctly the strain-dependence of
the vdW potential. In the second half of this work (Sec-
tion IV) we calculate the Lennard-Jones parameters for
an effective model of He interacting with graphene, and
determine how they depend on strain by fitting the at-
tractive vdW potential tail at large distances. This allows
us to reconstruct a phenomenological potential down to
small (A) distances, in the region where the minimum
occurs.

The study of such atom—2D material interfaces allows
us to explore the effects of strain and interactions within
the material in their most pure form (since interlayer
screening of the vdW force is not present in this case).
While previous works have been devoted to vdW interac-
tions of atoms with isotropic graphene?%40-44 our work
focuses on the effects of strain and correlations. One of
our principal results is that the vdW interaction increases
with strain and the relative magnitude of this effect does
not depend strongly on the type of atom, i.e. on its mass
and polarizability. On the other hand, the vdW inter-
action is quite sensitive to graphene’s electron-electron
interaction coupling constant. Thus, atoms can act as
amplifiers of the strain-induced polarization properties of
the 2D material, which in turn can lead to profound con-
sequences for the atomic behavior itself near the surface.
As an application of our theory we calculate the effect of
strain on the quantum reflection amplitude, the proba-
bility that a low-energy impinging atom will be reflected
from the surface, and find that it can be dramatically
reduced.

Increased density of adatoms and the ability to me-
chanically tune the van der Waals attraction between
them and the graphene sheet opens up the possibility of
investigating low dimensional collective many-body ef-
fects near the surface. The local anisotropy of the de-
formed graphene lattice structure will strongly affect the
physics of adsorption. The search for an ideal and con-
trollable substrate onto which a light gas (H or He) can
be adsorbed to form a 2D quantum liquid (or super-
fluid) has been an area of active research for nearly fifty
years.*® The key requirements for such a substrate in-
clude (1) that it is atomically flat and regular and (2)
it be only weakly polarizable, to prevent the formation
of strongly localized classical adsorbed layers. Origi-
nally, graphite appeared to provide an ideal surface in
these regards, and its helium adsorption phase diagram
as a function of density and temperature is well under-
stood both experimentally*6°° and via numerical quan-
tum Monte Carlo simulations®' 3. It includes a com-
mensurate v/3 x v3 R 30° phase (where helium atoms
occupy 1/3 of the strong binding sites located at hexagon
centers) and possible striped incommensurate and reen-
trant fluid phases at high densities, but the first adsorbed
layer appears to lack any signatures of a more exotic
quantum liquid.

While experiments are currently lacking, a single sheet
of graphene seems to be an even more appealing sub-
strate due to a 10% reduction in the binding energy for



a monolayer of helium (compared to graphite)®® and a
possible enhancement of quantum fluctuations suppress-
ing spatial localization in adsorbed phases®®. This idea
was explored via a series of recent zero temperature dif-
fusion Monte Carlo studies®®®® which reported the ob-
servation of superfluidity in the first layer of helium on
graphene and even the presence of the fleeting supersolid
phase (where long range off-diagonal and positional order
coexist). These results have proven controversial and fi-
nite temperature grand canonical quantum Monte Carlo
simulations® have found no evidence of either first layer
superfluid response or supersolidity, with the discrep-
ancy being blamed on population size bias in diffusion
Monte Carlo®. The exact nature of adsorbed helium
on graphene at low temperature thus remains an open
question.

The most important ingredient in numerical simula-
tions of helium on graphene is the specific form of the
interaction potential between an adsorbate atom and
the graphene sheet and is usually taken as a summa-
tion of repulsive hard core and attractive van der Waals
interactions®® which may depend on a number of phe-
nomenological parameters. By exploiting our knowledge
of the electronic polarizability of the graphene sheet, we
have devised a method that enables the independent
determination of these parameters by fitting the long
distance tail of the van der Waals potential computed
within the continuum limit to predictions from the ef-
fective microscopic theory. This allows us to investigate
both the accuracy of commonly used model parameters
for isotropic graphene as well as the effects of strain on
their values. We find that while increasing uniaxial strain
enhances the long distance van der Waals attraction, it
can have the opposite effect at short distances, leading
to an overall softening of the adsorption potential with
exciting consequences for the energetic feasibility of prox-
imate and possibly anisotropic superfluid phases. These
trends are confirmed via ab initio calculations of the in-
teraction energy between a helium atom and an aromatic
molecule composed of 24 carbon atoms, coronene.

The rest of the paper is organized as follows. In Sec-
tion II we describe our results for the vdW interaction
between uniaxially strained graphene and several types
of atoms (with different masses and polarizibilities) as a
function of strain and the electron interaction coupling
constant. Section III contains results for the elastic quan-
tum reflection (QR) coefficient as a function of strain and
Section IV discusses the many-body adsorption potential
for helium on strained graphene. In Section V we present
our conclusions and perspectives for further exploration.

II. ATOM-GRAPHENE VAN DER WAALS
FORCE

We begin with the problem of strain-depenendence of
the atom-graphene van der Waals potential. The the-
ory of vdW forces is described in Refs. [26, 31, and 32]

