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As opposed to ordinary metals, whose Fermi surfaces are two dimensional, topological
(semi-)metals can exhibit protected one-dimensional Fermi lines or zero-dimensional Fermi points,
which arise due to an intricate interplay between symmetry and topology of the electronic wavefunc-
tions. Here, we study how reflection symmetry, time-reversal symmetry, SU(2) spin-rotation sym-
metry, and inversion symmetry lead to the topological protection of line nodes in three-dimensional
semi-metals. We obtain the crystalline invariants that guarantee the stability of the line nodes in
the bulk and show that a quantized Berry phase leads to the appearance of protected surfaces states,
which take the shape of a drumhead. By deriving a relation between the crystalline invariants and
the Berry phase, we establish a direct connection between the stability of the line nodes and the
drumhead surface states. Furthermore, we show that the dispersion minimum of the drumhead
state leads to a van Hove singularity in the surface density of states, which can serve as an exper-
imental fingerprint of the topological surface state. As a representative example of a topological
semi-metal, we consider CasP2, which has a line of Dirac nodes near the Fermi energy. The topolog-
ical properties of CagP2 are discussed in terms of a low-energy effective theory and a tight-binding
model, derived from ab initio DFT calculations. Our microscopic model for CazPs shows that the
drumhead surface states have a rather weak dispersion, which implies that correlation effects are

enhanced at the surface of CasPs.
I. INTRODUCTION

The study of band structure topology of insulating and
semi-metallic materials has become an increasingly im-
portant topic in modern condensed matter physics' ™.
The discovery of spin-orbit induced topological insulators
has revealed that a non-trivial momentum-space topol-
ogy of the electronic bands can give rise to new states of
matter with exotic surface states® ' and highly unusual
magneto-transport properties!? 4. Recently, due to the
experimental detection of arc surface states in Weyl semi-
metals'®, considerable attention has focused on the inves-
tigation of topological semi-metals!®~3'. While in ordi-
nary three-dimensional metals filled and empty states are
separated by two-dimensional Fermi sheets, topological
semi-metals can exhibit zero-dimensional Fermi points
or one-dimensional Fermi lines.

Classic examples of topological semi-metals are the
Weyl and Dirac semi-metals which exhibit two-fold and
four-fold degenerate Fermi points, respectively. Weyl
points can occur in the absence of any symmetry be-
sides translation, whereas Dirac points are topologically
stable only in the presence of time-reversal symmetry
together with a crystal lattice symmetry, such as rota-
tion or reflection. For example in the Dirac materials
Cd3As2%2737 and NagBi®® 42, the gapless property of the
Dirac points is protected by a C4 and C5 crystal rotation
symmetry, respectively. Correspondingly, the stability
of Weyl points is guaranteed by a Chern number, while
Dirac points are protected by a crystalline invariant, e.g.,

a mirror number®. Due to their topological characteris-
tics these point-node semi-metals display a number of
exotic transport phenomena, such as negative magneto-
resistance and chiral magnetic effect?4:43-46,

Probably even more interesting than semi-metals with
point nodes are topological materials with line nodes,
since they support weakly dispersing surface states that
could provide an interesting platform for exotic corre-
lation physics?™4%.  Moreover, these semi-metals are
expected to exhibit long-range Coulomb interaction®®
and graphene-like Landau levels®!. In nodal line semi-
metals the valence and conduction bands cross along one-
dimensional lines in momentum space forming a ring-
shaped nodal line. In general, this nodal line is not
pinned at the Fermi energy, but passes through the Fermi
energy at discrete points. As a consequence, the Fermi
surface takes the shape of a thin tube with changing ra-
dius, possibly with constrictions. However, as we will see,
for the case of CagPy the band crossing occurs within
410 meV of the Fermi energy, leading to an approximate
“Fermi line”.

From the general classification of gapless topological
materials® it follows, that line nodes in semi-metals are
stable against gap opening only in the presence of a lat-
tice symmetry, such as, e.g., reflection’® 2%, That is,
the two bands that cross at (or near) the Fermi level
of a nodal line semi-metal have opposite crystal symme-
try eigenvalues, which prevents hybridization. For exam-
ple, in non-centrosymmetric PbTaSe,2:%3 and T1TaSe,%*
the reflection about the Ta atomic planes protects the
topological nodal lines. Similarly, the band crossings



in CugPdN®, CazP»2°”, and in hyperhoney-
comb structures are protected by point group sym-
metries. Since the latter systems are symmetric under
both inversion and time reversal, their nodal rings are
four-fold degenerate, i.e., of “Dirac type”. In contrast,
PbTaSe; and T1TaSe; lack inversion symmetry and hence
exhibit “Weyl rings”, which are only two-fold degener-
ate. Among the aforementioned compounds only CasP,
has line nodes that are at the Fermi energy. Therefore,
CagP5 is an ideal system to study unconventional trans-
port properties of nodal line semi-metals, since it is not
necessary to tune the Fermi energy to the Dirac line by
gating or doping.

