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The rich phenomenology of plasmonic excitations in the dichalcogenides is analyzed as a function
of doping. The many-body polarization, the dielectric response function and electron energy loss
spectra are calculated using an ab initio based model involving material-realistic Coulomb inter-
actions, band structure and spin-orbit coupling. Focusing on the representative case of MoS2, a
plethora of plasmon bands are observed, originating from scattering processes within and between
the conduction or valence band valleys. We discuss the resulting square-root and linear collective
modes, arising from long-range versus short-range screening of the Coulomb potential. We show that
the multi-orbital nature of the bands and spin-orbit coupling strongly affects inter-valley scattering
processes by gapping certain two-particle modes at large momentum transfer.

I. INTRODUCTION

Collective excitations are of great interest in low-
dimensional materials which are characterized by reduced
dielectric screening of Coulomb interactions. As a promi-
nent example, plasmon modes in layered systems might
form the basis to build optical devices, wave guides or
so called plasmonic circuits1–4. In two dimensions (2d)
the plasmonic dispersion exhibits a characteristic low-
energy acoustic mode ω(q) ∝ √q originating from low-

momentum electron scattering5,6, which has been ob-
served experimentally7,8 and studied extensively from a
theoretical point of view3,9–12 in graphene. Furthermore,
it has been predicted that additional linear plasmons
with ω(q) ∝ q arise due to high-momentum scattering
processes between degenerated valleys such as K and K ′

in graphene13. Coupling of the electrons with such intrin-
sic gapless bosonic modes may lead to instabilities, such
as charge density wave and superconducting phases14–17,
similar to the effect of phonons.

An analogous but even richer phenomenology can be
expected in the structurally related monolayer transi-
tion metal dichalcogenides (TMDCs) MX2, where M
stands for a transition metal and X for a chalcogen atom.
These materials host rich plasmonic physics including
an interplay of plasmons with charge density waves18–20

and first plasmon based applications have already been
proposed21–23.

Here we focus on the representative example of doped
MoS2 whose low-energy band structure can be described
by three effective tight-binding bands. These originate
mostly from the Mo d orbitals, giving rise to prominent
valleys at wave vectors K and Σ in the lowest conduction
band as well as at K in the highest valence band24–26,
leading to Fermi surfaces as sketched out in Fig. 1. Fur-
thermore, there is substantial spin-orbit coupling (SOC)
in these materials27, with a primary effect on the low-
energy physics by introducing a splitting of the Σ valleys
in the lowest conduction band and of the K valleys in
the highest valence band. Although all of these Fermi

surface characteristics can be experimentally sampled by
means of field effect electron or hole doping28, the result-
ing impact to the plasmonic dispersions is not known.

Figure 1: (Color online) Sketch of the Fermi surfaces in hole
(left) and electron doped (right) monolayer MoS2. The pre-
dominant orbital-character weights of each surface is indi-
cated by red (dz2) and blue (dxy and dx2−y2) fillings. Points
of high symmetry are indicated by different markers.

To close this gap, we present an extensive study of
the plasmon dispersion at arbitrary momenta along paths
throughout the whole Brillouin zone for different doping
levels. Specifically we are interested in inter-valley plas-
mons which have not been studied in TMDCs so far. In
order to highlight the multi-orbital character of the Fermi
surface (see Fig. 1) and the presence of spin-orbit cou-
pling we consider hole and electron doped cases. In the
hole doped example we show how spin-orbit coupling af-
fects the inter-valley plasmons while the electron doped
case is used to study the influence of the multi pocket
structure of the Fermi surface. Thereby we gain a com-
prehensive and realistic picture of the most important
contributions to the low energy plasmon modes in mono-
layer TMDCs.

II. METHODS

The collective plasmon modes are described by the po-
larization and dielectric functions, which we evaluate in
several steps, starting with a G0W0 calculation to deter-
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mine the electronic band structure for the undoped sys-
tem. We then obtain an effective 3-band model by pro-
jecting to a Wannier basis spanned by the Mo dx2−y2 ,
dxy and dz2 orbitals, which has been found to accurately
describe the highest valence band and the two lowest
conduction bands with tight-binding hopping matrix el-
ements tαβ , where α and β are the orbital indices (see
Appendix A). The same projection is used to obtain the
static part of the Coulomb interaction in the Wannier ba-
sis, which is screened by all bands including those, which
are not included in the minimal 3-band-model47.