and contains, in particular, the fully relativistic treat-
ment within Lifshitz theory, which amounts to the well-
known Random Phase Approximation (RPA), including
retardation effects incorporated through the polarization
function and the interactions. Many works have also
been devoted to atom-graphene interactions?%-4044, In
our calculations we use the strained graphene polariza-
tion function, calculated to one-loop, in the continuum
limit. This assumes infinite cone bandwitdh, and when
translated to real space, implies that the results are re-
liable for distances z > a, where a ~ 1A is the lattice
spacing. It is somewhat difficult to assess exactly at what
distance the continuum description ceases to be valid but
the typical estimate for atom-plane interactions is about
2-3 nm?®. Recent work on interactions between graphene
layers (based on numerical RPA extensions to smaller, A-
scale distances) finds that the corrections below 30 A are
substantial for that system52:53, We have performed sim-
ple estimates for the effect of an ultraviolet cutoff (finite
bandwidth) in the spirit of Ref. [62] but adapted for our
problem and have found, most importantly, that it does
not affect the strain-dependence of our results (in the
distance range of interest, above 2-3 nm) which will be
discussed later. This is easy to understand on the basis
of the fact that the continuum electronic polarization in
graphene already incorporates the main effect of strain
as a pre-factor, and raises quickly with strain, while an
ultraviolet cutoff leads to a function of limited variation
range, not affecting the strain dependence. Moreover,
there is no well-defined path to incorporate reliably such
non-universal (cutoff-dependent) corrections in our prob-
lem, nor is it our goal in the present work. Thus we adopt
the philosophy that we use the continuum RPA only in
the conventional sense, for distance above 2-3 nm. It is
worth noting that there are of course other effects that
could lead to changes comparable to the finite bandwidth
correction (of order 10%) that we do not take into ac-
count. One such effect is the low-energy (logarithmic)
renormalization of the velocity of carriers in graphene,
which is known to affect the vdW interaction between
graphene layers and is also ultraviolet cutoff dependent;
more precisely, this effect depends on the ratio of the ul-
traviolet cutoff to the infrared scale?”3°. Such renormal-
ization could also create weak, logarithmic corrections to
the adatom—graphene potential at long distances. An-
other effect is related to higher (two-loop) corrections
to the polarization bubble, which contain both univer-
sal and non-universal components®”. All of these effects
depend on the electron-electron interaction in graphene
and for strong interaction (e.g. in vacuum) can affect the
vdW potential, usually leading to its reduction. In fact in
a certain sense all mentioned effects (finite bandwith cor-
rection to vdW force, velocity renormalization, and inter-
action corrections to the polarization) lead to a distance-
dependent reduction of the effective electron interaction
(called g below), and thus can lead to subleading modifi-
cation of the distance dependence of vdW interactions (as
discussed in the above-mentioned references). We choose



to neglect all of these additional contributions as they
are ultimately subleading as far as electron interactions
are concerned. In this work we are after the dominant ef-
fect whose strain-dependence can be calculated reliably;
our results are robust and universal in the leading “con-
ventional” RPA scheme and expected to retain the same
robust strain dependence even when corrections are in-
cluded, on the basis of the above discussion.

As is well known, and we will see explicitly, relativis-
tic effects depend on the interaction distance and are
relatively weak on the nanometer scale (only becoming
important on micron scales). Thus we find it useful to
write down the (less cumbersome) non-relativistic expres-
sions first, and then include relativistic effects. The zero
temperature formalism is used since finite temperature
effects are not important in the distance regime under
consideration.

A. Non-relativistic treatment

The dynamic atomic polarizability «(iw) for various
atoms, which is required for the calculation, is known
with great precision®, and for most atoms can be ap-
proximated by the following single-oscillator form (for
the vdW force, one needs it on the imaginary axis):

. aowg
a(iv) = S (1)
Here «g is the static polarizability. We have performed
detailed fits of this form to the data of Ref. [64] for
three atoms, and our results are in very good agree-
ment with parameter values quoted in the literature.
We obtain, for H: ap = 4.5 a.u., wg = 11.65 eV; for
Na, ap = 162.6 a.u., wy = 2.15 eV, and for He, ap =
1.38 a.u.,, wy = 27 eV. These atoms were chosen be-
cause their behavior is relevant to cold atom experi-
ments. Notice that they have very different polarizabil-
ities, where the atomic unit of polarizability is 1 a.u. =
1.4818 x 10~ nm?.

Next, the polarization of the graphene electrons is
needed. Assuming uniaxially strained graphene, as
shown in Fig. 1, for weak to moderate strain the
electronic dispersion is well described by an effective
anisotropic Dirac dispersion E(k) with different, strain-
dependent velocities vy, vy2’4’30:

B(K)? = 02k2 + 02k, @)

As mentioned previously, for a lattice deformation in
the armchair direction, the system remains semi-metallic
(no gap opens) even for strong strain®*. For strain in
other directions, in particular in the zig-zag direction, a
gap eventually opens as a function of strain, the Dirac
cones become severely distorted (merging at the transi-
tion point) and cannot be described by Eq. (2). Return-
ing to the case of armchair strain, we have performed
a fit to the data described in Refs. [2 and 4], which

4

gives the anisotropy ratio vy /v, as a function of strain
d. The relationship between v, /v, and ¢ will be needed
in Section IV. We assume strain to be in the y-direction
(armchair direction), reducing the corresponding velocity
while the velocity in the perpendicular (z) direction is not
significantly affected®*. As explained in those works, for
small strain § the variation of the velocities is linear, and
we find that for the armchair direction is described well
by the formulas: v, /vp = 1—-Ad, v, /vp = 1+Avd. Here
v = 0.165 is the Poisson ratio, A ~ 2.23, and vp is the
velocity of unstrained graphene. Beyond weak (= 10%)
strain, the dependence on strain becomes (only weakly)
nonlinear, and the above formulas continue to approxi-
mately describe the numerical results* even for moder-
ately strong deformations. After taking into account the
weak non-linearity in the armchair direction, we arrive
at the correspondence between velocity anisotropy and
strain shown in Table I.

vy /ve 1.00 0.75 0.40 0.20
5 0.00 0.10 0.25 0.34

TABLE 1. The relationship between the Fermi velocity
anisotropy and the elongation of the y-axis of a strained
graphene lattice using data inferred from Refs. [2 and 4].

For the rest of this section we will vary the effective
Dirac anisotropy v, /v, from 1 (isotropic graphene) down
to its largest value of 0.2 and we introduce the notation:

Uy

=< < 1. 3
vp= o< (3)

We consider graphene at half-filling, i.e. the chemical po-
tential is at zero (the lower Dirac cone is full, the upper
one is empty). Returning to the calculation of the polar-
ization, a simple rescaling of the isotropic graphene case

leads to the exact expression3?:

1 v2qs + vl

vy 022 023 + w2

Il(q, iw) = (4)

From here, the vdW energy in the non-relativistic limit
- .26
is*°:

Uvaw (2) = —% 000 déa(i€) 2 000 dkk?e=2k* x
[ de Vit .
o 21 1-V(WI(k, i)

This is the RPA result. Here ¢ is the angle between
the k, and k, directions (in the strained case there is an
explicit angular dependence). The Coulomb potential is:

2me?