7ZrSiS®%,
58,59

In this paper, we discuss the stability of topological
nodal lines in terms of crystalline topological invariants
that take on nonzero quantized values. These topological
numbers measure the global phase structure of the elec-
tronic wavefuncitons in the presence of symmetry con-
straints. We derive and compute the Z- and Zo-type
crystalline invariants for systems with reflection symme-
try and/or inversion symmetry. It follows from our anal-
ysis that four-fold degenerate Dirac rings are protected
against gap opening by SU(2) spin-rotation symmetry
and reflection symmetry or the product of time-reversal
with inversion symmetry. These Dirac rings can be split
into two two-fold degenerate Weyl rings by spin-rotation
symmetry breaking perturbations.

Unlike in crystalline topological insulators®? 64, the Z-
type crystalline invariants for nodal line semi-metals are
not directly linked with the appearance of surface states.
Nevertheless, as we show in Sec. IT C there appear topo-
logical ingap states at the surface of nodal line semimet-
als, which arise from a quantized Berry phase (i.e., a
Zo-type invariant), rather than the Z-type crystalline
invariant. Since the Berry phase is equal to « for any
closed path that interlinks with the nodal line, surface
states occur within two-dimensional regions of the sur-
face Brillouin zone. These surface states take the form of
a drumhead that is bounded by the projected nodal lines
(Fig. 3). We derive in Sec. IID an important relation
[Eq. (2.11)] between the Z-type mirror invariant and the
Berry phase, which establishes a direct connection be-
tween the appearance of the drumhead surface state and
the topological stability of the bulk nodal line. It follows
from this relation that drumhead boundary states are a
generic feature of topological nodal line semi-metals, oc-
curring in both Weyl and Dirac ring systems (cf. Figs. 3,
5, and 6). We find that the drumhead surface state ex-
hibits in general a van Hove singularity in its dispersion,
which gives rise to a kink in the surface density of state.
The latter can be used as an experimental fingerprint of
drumhead surface states [cf. Fig. 3(c)].

To illustrate the aforementioned properties of topolog-
ical nodal line semimetals, we consider CagPs as a rep-
resentative example. We construct a tight-binding and
low-energy continuum description of CagPy and use these
low-energy theories to compute the Z- and Zs-type crys-
talline invariants of this material. It is shown that the

drumhead surface state of CazPy has a surprisingly weak
dispersion, with an effective mass of about four times the
bare electron mass. The latter implies that correlation
effects are enhanced, which may lead to exotic symmetry-
broken states at the surface of CagP5. The low-energy
descriptions of CazP5, which we derive in Secs. II and I1I,
will be of use for future theoretical studies on the electric-
and magneto-transport properties of line node semimet-
als.

In the presence of disorder or interactions the surface
states of nodal line semi-metals can scatter and inter-
act with quasiparticles in the bulk, since there is no
full gap in the system. Hence, impurity scattering or
electron-electron correlations might potentially destroy
the boundary modes. For the nearly flat surface states of
CasPs the effects of interactions are particularly strong,
since their large density of states enhances correlation ef-
fects. Hence, even relatively weak interactions may lead
to exotic symmetry broken states at the surface, such as
surface magnetism or surface superconductivity. Regard-
ing the effects of disorder, we find that bulk impurities do
not destroy the surface states as long as: (i) the disorder
strength is considerably smaller than the energy gap sep-
arating valence from conduction bands and (ii) the dis-
order respects reflection symmetry on average (Sec. IV).

The remainder of this paper is organized as follows.
In Sec. II we discuss the topological features of nodal
line semi-metals in terms of a tight-binding model. We
start in Sec. IT A by deriving a twelve band tight-binding
Hamilltonian for CagPs using maximally localized Wan-
nier functions. This is followed by a discussion of the
topological stability of the Dirac ring in Sec. IIB. We
show in Sec. IT C that a non-zero quantized Berry phase
leads to the appearance of nearly flat surface states.
The relation between the Berry phase and the crystalline
topological invariant is derived in Sec. IID. Sec. ITE is
devoted to the study of time-reversal and inversion break-
ing perturbations, which split the Dirac ring into two
Weyl rings. To show that the topological features dis-
cussed in Sec. II are generic to any nodal line semi-metal,
we discuss in Sec. III an effective continuum model that
describes the low-energy physics near a general topolog-
ical nodal line. We evaluate the crystalline invariant for
this continuum model in Sec. IIT A. In Sec. ITI B we study
how time-reversal and inversion breaking terms split the
nodal line. Finally, in Sec. IV we conclude the paper and
give an outlook on future research. Sec. IV also contains
a brief discussion of the effects of disorder on the topo-
logical surface states. Some technical details have been
relegated to four appendices.