This procedure leads to an effective material-specific
model with screened Coulomb Uαβγδ and hopping tαβ
matrix elements in the orbital basis, describing the un-
doped system in its ground state. We find that this
treatment is essential to derive material realistic plas-
monic dispersions upon doping. In contrast to simplified
k · p models29,30, which utilize bare Coulomb matrix ele-
ments at this stage, our interaction matrix elements are
strongly reduced due to screening effects from the elec-
tronic bands which are neglected in the k · p models (see
Appendix B for comparisons). As a result of the 2d layer
geometry, these dielectric properties cannot be modeled
by a simple dielectric constant but have to be described
as a q-dependent dielectric function31,32.

In order to obtain the dynamic response in the doped
system, we determine the dynamic susceptibility within
the 3-orbital basis by evaluating the polarization in the
random phase approximation (RPA), which is given for
a single spin channel σ by

Πσ
αβ(q, ω) =

∑
λ1λ2k

Mλ1λ2

αβ

[
fσλ2

(k + q)− fσλ1
(k)
]

ω + iδ + Eσλ2
(k + q)− Eσλ1

(k)
, (1)

where q and k are wave vectors from the first Bril-
louin zone, λi band indices, fσλi

(k) Fermi functions for
the energies Eσλi

(k) and iδ a small broadening parame-

ter. The overlap matrix elements are given by Mλ1λ2

αβ =

c̄λ1
α (k)cλ1

β (k)c̄λ2

β (k+q)cλ2
α (k+q), where cλi

α (k) is the ex-
pansion coefficient of the eigenfunction corresponding to
Eσλi

(k) in the orbital basis. Here, we already reduced the

polarization tensor of 4th order to a matrix to describe
density-density correlations only. Hence, we neglect or-
bital exchange (Fock-like) matrix elements as well as ele-
ments with three or even four different orbital contribu-
tions. A detailed analysis of the full background screened
Coulomb tensor Uαβγδ shows that these elements are in
general one order of magnitude smaller or even vanish due
to symmetries, which convinces us to stay with density-
density like elements.

Using the full density-density polarization Π(q, ω) =
Π↑(q, ω) + Π↓(q, ω) the dielectric function is obtained
via the following matrix equation

ε(q, ω) = 1− U(q)Π(q, ω), (2)

where the background screened Coulomb interaction en-
ters via U(q). By including an effective spin-orbit

coupling (SOC) as described in Ref.26 the spin degen-
eracy is removed but time reversal symmetry is pre-
served. Then, the spin resolved band structure still

obeys E↑λ(k) = E↓λ(−k) and the total polarization in-
cluding the spin summation can be written as Π(q, ω) =
Π↑(q, ω) + Π↑(−q, ω).

The dielectric function describes the screened Coulomb
matrix V (q, ω) = ε−1(q, ω)U(q) and implicitly de-
fines the plasmonic dispersions by (q, ω) pairs such that
εm(q, ω) = 0. Here εm is the macroscopic part of the
dielectric function defined in the orbital basis as the pro-
jection

εm(q, ω) = 〈v1(q)| ε(q, ω) |v1(q)〉 , (3)

where |v1(q)〉 is the eigenfunction corresponding to the
largest eigenvalue of the bare Coulomb interaction ma-
trix U(q)33. The most promising experimental method
to measure these plasmon modes is electron energy loss
spectroscopy (EELS), measuring the imaginary part of
the inverse dielectric function

EELS(q, ω) = − Im

(
1

εm(q, ω)

)
, (4)

which is sensitive to both collective and single-particle
excitations (visible as maxima in the EELS spectra)34.

It is important to note that the RPA description
of plasmonic properties involves solely Landau-damping
processes due to excitations of single particle-hole
pairs. In reality electron-impurity, electron-phonon35

or electron-electron scattering36 would yield additional
damping effects which are phenomenologically included
here due to the small but finite broadening parameter
δ = 0.0005 eV in Eq. (1). This broadening corresponds
to plasmon lifetimes of about 1 ps which is on the same or-
der as electron-electron scattering induced plasmonic life-
times of a 2d electron gas and one to two orders of mag-
nitude smaller than in freestanding doped graphene36.