V(k) =

, k=K. (6)



Finally, we define graphene’s dimensionless coupling con-
stant g as:

7T62

(7)

where we have set i = 1. The value in vacuum can be
obtained by noting that for graphene €2 /v, ~ 2.2,3% lead-
ing to g &~ 3.45. If graphene is placed on a substrate (and
one assumes vacuum in the upper half-space), the effec-
tive charge e? decreases due to the dielectric constant, &,
of the substrate and we have to replace e? — 2¢2/(1+k).
For example, a SiO5 substrate has k ~ 4 and the coupling
g decreases substantially>”.

Returning to Eq. (5), the vdW potential can be con-
veniently expressed as:

922%

Cs(z
Uraw(z) = -2, ®
where:
B aOWOi 00 dw 27rd¢/oo 3 g
Cs(z) = st oL )y 1—|—w2/0 or /. dqq°e™? x
f(d),’UJ_)

9)

V@ f(h,v1) +w?Q% + (g/vi)af(d,vL)

Here we have written the result in such a way that the
physical dimension of C's comes only from the pre-factor
aopwy , while the other couplings and the integration vari-
ables ¢, w are dimensionless. We also use the definition:

F(6,v.1) = cos 6+ v sin® ¢. (10)
The characteristic dimensionless scale € is defined as
2wz

QO =Q(z) = 205 (11)

Vg

and is distance-dependent.

B. Relativistic effects

The above formulas are generalized to take into ac-
count relativistic corrections in full, which enter in two
ways. First, there is an explicit contribution from
retarded potential pieces?0:26:31:32:40,41 " 1roportional to
(vz/c)*> = (1/300)?> < 1, which can be safely ne-
glected. Second, there is a retardation modification of
the Coulomb interaction portion, which now reads (as
before, all integration variables are dimensionless)

© 4 2m d 00
QowWo g W / d¢ dgqie™1 x
8t 2vy Jo 14+w? )y 27/,

Cs3(z) =

2

Flo,00) x (2- %)
VEf(d,v1) +w2Q% + (g/vi)qf(d,vr)

where we introduce the relativistically generated dimen-
sionless, distance-dependent scale, which in particular
provides an effective cutoff in the above integration:

we = Q(2)/(c/vz) = Q(2)/300. (13)

(12)
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FIG. 2. (Color online) Distance dependence of C3(z) which
determines the vdW potential via Eq. (8). Results are plotted
for a He atom, for several values of the anisotropy v = vy /vs.
Inset: Comparison of the fully relativistic expression with
the non-relativistic formula (dashed lines) for the isotropic
(ve = 1) and maximally strained (vi = 0.2) cases.

The non-relativistic formula is recovered for w. = 0
(c = o0). It is clear that for finite speed of light ¢
the relativistic effects become more important as the dis-
tance, z, increases (so that w. starts deviating substan-
tially from 0). At very large z, within the regime w. > Q,
C5(z) ~ 1/z, i.e. the vdW potential changes shape. Our
approach above is equivalent (apart from different nota-
tion) to the conventionally used Lifshitz theory26:31:32,
and the Cjs results for isotropic graphene are completely
consistent with published numbers for H, He, Na20:40-44,

Now, we proceed to a more detailed discussion of our
results as a function of strain (Dirac cone anisotropy).
First we show that C3(z) generically has substantial dis-
tance dependence, which is already present in the non-
relativistic limit, Eq. (9), due to the frequency depen-
dence (semi-metallic nature) of graphene’s polarization.
A comparison of Eq. (9) with the fully relativistic ex-
pression Eq. (12) is presented in Fig. 2 (inset), for He.
The difference between the two is appreciable (even in
the nm distance range), and increases with distance, as
expected.

Therefore, in order to achieve maximum accuracy, from
now on we will use the fully relativistic formula Eq. (12).
The main panel in Fig. 2 shows the dependence of C5(2)
on the anisotropy v, for He. We assume, for definitive-
ness, that graphene is free-standing (in vacuum) i.e. the
electron-electron coupling is ¢ = 3.45. Atomic units of
C3(z) are defined as: 1 a.u. of C3 = 4.032meV nm?. We
find a significant dependence on strain, which tends to in-
crease the value of C3(z). This increase can be traced to
the enhancement of the electron polarization from Eq. (4)
with strain. A factor of 2 increase in the vdW potential
is seen for almost all distances at the maximal strain un-
der consideration (v, = 0.2). Finally, the shape of the
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FIG. 3. (Color online) Distance dependence of C3(z) which
determines the vdW potential via Eq. (8), for H atom on
isotropic (v, = 1) and maximally strained graphene (v, =
0.2). Inset: Same as main panel, for a Na atom; note the
larger vertical scale.

curves in Fig. 2 suggests that the vdW potential experi-
ences significant deviations from a pure 1/2z2 tail, even at
such intermediate (nm) distances. We will analyze this
crossover at the end of this Section.

In Fig. 3, we present our results for H and Na atoms.
Even though the scales of C5(z) differ significantly, due
to the very different atomic polarizabilities (Na is ap-
proximately forty times more polarizable), the overall
anisotropic behavior for these atoms is quite similar. It is
also similar to the case of (weakly polarizable) He shown
in Fig. 2.

In Fig. 4, we plot results for the combined effect of
anisotropy and electron-electron interaction g. The in-
teraction controls both the overall scale of C5(z) and
(metallic) screening, as reflected in the denominator of
Eq. (12). If screening were absent, the strain dependence
of C5(z) would be much more pronounced. This effect is
only marginally visible in Fig. 4, i.e. the increase of C5(2)
is slightly larger for g = 0.78 (lower two curves) than for
g = 3.45 (upper two curves). The overall reduction of the
vdW interaction as g decreases is the dominant behavior.

