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The adiabatic connection formula of ground-state density functional theory relates the correlation
energy to a coupling-constant integral over a purely potential contribution, and is widely used to
understand and improve approximations. The corresponding formula for thermal density functional
theory is cast as an integral over temperatures instead, ranging upward from the system’s physical
temperature. We also show how to relate different different correlation components to each other
other, either in terms of temperature- or coupling-constant integrations. We illustrate our results
on the uniform electron gas.
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The adiabatic connection formula[1–3], often derived
via the Hellmann-Feynman theorem[4, 5], has been used
extensively as an interpretive and development tool in
density functional theory (DFT)[6, 7]. By scaling the
electron-electron interaction with a coupling constant,
while keeping the density fixed, one constructs a path
from the non-interacting Kohn-Sham system to the fully
interacting system of interest. This yields the exchange-
correlation (XC) energy as an integral over only a purely
potential contribution.
For equilibrium systems at finite (i.e., non-zero) tem-

peratures, Mermin[8] generalized the HK theorems of
ground-state DFT. Applying the theorem to the Kohn-
Sham scheme of fictitious non-interacting electrons with
the same equilibrium density, one finds a set of thermal
KS equations[7], in which the KS orbitals are thermally
occupied via a Fermi function[9]. The relation to the
physical system is given by the thermal XC free energy,
which now includes an entropic contribution. The de-
pendence of the Hartree and exchange energies on the
coupling constant is simple[10], but the thermal correla-
tion free energy is more complicated. Relating scaling to
the coupling constant, the thermal adiabatic connection
formula was derived in Ref. [10].
Here, we show that the adiabatic connection formula at

finite temperature can be recast as an integral over tem-
peratures, without changing the coupling constant. This
thermal connection formula for the XC free energy at
temperature τ is

Aτ
XC
[n] =

τ

2
lim

τ ′′→∞

∫ τ ′′

τ

dτ ′

τ ′2
U τ ′

XC
[n√

τ ′/τ
] (1)

where U τ
XC
[n] is the purely potential contribution to the

XC free energy, and

nγ(r) = γ3 n(γr) (2)

is the usual coordinate scaling of the density introduced
by Levy and Perdew[11] for the ground-state problem.
Thus Eq. (1) extracts the XC free energy, including both
kinetic and entropic contributions, from the interaction

contribution alone. Intriguingly, it is expressed as an in-
tegral over all temperatures higher than the temperature
of interest.
However, just as in ground-state DFT, knowledge of

any component of the correlation energy as a functional
of the density is sufficient to determine any other[12].
Thus approximations to the correlation energy can be
made for any one of these components, and converted
into, e.g., an approximation to the correlation free energy.
An example is the ‘upside-down’ adiabatic connection in
which, for strongly correlated systems, it can be advanta-
geous to derive approximations to the kinetic correlation
energy[13–16]. Such formulas were written down and col-
lected explicitly in Ref. [12], and even used to construct
accurate and approximate adiabatic connection curves.

This paper reports both the thermal connection for-
mula and the derivation and many results for these for-
mulas at non-zero temperatures, with examples from the
uniform gas. Atomic units are used throughout, with
energies in Hartrees and distances in Bohr radii.
To begin, we review only those thermal DFT concepts

needed to proceed, beginning with the Mermin-Kohn-
Sham (MKS) equations. For a full introduction to ther-
mal DFT, please see Ref. [9], and see Ref. [17] for an al-
ternative perspective presented via Legendre transforms.
The MKS equations closely resemble those at zero tem-
perature, though they are complicated by temperature-
dependent eigenvalues and chemical potential[7]:
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where vτ
S
(r) is defined by requiring that the resulting

thermal density
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matches that of the physical problem, where
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are Fermi occupation factors at temperature τ . The
chemical potential µ is chosen to yield the desired av-
erage number of electrons, N . In the usual way[18], the
free energy of the physical system is

A = T + Vee + V − τS (6)

where T is the kinetic energy, Vee the inter-electron re-
pulsion, V the one-body potential, and S the entropy. In
terms of the corresponding KS quantities:

A = TS + U + V − τSS +AXC, (7)

where the subscript s denotes evaluation for the KS sys-
tem, U is the Hartree energy, and AXC is the XC free en-
ergy, defined by this relation. All quantities can be con-
sidered as density functionals, in which the chemical po-
tential has already been eliminated in terms of the mean
particle number, since that is determined by the density.
Most are also explicitly temperature-dependent. Others,
such as the Hartree and one-body energies, are not, but
their values for a fixed potential vary with temperature
via the temperature-dependent density. Because the den-
sity minimizes the free energy, one finds

vτ
S
[n](r) = v(r) + vH[n

τ ](r) + vτ
XC
[nτ ](r) (8)

where vH[n](r) is the traditionally defined Hartree
potential[19, 20] and

vτ
XC

[n](r) = δAτ
XC

/δn(r). (9)

Unlike the ground state XC energy, AXC includes en-
tropic contributions. Here our focus is on the correla-
tion effects, so we subtract off the exchange contribu-
tion (which can be isolated by scaling to the high-density
(weakly-coupled) limit[10]). Then the kinetic correlation
energy is

T τ
C
[n] = T τ [n]− T τ

S
[n], (10)

while the potential correlation energy is

U τ
C
[n] = V τ

ee[n]− U [n]− Eτ
X
[n]. (11)

Both these are exact analogs of their ground-state coun-
terparts. But we also have correlation entropy:

Sτ
C
[n] = Sτ [n]− Sτ

S
[n]. (12)

We write Aτ
C
as a sum of two contributions:

Aτ
C
[n] = Kτ

C
[n] + U τ

C
[n], (13)

where the kentropic component is

Kτ
C
[n] = T τ

C
[n]− τ Sτ

C
[n] (14)

and this combination plays a role mimicking that of the
kinetic correlation alone in the ground-state case[10].
Ref. [10] introduced two important results. The first

is the relation between coupling constant and scaling at

finite temperature. Introduce a coupling constant λ in
front of Vee, which is a positive number and consider vary-
ing λ keeping n(r) fixed. The physical system has λ = 1,
while λ = 0 reduces to the KS system. In a method sim-
ilar to that used in the ground state[21], combining Eq.
(31) of Ref. [10] with finite-temperature density scaling
and the relationship between coordinate- and interaction-
scaled statistical operators yields

Aτ,λ
XC

[n] = λ2 A
τ/λ2

XC [n1/λ], (15)

where Aτ,λ
XC is the value at coupling constant λ, and on the

right the density has been coordinate-scaled. This relates
changes in the coupling constant to coordinate scaling of
the density, just as in the ground-state theory[11]. All
components of the energy, such as the exchange, ken-
tropic, and potential contributions, scale in the fashion
of Eq. (15). Because exchange is evaluated on the KS
thermal density matrix of non-interacting electrons, it
scales simply with λ[10]:

Aτ,λ
X

[n] = λA
τ/λ2

X [n]. (16)

A second important result of Ref. [10] is the conven-
tional adiabatic connection formula. Write this in terms
of correlation alone by using the above lambda-scaling of
exchange,

Aτ
C
[n] =

∫ 1

0

dλ

λ
U τ,λ

C
[n]. (17)

This extracts the full C free energy from its potential
contribution alone, but at the price of having to integrate
over the coupling constant. This is a generalization of the
formula that has proven so useful at zero temperature[2].
But one can go further than this, and convert all co-

ordinate scaling into temperature scaling, yielding very
different formulas. Begin with the exchange-correlation
version of Eq. (17) and insert Eq. (15). Define τ ′ = τ/λ2,
and change variables to find Eq. (1). This is one of the
central results of this paper: The XC free energy can be
extracted from the potential-only contribution, as a tem-
perature integral, not a coupling-constant integral. This
integral runs from the given temperature upwards, and
so does not include information from the ground-state
functional, but rather from the high-temperature limit.
We can also generalize the adiabatic connection for-

mula for Aτ
C
to arbitrary coupling constant. This follows

precisely the derivation in ground-state DFT[11]. Apply
Eq. (15) to Eq. (17), insert the adiabatic connection,
and identify the potential-only piece inside the integral
to find:

Aτ,λ
C

[n] =

∫ λ

0

dλ′

λ′
U τ,λ′

C
[n]. (18)

We can then generalize the thermal connection to arbi-
trary coupling constants:

Aτ,λ
C

[n] =
τ

2
lim

τ ′′
→∞

∫ τ ′′

τ/λ2

dτ ′

τ ′2
U τ ′

C
[n√

τ ′/τ/λ
]. (19)
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This shows that we can trivially generate the coupling
constant dependence of AXC by changing the limits of
the thermal integration and scaling the density argument.
This completes our formulas for extracting Aτ

C
from U τ

C
.

These are useful when an expression (exact or approx-
imate) is derived for U τ

C
, to get an expression for Aτ

C
.

Our thermal connection formula negates the need for a
coupling-constant dependence when τ is finite.
However, it can also happen that, e.g., by calcula-

tion, Aτ
C
is known, but it is desired to extract U τ

C
, i.e.,

the reverse process. This is used in ground-state DFT
when plotting the integrand in the adiabatic connection
formula[22–24]. It is now straightforward to find this
relation, by differentiating Eq. (19) with respect to λ,
yielding

U τ,λ
C

[n] = λ
dAτ,λ

C [n]

dλ
. (20)

In the special case where λ = 1, we find the compact
result

U τ
C
[n] =

dAτ,λ
C [n]

dλ

∣

∣

∣

λ=1
, (21)

which is exactly analogous to the ground-state formula.
This cannot be simply rewritten without the coupling-
constant dependence, as derivatives with respect to scal-
ing yield terms that depend on the potential.
Since none of the components of the correlation free en-

ergy are independent, we can also write the free energy in
terms of the kentropic contribution alone. This is some-
times used in ground-state DFT (where the kentropy is
just the kinetic energy) to create approximations start-
ing from the strictly-correlated limit[14]. In our case, we
begin with Eq. (13), inserted into Eq. (20) to yield

Kτ,λ
C

[n] = Aτ,λ
C

[n]− λ
dAτ,λ

C [n]

dλ
, (22)

showing how to extract Kτ,λ
C at any coupling strength

from Aτ,λ
C . More specifically,

Kτ
C
[n] = Aτ

C
[n]− dAτ,λ

C [n]

dλ

∣

∣

∣

λ=1
, (23)

which means any approximation for Aτ
C
[n] uniquely de-

termines an approximation for Kτ
C
[n]. But we can also

regard Eq. (22) as a differential equation in λ, and solve

for Aτ,λ
C , to find:

Aτ,λ
C

[n] = −λ

∫ λ

0

dλ′

λ′2
Kτ,λ′

C
[n], (24)

which is the generalization of the ground-state adiabatic
connection formula in terms of Kτ

C
to finite temperature

(Eq. 18 of Ref. [12]). For the physical system:

Aτ
C
[n] = −

∫ 1

0

dλ

λ2
Kτ,λ

C
[n]. (25)

Finally, we can convert this into a thermal connection
formula using the universal rule for scaling, and changing
variables, we find:

Aτ
C
[n] = −

√
τ

2
lim

τ ′′
→∞

∫ τ ′′

τ

dτ ′

τ ′3/2
Kτ ′

C
[n√

τ ′/τ
]. (26)

This is the thermal connection formula in terms of the
kentropic correlation energy.
It is straightforward to combine these various results

to form relations between Kτ
C
and U τ

C
. We find:

Kτ
C
[n] =

∫ 1

0

dλ

λ
U τ,λ

C
[n]− U τ

C
[n], (27)

while the reverse relation is

U τ
C
[n] = −

∫ 1

0

dλ

λ2
Kτ,λ

C
[n]−Kτ

C
[n]. (28)

We can turn these into thermal connection formulas. For
Eq. (27), we simply use Aτ

C
= Kτ

C
+U τ

C
in Eq. (1) to find

Kτ
C
[n] =

τ

2
lim

τ ′′→∞

∫ τ ′′

τ

dτ ′

τ ′2
(U τ ′

C
[n√

τ ′/τ
]− 2U τ

C
[n]) (29)