In comparison to other RPA based approaches (ne-
glecting broadening effects) we find, that a material-
realistic description of the Coulomb interaction of the
undoped system [rendered in U(q)] in combination with
highly accurate band-structure models is mandatory to
gain reliable plasmon dispersions as we show for MoS2

and NbS2 in Appendix B.

III. RESULTS

In the following we will consider hole and electron dop-
ing scenarios with and without spin-orbit coupling. In or-
der to clarify the differences in these situation we provide
in Fig. 5 a sketch of all situations. The “hole doping”
concentration is chosen in a way that all K and K ′ (but
no Γ) valleys in the conduction band will be populated
with holes independently of the in- or exclusion of SOC.
In the case of electron doping we will study two different
levels: In the “low electron doping” case only the K/K ′



3

Figure 2: (Color online) Real and imaginary parts of the polarization functions (dxy/dxy channel) and EELS spectra for hole
doped MoS2 without (top row) and with (bottom row) spin orbit coupling. The insets in (a) and (d) illustrate the Fermi surface
pockets around K and K′.

valleys of the lowest conduction band are occupied as
long as the SOC is excluded while upon inclusion of SOC
in addition only one subset of the Σ/Σ′ valleys will be
occupied. Within the “high electron doping” scenario all
K/K ′ and Σ/Σ′ valleys are occupied (with or without
SOC).

A. Hole Doping

We fix the chemical potential such that there are holes
in the valence band in the K and K ′ valleys only. The
resulting Fermi surfaces consist of circle-like areas around
the K points (see Fig. 1), which have mainly dxy/dx2−y2
character and depend on spin-orbit coupling. Hence,
we expect low energy plasmon modes for q ≈ Γ (intra-
valley) and q ≈ K (inter-valley), which are possibly in-
fluenced by SOC.

In Fig. 2 (a) we show an intensity plot of the real part
of the polarization function for scattering within dxy or-
bitals along the complete path Γ → K without SOC48.
Next to some band-like structures (red) we clearly see
the particle-hole continuum [blue, see also Fig. 2 (b)]. In
comparison to the corresponding EELS data in Fig. 2 (c),
we see that for higher momentum transfers (away from
Γ) the EELS maxima closely follow the band-like charac-
teristics of the polarization function. For small momenta
around Γ we find a clearly separated band in the EELS
spectra, which can not be seen in the real part of the
polarization. This separated band arises from the well
known

√
q-dispersive intra-valley plasmon mode in 2d29,

while we find a linear-dispersive mode around K stem-
ming from an inter-valley plasmon13. These activation
laws are consistent with the generalized expression for
the plasmon dispersion relation defined by the dielectric
function via15,

ω(q) = ~vF q

√
1 +

[N0U(q)]2

(1/4) +N0U(q)
, (5)

where vF is the Fermi velocity, N0 the density of states
at the Fermi level and U(q) the macroscopic background
screened Coulomb interaction of the undoped system. In
the long-wavelength limit (q → 0), the Coulomb poten-
tial remains unscreened, i.e. in leading order U ∝ 1/q, re-
sulting in a square-root renormalization of the otherwise
linear dispersion. However, in the opposite short-range
limit, i.e. at the zone boundary, the screened Coulomb
potential approaches a constant, and therefore the re-
sulting dispersion of the dielectric function is linear in q,
same as the polarization function itself. Thus for mo-
menta away from Γ it is sufficient to study the polariza-
tion function to understand how the resulting plasmon
dispersion will behave.

Of special interest are damping effects, which are
known to attenuate plasmon modes which merge with
the particle-hole continuum. Here the square-root mode
around Γ behaves in a distinctly different manner com-
pared to the linear modes originating at K. At suffi-
ciently small momentum transfers q < qc the square-root
modes are more separated from the nearby particle-hole
continua [Fig. 2 (c) and (f)], and therefore better pro-
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tected from decomposition via hybridization and Landau
damping [expressed as non-vanishing imaginary parts of
the polarization as shown in Fig. 2 (b) and (e)] com-
pared to the linear modes originating at finite momenta.
In contrast, the linear plasmon modes are much closer to
their neighboring continua [Fig. 2 (c)], which leads to at-
tenuation effects, reflected in reduced oscillator strength
and broadening of the peaks. There is a significant dif-
ference in the oscillator strengths of these modes, which
can be several orders of magnitude apart as can be seen
in Fig. 2 (c) and (f). Hence, in order to clearly detect
these linear plasmon modes in experiments, it may prove
practical to use a logarithmic scale to shield the domi-
nant square-root mode around q = Γ, as shown in Fig.
2 (c) and (f).