Finally, we examine the crossover in the distance de-
pendence of the potential. The significant z-dependence
of C5(2) suggests a fit of the form C3(z) = Cy/(z + L),
where Cy and L are the fitting parameters. In standard
atomic units, 1 a.u. of Cy = 4.032meV nm*. Our results
for all studied atoms are summarized in Fig. 5. We find
that the crossover distances are in the nm distance re-
gion, and increase with strain. For He and H we have
L ~ 1.3, 3.3 nm respectively, for isotropic graphene, while
the corresponding value for Na is significantly larger,
L ~ 15.6nm. Thus at distances z > L the vdW po-
tential becomes Uyqw(z) = —Cy/z*. The coefficient Cy
also increases with strain as shown in Fig. 5.

I I
H atom

0.06 - -
Interaction and Strain dependence

0051~ (Vy/VX =0.2, g =3.45) - strained, free standing B

0.04 -

(1, 3.45)

(0.2, 0.78)

FIG. 4. (Color online) Combined correlation (g =
(m/2)(e®/vs)) and anisotropy (vi) dependence of Cs(z) for
a H atom. The representative electron interaction values cor-
respond to €?/v, = 2.2 (vacuum), and e* /v, = 0.5 (screened
case).

III. IMPLICATIONS FOR QUANTUM
REFLECTION

As a first application of our results, we consider
the strain dependence of the quantum reflection (QR).
For elastic interactions, ultracold atoms impinging on
graphene should be subject to quantum reflection from
the attractive vdW tail of the atom-graphene potential®.
QR is a simple result of the wave-like nature of low-energy
particles moving in an attractive potential that falls off
sufficiently rapidly with distance from the surface. Un-
der QR, an ultracold atom can have a high probability of
reflecting without ever reaching a classical turning point
near the graphene surface. Studied since the develop-
ment of quantum mechanics, QR continues to fascinate
both theorists®® %8 and experimentalists®®7! alike and
while QR has been previously studied for graphene®®,
we now investigate the effect of uniaxial graphene strain
on its properties. Since we have found in the previ-
ous Section that the vdW potential is sensitive to the
Dirac anisotropy, this implies that QR might be effi-
ciently tuned with uniaxial strain.

To determine how the vdW potential affects above-
barrier quantum reflection (see e.g. Refs. [72 and 73] for
an overview) we consider a non-relativistic atom with en-
ergy E = h*k?/(2M) and mass M impinging on graphene
(where we have temporarily restored £ for clarity). The
behavior of the QR reflection coefficient R, defined as
the magnitude of the reflectivity (i.e. the piece of the
wave-function which is reflected), depends on the dis-
tance dependence of Uyqw/(z). In the regime under con-
sideration where Uyqw(z) experiences a crossover from
—C3/23 to —C4/2* behavior (in this section, we take Cs
as a z-independent constant), the value of the effective
parameter p determines which part of the tail is the dom-
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FIG. 5. (Color online) Crossover from Cs/z* to C4/z* behav-
ior in the vdW potential tail, as a function of the anisotropy
(1 —vy). Fits are performed to the expression Cs(z) =
C4/(z + L) with panel (a) showing C4 and (b) the value of
the crossover lengthscale L.

inant contribution to R:72
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(14)

where C} is determined from Fig. 5 and the constant Cj
is defined as C3 = Cy/L. In the low-energy regime, if
p < 1, then the —C3/23 part determines R, while p > 1
means that the —Cy/2* tail is more important. Taking
into account our results from Fig. 5, we find the follow-
ing numbers for different atoms (for isotropic graphene):
pu ~ 1.9, pge = 5.2 and pn, =~ 11.2. The value for H is
the smallest, resulting from its small atomic mass. From
the results of Ref. [72], we can see that the value of p
that separates the asymptotically small and large values
is around p ~ 3.

Let us consider, for definitiveness, the case of Na,
where the —C)y/2* tail is dominant, and estimate the ef-
fect of strain on R. It is convenient to define” the length
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FIG. 6. (Color online) Asymptotic behavior of the quan-

tum reflection coefficient R for unstrained graphene and
anisotropic (strained) graphene with v, = 0.2, in the regime
where the tail 704/24 dominates, as a function of the atomic
momentum k. The length scale is defined as 1/ko = B4. In
the main panel the low energy behavior is plotted. Inset:
High energy behavior, corresponding to exponentially small
reflection.

scale B4 via:

Oy n* B3
Uvaw(2) = AT oA (15)
such that
V2MC.
Ba= — z. (16)

The asymptotic behavior of R in the low-energy region
FE — 0, or in proper dimensionless units, 4k < 1, is
then:"2

R~ 1—-2(84k), Bsk < 1. (17)
In the opposite, high-energy regime, we have:

R~ e VOUWEE g s 1 (18)
which is valid, provided 1 < S,k < p2.7

Since Cy (and therefore ;) increases with strain, (see
Fig. 5), it is clear that larger strain leads to a decrease of
the quantum reflection, as shown in Fig. 6. This decrease
of the QR can be very substantial (for moderately large
strain). Finally, in situations where the —C3/z3 piece of
the vdW tail dominates, the corresponding asymptotic
behavior is also well established™ and the strain depen-
dence can be readily calculated, leading to behavior qual-
itatively very similar to the one in Fig. 6.

Having understood that uniaxial strain enhances the
van der Waals interaction between an impinging atom
and a deformed graphene substrate, thus leading to a
marked reduction in the probability of its reflection, we



now ask what effects it may have near the surface. In
particular, we investigate the physics of adsorption of
light atoms onto mechanically strained graphene.

IV. HELIUM-4 ADSORPTION POTENTIAL

In this section we focus exclusively on the interaction
between a single *He atom and graphene, but the tech-
niques we develop could be applied to the study of ad-
sorption of any neutral polarizable atom.