Lastly, we discuss how these results differ from many
long-known in the plasma physics community. In the
standard approach to statistical mechanics, the potential
is given and so held fixed, and energies and potentials
are found for, e.g., fixed temperature dependence and
chemical potential. The latter can be eliminated in fa-
vor of fixed mean particle number. But as the tempera-
ture varies, the one-body density also varies, and so such
relations do not directly yield constraints on the exact
density functionals that are independent of the specific
system under study.
Our derivation yield direct relations among density

functionals. Because the density fixes the average par-
ticle number, this is no longer a free variable, and so
the only other dependence is on the temperature. Hence
all derivatives with respect to temperature are total, not
partial. By our methods, we are deriving relations that
can, for example, be used to test or construct any ther-
mal density functional correlation approximation, with-
out reference to the given system. In fact, for inhomo-
geneous systems, both the chemical potential and the
one-body external potential vary in complex ways as the
temperature changes with fixed density. The beauty of
this methodology, created by Levy and Perdew[11] for the
ground-state problem, is that those dependencies need
never be discussed.
In the special case of a homogeneous system, i.e., the

uniform electron gas or the one-component plasma, none
of these effects are relevant, since the potential and den-
sities are constant at all temperatures. In this case, our
formulas trivially match the long-known results[25–27],
and so the uniform case serves as a useful consistency
check. For example, in the uniform case, our formulas
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are trivially related to the standard coupling-constant
integration[28, 29]. Several of the relations for the uni-
form gas were used recently[30] to reparameterize quan-
tum Monte Carlo results for the thermal uniform gas. On
the other hand, since the coupling constant is defined in
terms of parameters in some way averaged over the en-
tire system, such a treatment differs utterly from ours
for any inhomgeneous system. For example, in our high-
temperature limit, the density retains all the inhomo-
geneity of the original system, and never becomes more
uniform, by definition.

FIG. 1. The correlation free energy and correlation compo-
nents per particle for the uniform electron gas with rS = 2
(solid), rS = 1 (dashed), and rS = 0.5 (dotted), as a function
of the temperature in units of the Fermi temperature. The
parameterization in Ref. [30] is used as a starting point, from
which the correlation free energy per particle (black), the po-
tential correlation (red), and the kentropic correlation (blue)
are extracted.

FIG. 2. The integrand of the thermal connection formula for
the uniform gas at various rS values with τ = 1.

In Fig. 1, we plot the correlation free energy for the
uniform gas, based on the recent parametrization of Ref.
[30], for several values of rS. In every case, the free energy
initially increases in magnitude with temperature, and
then slowly shrinks for temperatures beyond the Fermi
temperature. We write the connection formula

Aτ
C
[n] = lim

τ ′′
→∞

∫ τ ′′

τ

dτ ′W τ
C
[n](τ ′) (30)

where

W τ
C
[n](τ ′) =

τ

2τ ′2
U τ ′

C
[n√

τ ′/τ
]. (31)

For the uniform gas, we divide by the volume and plot en-
ergy densities. In Fig. 2, we plot the integrand for τ = 1
for various values of rS. Clearly, the curves themselves
do not yield much insight directly into the thermal corre-
lation free energy (at least, plotted in this way). But we
have carefully checked that integrating the curves from
τ ′ = τ to infinity yields the aτ

C
= Aτ

C
/V values plotted in

Fig. 1. The smaller τ is, the more more carefully the in-
tegrand must be approximated, especially since there is a
delicate balance between the divergence in the integrand
and the prefactor of τ . But obviously approximations
that expand W τ

C
(τ ′) about the high-temperature, high-

density limit yield approximations to Aτ
C
[n] via Eq. (30).

To conclude, we have found an entirely new way to
represent the XC free energy of thermal DFT, which we
call the thermal connection formula. Unlike the ground-
state adiabatic connection formula, it relates the XC free
energy to the potential contribution at higher tempera-
tures. We have also derived many other relations among
the different correlation components. We have used these
to plot the various contributions to the uniform gas. We
anticipate these relations playing a key role in the de-
velopment of thermal density functional approximations
beyond the local approximation.
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