When we account for spin-orbit coupling the relative
depth of the K and K ′ pockets shifts. In this case mo-
mentum transfer of q = K no longer connects points
on the Fermi surface belonging to different hole pockets,
which results in two clearly visible characteristics in the
polarization of Fig. 2 (d): (i) At q = K the scatter-
ing process is possible only for a finite energy difference,
which opens a finite energy gap of ≈ 250 meV. (ii) The
Fermi surfaces at K and K ′ are now of different sizes but
can still be connected with slightly smaller and larger
q, resulting in gap-less linear modes originating slightly
shifted from K as seen in Fig. 2 (d).

We conclude that the plasmonic features in hole doped
MoS2 are mainly characterized by a square-root mode in
the vicinity of the Γ point and additional low contribu-
tions at the Brillouin zone edge which disperse linearly
when SOC is disregarded. As long as SOC is not taken
into account and the K valley is occupied solely this is
qualitatively very similar to the plasmonic properties of
doped graphene13. Upon inclusion of SOC the linear
plasmon mode around K is shifted leading to a gapped
excitation spectra at this point.

B. Electron Doping

The lowest conduction band is characterized by two
prominent minima around K and Σ. Without SOC these
minima are separated by less than 100 meV which is fur-
ther reduced by considering SOC. Hence, in contrast to
the hole doped case, small variations in the electron dop-
ing can change the Fermi-surface topology as shown in
the insests of Fig. 3 and Fig. 4. In order to study these
changes, we will neglect the SOC for the beginning and
choose two doping levels, resulting in Fermi surfaces com-
parable to the hole doped case (i.e. K valley occupation
only) and a surface with additional pockets at Σ, labeled
by low- and high-doping respectively (see Appendix A).
Since the K valley is mainly described by dz2 orbitals and
the Σ valley predominately by dxy and dx2−y2 states, we
focus on corresponding diagonal orbital channels in Παβ

in the following. Off-diagonal elements between dz2 and
dxy/dx2−y2 orbitals are negligible here and off-diagonal

terms between dxy/dx2−y2 states are very similar to di-
agonal dxy/dxy and dx2−y2/dx2−y2 combinations. The
corresponding polarization functions are shown along the
path Γ−Σ−K−M−Γ through the whole Brillouin zone
in Fig. 3 and Fig. 4 for dz2 and dxy states, respectively.

Analogous to the hole doped case, we observe in all
situations (high and low electron doping) around q = Γ
the expected ω ∝ √q plasmonic resonances arising from
intra-valley scattering (either within the K or the Σ val-
leys). The structure of the polarization for larger q can
be understood by inspecting the Fermi surface shown in
Fig. 1: Inter-valley scattering between similar valleys is
possible for momentum transfers of q = K (K ↔ K ′

and Σ ↔ Σ′ scattering) and q = Σ and M (Σ ↔ Σ′

scattering). Therefore, we expect additional inter-valley
plasmon branches close to these momenta. In principle
K ↔ Σ scattering can be found as well (for instance for
q = Σ or q = M), but with strongly decreased ampli-
tudes due to vanishing overlap matrix elements Mdz2dxy .

Indeed, we find at q ≈ K in all situations without SOC
possible excitations at zero energy. In Fig. 3 (a) and (b)
we see the corresponding K ↔ K ′ and in Fig. 4 (a) the
Σ ↔ Σ′ modes. As expected, at momentum transfers
of q = M and Σ we find gap-less linear modes only
within the dxy channel for high doping concentrations as
shown in Fig. 4 corresponding to Σ ↔ Σ′ excitations.
In contrast, within the low doping case [Fig. 3 (a)] we
observe weak and gapped (≈ 0.1eV ) excitations for these
momenta originating from K ↔ Σ scattering.