One conventional (and simplistic) treatment of he-
lium adsorption on graphene (or a graphite surface)®!
estimates the total potential energy U(r) for a neutral
adatom at position r = (z,y, z) as a discrete summation
of Lennard-Jones (6-12) two-body interactions with the
N carbon atoms located at R; = (X;,Y;,0):

U(r) = 452 [ 1 . (19)

i=1

We note that the adatom experiences the effects of a cor-
rugated graphene sheet at short distances and thus the
potential is a function of the full spatial coordinate r as
opposed to the continuum approximation used in Eq. (8)
where it is only sensitive to the height z above the sheet.
The r~12 form of the short distance interaction is semi-
empirical and is meant to capture the effects of Pauli
repulsion from overlapping electronic orbitals, while the
r=5 attractive part of Eq. (19) is due to the individual
vdW dispersion forces between the neutral carbon and
helium atoms. For two interacting atoms, the Lennard-
Jones (LJ) parameters o and € set the location of the min-
imum at r,, = 21/5 and its depth at —e. For pure gases
and liquids, they can be estimated using second-virial or
viscosity coefficients”™ whereas for mixtures, they can be
roughly approximated”® using the Lorenz-Bertholot mix-
ing rules, which for two species A and B are given by:

€A-B = VEAEB
o4+op (20)
5

For a single helium atom interacting with carbon in either
graphene or graphite, the most commonly used param-
eters are taken from Ref. [61] to be epo—c = 16.2463 K
and ope_c = 2.74 A. These values were determined by
comparing the bound states of Eq. (19) to experimental
results for the adsorption spectra of helium on graphite”®.
It is thus natural to ask if these LJ parameters can be
used to capture the effects of strain considered in the pre-
vious sections within the continuum approximation and
shown in Fig. 2. The answer to this question constitutes
the remainder of this paper.
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A. Unstrained graphene

We begin our analysis by investigating the accuracy
of the Lennard-Jones potential for helium interacting
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FIG. 7. (Color online) The Lennard-Jones potential for a

single helium atom located a distance z above a graphene
sheet at positions A, B, C' (shown in upper left) using ege—c =
16.2463 K and ope_c = 2.74 A. The inset (same axes) shows
a comparison with the long distance van der Waals potential
computed using the continuum polarization of the graphene
sheet for z 2 2nm where it should be valid. The arrow indi-
cates the value of z where the relative error between the two
calculations is on the order of 1%.

with an isotropic graphene sheet by comparing Eq. (19)
with the long-distance continuum limit value Uyqw(z) =
—C5(2)/2% in Eq. (8). In Fig. 7 we show the adsorp-
tion potential for N = 2'8 carbon atoms using the stan-
dard LJ parameters for He-C interactions as a function
of distance above the graphene sheet for the three high
symmetry locations r4 = (0,0,2), 75 = (v/3a0/2,0, 2)
and r. = (v/3a9/2,a2/2, z), shown in the upper left in-
set. Here ag = 1.42 A is the isotropic C-C bond length.
The main panel depicts the usual form of the LJ adsorp-
tion potential at short distances, with the details of the
attractive minima and hardcore repulsion depending on
the relative orientation of the adatom with respect to
the graphene lattice””. For distances z > 20 A, the po-
tential is insensitive (at the order of 107°K) to the z
and y positions of the adatom and the substrate can be
effectively treated in the continuum approximation. The
inset shows |U(r4)| along with the continuum long dis-
tance calculation of |Uyqw(z)| for He from Section IIB
with the two values differing by a relative error of 1%
at z ~ 20 A. We stress that this agreement is achieved
with no adjustable parameters and serves as an excel-
lent benchmark of our continuum calculations at long
distances.

B. Lennard-Jones parameters for strained
graphene

In Section II we found that the dispersion force be-
tween adatoms and graphene increases at long dis-
tances as a function of increasing mechanical strain.
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FIG. 8. (Color online) The z > 10 A behavior of the Lennard-
Jones adsorption potential for a He adatom interacting with
a graphene sheet subject to mechanical strain parametrized
by . The inset shows the strain dependence of the Lennard-
Jones potential using the standard parameters o, 00 given
in the text (black circles) and the continuum vdW potential
(gray squares) far from the sheet (at z = 50A). Note that
the two methods show the opposite strain dependence indi-
cating the failure of the standard Lennard-Jones calculation
for strained graphene.

This finding can be investigated by evaluating the dis-
crete LJ potential for graphene lattices with strain § =
0.0,0.1,0.25,0.34 defined as the relative elongation of the
lattice along the armchair direction and corresponding
to the velocity anisotropies vy /v, considered above and
shown in Table I. For each value of the strain parameter
0 we construct a graphene lattice consisting of atoms in
the z = 0 plane with positions defined by the lattice:

V3ag

ay = = (4+0 - 30, V3(4 + 35— ov)) o
as = */Z“O (—4 — 6+ 361, v/3(4 + 36 — 6v))
and basis vectors:
by = (0,0) )

by = CLQ(O, 1+ 5)

where v = 0.165 is the Poisson ratio for graphite?.

For distances beyond 1nm, a comparison of the dis-
crete and continuum calculations for the potential for
different strains § is shown in Fig. 8 where we have again
used the standard LJ parameters for He—-C, now label-
ing them €9 = ege—¢ and o¢g = opge—c. Not only do we
find considerable disagreement away from ¢ = 0, but the
strain dependence has opposite signs; the discrete cal-
culation yields weaker dispersion forces as the strain is
increased. This finding indicates that the isotropic LJ
parameters for He—C interactions cannot be used when
computing the adsorption potential for strained graphene

lattices. This failure is perhaps unsurprising, as these ef-
fective parameters are meant to capture a plethora of
microscopic details that are certainly strain dependent.

To address this fundamental discrepancy we have de-
vised a procedure that allows us to determine the strain
dependence of ¢ and 0. We proceed by construct-
ing a set of strained finite size graphene lattices, then
compute the potential energy U(z) = U(0,0,z) using
the brute-force discrete summation in Eq. (19) for a
fine mesh of LJ parameters ¢ € {0.9¢¢,---,1.1ep} and
o € {0900, - ,1.100} with the expectation that the
values of strain under consideration should not have an
O(1) effect. The resulting four dimensional data set:
U (z;¢,0,0) can then be compared with the long distance
continuum value of Uyqw(z;0) using the mean squared
residual:

n

X(e,0,0) = > |U(zi;6,0,6) — Uvaw(z:;6)°  (23)

=1

for n > 3000 values of z in the range z = 16.5 — 50 A.
The starting point, zp, for the residual calculation was
chosen so that the relative error between the continuum
vdW potential and the discrete summation was on the
order of 5% for 6 = 0 (Fig. 7 inset). Although this choice
is somewhat arbitrary, we found only weak dependence
on the final results (see uncertainties in Table II) when
modifying zy between 16.5 A and 20 A.

The residual x? is minimized by a two-parameter func-
tion £(c,0) over the range of parameters considered and
we must add an additional constraint in order to extract
the optimal values of ¢ and o for a given strain. This
can be accomplished by requiring that the d-dependent
LJ parameters are close to the isotropic ones gy and oy.
To this end, we define a relative Euclidean distance-cost

function:
€ 2 o 2
A?(g,0) = ( - 1) + ( - 1> (24)
[511) (o)

and search for the global minimum of the “fit-likelihood”
estimator

X2 A2
max, , A2

S(8) = (25)

maxe , X2
with the results displayed in Fig. 9. The global best fit
values (including those for isotropic graphene) are indi-
cated with a star and their explicit values are given in Ta-
ble II. Again there is flexibility in the specific form of the
likelihood estimator S(0) in Eq. (25) and we have investi-
gated the effects of using other functions, including differ-
ent weightings of € and o as well as a relative scale factor
between x? and A2. These ambiguities add an additional
source of error (along with the starting z-coordinate of
the residual) that is reflected in the quantitative uncer-
tainties reported in Table II. These errors, which are on
the order of a few percent, do not affect the observed
qualitative dependence on strain: both Lennard-Jones
parameters are monotonically increasing functions of 4.
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FIG. 9. (Color online) The likelihood estimator S ~ x? + A?
defined in Eq. (25) used to determine the value of the
Lennard-Jones parameters € and o producing the best fit
to the long distance continuum van der Waals potential for
a single helium-4 atom above strained graphene with § =
0,0.1,0.25 and 0.34. Axes are normalized to the convention-
ally employed interaction parameters for helium and carbon:
co = 16.2463K and oo = 2.74 A with the density scale indi-
cating the goodness of fit from light (best) to dark (worst).
The star indicates the identified global best fit.

5 0.00 0.10 0.25 0.34
e [K] 16.247(7) 16.28(9) 16.407(6) 16.61(2)
o [A] 2.739(7) 2.782(8) 2.895(6) 3.08(1)

TABLE II. The optimal values of the Lennard-Jones param-
eters which best reproduce the long distance continuum van
der Waals tail of the adsorption potential for a helium atom
above strained graphene. The uncertainty in the final digit
is indicated in parenthesis where the error can be attributed
to the starting position height zo of the residual x? and the
functional form of the cost-distance function A?

We note, rather remarkably, that for isotropic
graphene, we recover the experimentally determined pa-
rameters ¢y and oy used for helium interacting with a
graphite surface®'. This result provides a novel and in-
dependent theoretical verification of the validity of these
parameters, as the inputs to our calculation only include
the dynamical polarizability of helium defined in Eq. (1)
and the well known properties of graphene in vacuum.

As strain is increased, both ¢ and ¢ grow, with ¢ be-
ing most strongly affected, (increasing by over 10% for
0 = 0.34). This is the expected behavior, as it encapsu-
lates the geometric properties of the potential and sets
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FIG. 10. (Color online) The Lennard-Jones adsorption po-
tential for a He adatom placed at coordinate 74 = (0,0, z)
above a graphene sheet with uniaxial strain along the arm-
chair direction parameterized by 6. The inset (same axes)
shows the long distance tail of the potential, with increasing
strain causesing the dispersion force to increase, in agreement
with continuum van der Waals calculations in the long dis-
tance limit.

the distance at which the attractive minima occurs for
a two-body interaction. e, which sets the energy of the
minimum, increases by 2.5% at the highest strain consid-
ered. This different response to strain is likely indicative
of their role in the potential, Eq. (19), where ¢ sets a
linear scale while o appears with the sixth power of the
distance and thus has a greater effect on the long distance
tail.

C. Results: strained Lennard-Jones potential

Having determined the strain dependent Lennard-
Jones parameters in Table II we now compute the com-
plete form of the many-body adsorption potential for
a He adatom above strained graphene, with the re-
sults shown in Fig. 10. Here the helium atom is cen-
tered with respect to the hexagonal graphene unit cell
(ra =(0,0,z), as in Fig. 7) and we observe that the lo-
cation of the attractive minima, r,, is pushed to larger
distances above the sheet as the strain increases, with
a concomitant softening (increase) of the potential from
U(rpy) =~ —192K for isotropic graphene with § = 0 to
U(rm) ~ —182K at 6 = 0.25. For the strongest strain,
0 = 0.34, we find that the location of minima is pushed
out to a distance of r,, ~ 2.95A, but in contrast to
weaker strain, its depth decreases to U(r,,) ~ —194K
indicating a propensity for enhanced adsorption. We be-
lieve that this behavior may be indicative of a break-
down of our our Lennard-Jones fitting procedure at large
strain as this pair potential neglects the anisotropic po-
larization of the strained graphene at short distances. It
is likely that a more accurate, non-spherically symmet-
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FIG. 11. (Color online) The spatial dependence of the
Lennard-Jones adsorption potential for a He atom at a fixed
distance z = 7,,(6) above an isotropic (§ = 0, top) and
strained (6 = 0.25, bottom) graphene sheet using the pa-
rameters in Table II.

ric pair potential is required””. This is confirmed in the
next section via ab-initio calculations. During the fit, the
large increase of the vdW force found in the continuum
approximation at large strain is most efficiently captured
through an increase in o. For two particles, changes in o
only alter the location of the potential minimum, whereas
the maximum depth of the many-body adsorption poten-
tial is strongly dependent on this hard-core radius as well
as the relative coordination between the adatom at the
graphene lattice as seen in Fig. 7. €, on the other hand,
has the same effect on both the two- and many-body po-
tential, setting an overall linear energy scale.