While the SOC has a negligible effect on the dz2 val-
ley at K it splits the dxy/dx2−y2 valleys at Σ resulting
in minima at comparable energies. The corresponding
Fermi surface for a single spin component is indicated
in the inset of Fig. 4 (b). The six Σ points decompose
into two distinct sets, Σ and Σ′. Fermi pockets within
each of these subsets are mutually connected by 2π/3
rotations and remain equivalent after inclusion of SOC,
while the degeneracy of Σ and Σ′ is lifted by SOC. As a
consequence, the phase space for Σ↔ Σ′ is lost and the
gap-less excitations at q ≈ Σ and q ≈ K must vanish,
but Σ ↔ Σ scattering processes are still possible. Con-
sequently, we see in the corresponding polarization for
the dxy channel with SOC in Fig. 4 (b) gap-less modes
only at Γ and M. Since the Fermi surface around K
is not changed drastically upon SOC, the corresponding
polarization for the dz2 channel is very similar to the one
obtained without SOC [see Fig. 3 (b)].

IV. CONCLUSIONS

We found that the low energy dynamical screening in
MoS2 is controlled by both inter- and intra-valley scat-
tering processes. These give rise to plasmons with a
square-root dispersion at small q and linear dispersion
for higher momentum transfers which connect separate
valleys on the Fermi surface. In general, inter-valley
plasmon modes are observable, although their oscilla-
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(a)low electron doping (b)high electron doping

Figure 3: (Color online) Real parts of the polarization functions for dz2/dz2 scattering at low and high electron doping
concentration without SOC. The insets illustrate the Fermi surfaces.

(a)without SOC (b)with SOC

Figure 4: (Color online) Real parts of the polarization functions for dxy/dxy scattering at elevated electron doping concentration
(K and Σ valleys are partially occupied) without and with SOC. The insets illustrate the Fermi surfaces.

tor strengths are strongly reduced in comparison to zone
center modes. Due to the multi-orbital character of the
wave functions and spin-orbit coupling, which leads to
spin-valley coupling in monolayer TMDCs, not all inter-
valley scattering processes are allowed. As a consequence
of spin-valley coupling some inter-valley plasmon modes
are shifted and gapped out, while the 2π/3 rotation sym-
metry protects certain low energy modes at M. We spec-
ulate this selective gapping out of collective modes could
have consequences for the realization of many-body insta-
bilities towards superconducting or charge density wave
phases in monolayer TMDCs.
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Appendix A: Appendix A: Band structure

In Fig. 5 we show the band structure of MoS2 with spin
orbit coupling as resulting from the 3-band tight binding
model used in this work. The SOC is included as de-
scribe in Ref.26 with λ = 0.1 eV as the SOC coefficient.
All of these three bands are actually of hybrid molybde-
num d and sulfur p character with Mo d orbitals being
dominant. To get a well defined electronic band struc-
ture, we use the Wannier90 package37 in order to prop-
erly disentangle these bands. Thereby we use a “frozen”
or “inner” energy window, which fixes the highest G0W0

valence-band’s energy as well as most parts of the lowest
conduction band. The Wannier functions are obtained
using projections of atomic Mo 4d orbitals onto a lim-
ited set of bands in an “outer” energy window including
all relevant valence and conduction bands without per-
forming a maximal localization. The limitation of the
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Wannierization procedure to these kinds of energy win-
dows ensures that the resulting Wannier functions carry
the proper hybrid orbital characters.

Figure 5: (Color online) Band structure of MoS2 with spin
orbit coupling (top). The two lowest conduction bands and
highest valence band are shown. The doping levels discussed
in the main text are shown with horizontal lines: green (“hole
doping”) Ef = −0.15 eV, blue (“low electron doping”) Ef =
2.52 eV and cyan (“high electron doping”) Ef = 2.67 eV. The
lower panel shows a sketch of the splitting due to SOC at K
and K′ in the valence band and at Σ and Σ′ in the lowest
conduction band.

Appendix B: Appendix B: Benchmarks

Up to now, there have been basically two theoretical
approaches available to study the plasmonic physics in
TMDCs. On the one side there are models combining ef-
fective k ·p descriptions of the quadratic electronic bands
around the band gap with an evaluation of the dielectric
function within the random phase approximation29,30.
On the other side, there are RPA descriptions based
on full density functional theory calculations, which in-
clude realistic single particle band structures describing
the complete Brillouin zone32,38–42.

Here, we add a third approach by utilizing a material-
specific low-energy model Hamiltonian derived from ab
initio calculations for the undoped material as the basis
for the evaluation of dynamical response functions in the
electron and hole doped situations. Thereby we gain the
possibility to accurately calculate the polarization as well

orbitals d (Å) ε∞ γ (Å)
dz2 dz2 9.73 5.41 1.27
dz2 dxy 3.91 10.86 1.89
dz2 dx2−y2 3.96 10.75 1.86
dxy dxy 10.25 5.31 1.79
dxy dx2−y2 6.23 7.58 1.99

dx2−y2 dx2−y2 10.22 5.32 1.75

Table I: Parametrization of the orbitally-resolved background
screened Coulomb matrix elements for freestanding and un-
strained NbS2 from (constrained) RPA ab initio calculations.
In order not to double count the screening effects of the par-
tially occupied highest valence band the corresponding screen-
ing effects are neglected here and will be considered by the
evaluation of the RPA polarization function as given in Eq.
(1).

as the screening functions for the whole Brillouin zone,
which enables us to study plasmons at arbitrary momenta
as described in the main text.

In Fig. 6 (a) we compare the resulting plasmon dis-
persions of our ab initio based model (dots) to the mod-
els by Scholz et al.29 and Kechedzhi et al.30 (lines) for
hole doping with a carrier density of 2×1013cm−2 in the
case of MoS2. In the k · p models a simple constantly
screened Coulomb interaction of the form U(q) ∝ 1

κq

with εαβ(q) = κ = 5 is used. As long as we use the
same constantly screened Coulomb interaction to evalu-
ate the dielectric function we end up with nearly identical
plasmon dispersions compared to those derived from the
k · p-models. However, by including the full ab initio de-
rived q dependent dielectric function for the background
screening in the undoped case, which arises due to the
two dimensional geometry and high energy inter-band
polarization processes, we find strongly reduced plasmon
energies (green dots). Hence, we conclude that neglecting
the material-specific dielectric function εαβ(q) within the
minimal 3-band model is a severe approximation leading
to non-realistic plasmonic properties.

In Fig. 6 (b) we compare our method to full ab initio
results for NbS2

41, which is a metal. Analogous to MoS2

we use a 3-band tight-binding model which is obtained
by projecting ab initio results to Nb dz2 , dxy and dx2−y2
orbitals. The Coulomb interaction is fitted by the param-
eters given in Tab. I using the definitions from Ref.31.
Once again, plasmon dispersions derived form EELS data
are shown. Although, the resulting dispersions are on the
eV range (for which our model is actually not set-up), we
find a remarkable agreement with differences on the order
of 100 meV to 200 meV (≈ 10% to 20%).
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Figure 6: (Color online) (a) Plasmon dispersions from our ab initio based model (dots) in comparison with analytic k ·p-models
by Scholz et al. (blue)29 and Kechedzhi et al. (red)30. In the data by Kechedzhi et al. both spin components and their coupling
are included while the data of Scholz et al. includes a single spin component only. Data shown as red (blue) dots results
from the ab initio model by using a simple constantly screened Coulomb interaction and the full (spin resolved) polarization
function. The data shown as green dots arise from the complete ab initio model. (b) Plasmon dispersions for undoped NbS2

from (right) full ab initio calculations from Ref.41 and (left) EELS data obtained from our ab initio based model.
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H. Berger, Physical Review B 87, 195119 (2013).

21 K. Kalantar-zadeh, J. Z. Ou, T. Daeneke, M. S. Strano,
M. Pumera, and S. L. Gras, Advanced Functional Mate-
rials 25, 5086 (2015).

22 K. Kalantar-zadeh and J. Z. Ou, ACS Sensors (2015),
10.1021/acssensors.5b00142.

23 J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and
R. Tripathi, Optical and Quantum Electronics 47, 3599
(2015).

24 E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón,
and F. Guinea, Physical Review B 88, 075409 (2013).

25 C.-H. Chang, X. Fan, S.-H. Lin, and J.-L. Kuo, Physical
Review B 88, 195420 (2013).

26 G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao,
Physical Review B 88, 085433 (2013).

27 Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Physical
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