To better understand these effects, we fix z = r,,,(9)
and evaluate the adsorption potential U(z,y,7.,) as a
function of the = and y coordinates as seen in Fig. 11.
For unstrained graphene (top panel), we observe modula-
tions on the order of 15% as the atom is moved laterally
at fixed z. The potential has an egg-carton structure with
global minima occurring at hexagon centers and giving
rise to the v/3 x v/3 R30° commensurate phase experi-

FIG. 12. (Color online) The Lennard-Jones potential
U(zx,y,rm) for different values of the strain parameter ¢ for
a helium adatom located at fixed z = r,, above the graphene
sheet where 7., (8) ~ 2.635,2.663,2.768,2.951 A is the strain
dependent position of the minimum for § = 0.0,0.1,0.25,0.34
respectively. Each panel has been independently normal-
ized such that the color scale ranges from ming,, U(z,y, 7m)
(white) to maxa,y U(z,y,rm) (red).

mentally observed in graphite*64749. This phase, where
helium atoms occupy 1/3 of the strong binding sites, has
also been observed for isotropic graphene in Monte Carlo
simulations®®5%78  In the presence of large strain, the
potential is more washboard-like, with high ridges track-
ing the zig-zag direction and deep minima, again centered
at the hexagon centers, but with a reduced energy bar-
rier between them. The evolution of these coordination
effects with strain are more apparent when normalizing
deviations of the potential between their minimum and
maximum values as seen in Fig. 12, where again we have
fixed z = r,,,(6). The valley-to-peak difference in the po-
tential increases from approximately 36 K for 6 = 0 to
49K for 6 = 0.25 while the energy barriers between min-
ima are systematically reduced along the zig-zag troughs.

If we increase the fixed height above the sheet and set
it to the strain independent constant z = 20 = 5.48 A
we find very different behavior as seen in Fig. 13. The lo-
cation with respect to the lattice of peaks and valleys has
now reversed, with the hexagon center always represent-
ing the maxima in the potential. While the variations
in the potential are suppressed as z increases: AU(z =
200,60 = 0.0) =~ 0.27mK and AU(z = 209, = 0.25) ~
1.8 mK, the nearly 600% increase demonstrates the large
range of mechanical tunability of vdW interactions in this
system. We note that the distance z = 20¢ corresponds
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FIG. 13. The Lennard-Jones potential U(z,y,20¢) for dif-
ferent values of the strain parameter § for a helium adatom
located at z = 209 = 5.48 A above the graphene sheet.

to the approximate location above the graphene sheet
where a second layer of helium is adsorbed®®™® whose
properties are still under debate®:%?.

In summary, we have found that in order to repro-
duce the increase in the vdW attraction between a he-
lium atom and a deformed graphene surface at large dis-
tances computed within Lifshitz theory, it is necessary to
employ strain-dependent Lennard-Jones parameters. At
short distances, these modified parameters in conjunc-
tion with the deformed lattice structure produce a highly
anisotropic, yet weakened adsorption potential with min-
ima pushed to higher energies at a location further above
the graphene compared to the unstrained case. For the
largest strains we considered (35%), the potential minima
is pushed to nearly 3A above the substrate. However,
in contrast to weaker strains, the depth of the potential
well is slightly greater than that for isotropic graphene.
A these extreme deformations, there is some ambiguity
in the relationship between the velocity anisotropy vy /v,
and the strain percentage § which requires an extrapola-
tion procedure. This uncertainty in combination with a
reduction in confidence of our fitting method in this high-
strain regime, indicates that a closer look at the short dis-
tance potential is warranted. This can be accomplished
via a first principles determination of the dispersion en-

ergy.
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D. Ab initio calculations for coronene

In this section, we calculate from ab initio methods the
interaction potential of a single He atom situated at a dis-
tance z above the center of an aromatic molecule, which
represents a reasonable model for the near-field interac-
tion of the atom with a graphene plane. The interaction
of neutral atoms and molecules with graphene is domi-
nated by dispersion terms, leading to van der Waals-type
potentials, as discussed above. The ab initio evaluation of
dispersion terms is delicate, requiring accurate treatment
of the correlation energy”™ 8. Two methods are con-
sidered reliable enough for this determination”: Mgller-
Plesset®! or coupled cluster®2. Whereas the latter is con-
sidered of higher precision, its computational cost is pro-
hibitive for larger molecular clusters and provides rela-
tively small quantitative gains. Thus, we have performed
calculations using the 2nd order Mgller-Plesset perturba-
tive approach, which in most cases captures about 95%
of the correlation energy™. However, it is possible that
subtle non-additive effects may be present in this system
and not be fully accounted for in our calculations, thus
reducing the quantitative accuracy of results.

All calculations were performed in Gaussian 0983 using
the Pople-type®* 6-314++G(d,p) basis set which includes
diffusion of all orbitals and polarization functions d for
carbon and p for helium. For the aromatic molecules rep-
resenting graphene, we utilized coronene (CoqHio, lower
inset, Fig. 14) or strained coronene, with the carbon
atoms situated at positions given in Eqs. (21)—(22), i.e.,
no geometry optimizations were performed on the aro-
matic carbons which would have eliminated the strain
(the positions of the hydrogen terminators were opti-
mized in each configuration). The energy of the system
was computed for various values of the distance z between
the He atom and the aromatic plane, and the asymptotic
energy for z — oo was removed as a baseline (obtained
by gxtrapolation of the energies for z = 10, 15, 20, and
30 A).

The results for the interaction potential of He on
strained coronene are shown in Fig. 14. The upper inset
shows the dependence of this potential on the size of the
aromatic compound. We find, in agreement with the cal-
culations of Section IV C, that strain has two dominant
and connected effects on the helium adsorption potential:
the potential minima is pushed outwards from the sheet
(as compared to isotropic molecules) causing the attrac-
tion strength to be diminished. Within our first princi-
ples numerical calculations, this trend is monotonic with
increasing strain, further supporting the hypothesis that
the previously employed fitting procedure breaks down
for highly deformed graphene lattices. The absolute value
of the energy of the adsorption potential minima differs
substantially between Figs. 10 and 14 due finite size ef-
fects including the presence of hydrogen terminators nec-
essary for chemical stability as well as the employed basis
set8?.
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FIG. 14. (Color online) Adsorption potential for helium

above (centered) a single strained coronene (C24H12) molecule
(lower right) calculated in the 2nd order Mgller-Plesset®' ap-
proximation using a 6-31+-+C(d,p) basis set®*. Upper right:
dependence of the adsorption potential on molecular size cal-
culated for ¢ = 0.50 in coronene (Cz4Hi2) hexabenzocoronene
(Ca2His), and circumcoronene (Cs4H1g) (same axes as main
panel). Similar size-dependence is observed for lower strains.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have analyzed in detail the van der
Waals potential of three atoms (He, H, and Na) with
uniaxially strained graphene ranging from weak to mod-
erately strong. While these atoms have very different
static polarizabilities (Na being the most polarizable and
He the least) and characteristic frequencies, leading to
very different potential strengths, the overall dependence
of their van der Waals potential on graphene strain is
quite similar. The potential is sensitive to strain and
always increases, which can be traced back to the en-
hanced graphene polarization. Since the enhanced polar-
ization also leads to increased screening of the Coulomb
potential, as described by Egs. (4), (5) and (12), the
exact value of the van der Waals potential increase re-
flects the delicate balance between higher polarization
and screening. Our calculations show that enhance-
ment of the van der Waals potential can be as high as
100% for strong strain § ~ 35%. For such large val-
ues we always keep in mind that the strain is in the
armchair direction to ensure that the system remains
semi-metallic (i.e. in the anisotropic Dirac fermion “uni-
versality class”). While it is unrealistic to expect that
graphene itself can be used in this extreme regime, the
development of artificial anisotropic graphene-like lat-
tices as well the continuous stream of discoveries in
the field of 2D atomic crystals could provide a poten-
tially exciting and fruitful playground for the phenomena
we describe in this paper. As mentioned in Section I,
exampes of such anisotropic systems include graphene
superlattices'® 16, tunable honeycomb optical lattices!”,
and molecular graphene'®. Additional systems of interest
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could include atomically thin MoS,'%:36 which exhibits
strain-sensitive band structure®” 3%, as well as graphene
on hexagonal boron nitride (h-BN), with a superlattice
of spontaneous strain fields and strong electron correla-
tion effects?® 92. Analysis of these and other 2D mate-
rials requires extensions of the present work in several
directions, such as inclusion of spectral gap, spin-orbit
coupling, and gauge fields induced by more complicated
strain configurations, among others'2.

We have applied our results on the strain dependence
of the van der Waals interaction to the problem of quan-
tum reflection, finding that it can be significantly sup-
pressed by strain. Pragmatically, this implies that cold
atoms on strained graphene-based lattices can approach
the surface and thus experience strong inelastic scatter-
ing (usually accompanied by emission of flexural phonons
in the substrate). In this regime, dissipative many-body
phenomena® become of great importance as strain is ap-
plied; these are by themselves complex theoretical prob-
lems which we leave for future studies.

Finally, we have explored the effects of mechanical
strain on the helium-graphene adsorption potential near
the surface, finding that it can be drastically modified.
By matching the results of long-distance continuum cal-
culations of the van der Waals interaction with an ef-
fective sum over two-body interactions for He above a
strained graphene lattice, we have independently deter-
mined phenomenological Lennard-Jones parameters for
the system, finding agreement with common values used
for the helium-carbon interaction. As strain is increased,
the parameters € and o for the two-body interaction
grow monotonically. While this causes an increase in
attraction far from the sheet, the strength of the result-
ing many-body adsorption potential for helium near the
surface is reduced. The resulting locations of potential
minima reflect the anisotropy of the deformed lattice and
are pushed to larger distances above the sheet, causing
weaker adsorption with increased strain. This trend was
confirmed via ab initio calculations of a single helium
atom above aromatic nanographene molecules. Future
work could explore the effects of more accurate, non-
spherically symmetric pair potentials”” as well as the ef-
fects of strain on the surface mediated McLachlan dis-

persion interaction®s.

Mechanically tuning the helium-graphene adsorption
potential presents a fundamentally new approach to
the problem of engineering novel low dimensional liquid
phases, providing a method to inhibit classical wetting
and promote collective behavior. The formation of con-
nected adsorption potential valleys in Fig. 12 for 25%
strain may allow for adatoms to minimize their kinetic
energy by spatially delocalizing along them, offering a
mechanism that may favor anisotropic first layer super-
fluidity at low temperature. At smaller (and more exper-
imentally realistic) values of strain, the first layer may
remain commensurate, but the second adsorbed layer,
which should be both anisotropic and weakly bound,
would be an ideal candidate to form a two dimensional



quantum liquid. This possibility is particularly exciting
in light of the fact that the exact nature of the second
layer of helium adsorbed on a graphite surface is still un-
der debate*®%* with recent heat capacity measurements
indicating the possibility of an exotic quantum hexatic
state®®. The introduction of a mechanical strain into the
arsenal of experimental tuning parameters may help to
uncover and confirm the existence of this and other pre-

14

dicted quantum liquid phases.
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