II. TIGHT-BINDING CALCULATIONS

In this section, we examine the band structure topol-
ogy of CasPs in terms of a tight-binding model with
twelve bands. Although the analysis below is performed
specifically for CazP5, the principles discussed in this sec-



tion are valid more generally and can be applied to any
material with the same symmetries as CagPs.
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FIG. 1. Crystal structure and electronic bands of CasPs.
(a) Crystal structure of CazPs2, which contains two planes
with three Ca atoms (blue) and three P atoms (red) that are
separated by interstitial Ca atoms (black). The gray dashed
lines indicate the unit cell. (b) Top and side view of the crys-
tal structure. The P-p, and Ca-d 2> orbitals included in the
tight-binding model are shown schematically. (c) Calculated
electronic band structure of CagP>. The weights of the P-p,
and Ca-d,2 orbitals that are located within the layers are indi-
cated by the width of the corresponding band. The weight of
the Ca-d,2 orbital is multiplied by two to make it more visible
on the scale of the plot. (d) Fermi ring of CagP> as obtained
from the tight-binding model, Eq. (2.2). The bulk and sur-
face Brillouin zones are outlined by the green and black lines,
respectively.

A. Tight-binding model for CasPs

Recently, a new polymorph of CazP5 has been synthe-
sized which crystallizes in a hexagonal lattice structure
with space group P63/mem®’. Figures 1(a) and 1(b) dis-
play the crystal structure of this polymorph of CagPs,
which contains two layers with three Ca and three P
atoms separated by four interstitial Ca atoms. High-
resolution x-ray diffraction measurements®” show that

the Ca site is only partially occupied, yielding a Ca?*t—
P3~ charge-balanced compound.

To determine the electronic band structure we per-
form first principles calculations with the WIEN2k
code®® using as an input the experimental crystal struc-
ture of Ref.5". For the exchange-correlation functional
we choose the generalized-gradient approximation of
Perdew-Burke-Ernzerhof type®. The full Brillouin zone
is sampled by 21 x 21 x 22 k-points and the plane-wave
cut-off is set to RKax = 7. We take the partial occu-
pancy of the Ca sites into account by using the virtual
crystal approximation®”. Within this approximation the
partial occupancy is included in an effective way, by low-
ering the valence of Ca atoms and adjusting the core
charges accordingly. This approximation allows to cir-
cumvent the use of large supercells, which would be com-
putationally too costly. Figure 1(c) shows the calculated
band structure of CagPy within an energy range of +3 eV
around the Fermi energy Fr. To obtain the orbital char-
acter of the bands we introduce a local coordinate system
for each Ca and P site, whose definition is illustrated in
Fig. 1(b). In each coordinate frame the x axis is oriented
along the c¢ direction, whereas the z axis lies with the ab
plane, pointing towards the lower left edge of the unit
cell. With these definitions, we find that the bands close
to the Fermi energy mainly originate from the Ca-d,2 and
P-p,. orbitals that are located within the layers [Fig. 1(c)].
The other orbitals of the in-plane atoms (Ca-dy,, Ca-d,.,
Ca-d, Ca-d,2_,2, P-p,, and P-p. ), as well as all the or-
bitals of the Ca interstitials, contribute insignificantly to
the low-energy bands and can be neglected for the con-
struction of the tight-binding model.

Guided by these observations, we use the six Ca-d,2
and the six P-p, orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

1 ,
Vi) = Vo Zelk'(RH“) |PR) »
R

where « is the orbital index, R denotes the lattice vec-
tors, and s, represents the position vectors of the six
Ca (e =1,...,6) and the six P sites (a = 7,...12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s, are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

HY (k) = (U H|pf) = 3 el ®rsas)yd (9 .9)
R

(2.1)

where t%ﬁ is the hopping amplitude from orbital « in the
unit cell at the origin to orbital 8 in the unit cell at posi-
tion R. To simplify the form of the matrix elements (2.2)
and to obtain a single-valued Hamiltonian, we absorb a
momentum dependent phase factor in the definition of



the basis orbitals, i.e., we let [¢)2) — e™'Sa|3h2). We ob-
serve that Hamiltonian (2.2) has a nested block structure

Heaca Heap hyy Dy
w09 (et ) o= (a i) 9
where the sub-blocks h7}" with fixed 4,5 € {Ca, P} and
fixed m,n € {l,u} are 3 x 3 matrices. The outer blocks
H;; represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (b, hy])
and (hi‘]l, h;‘;) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hii™ is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method %69,

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = Ep £ 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of CagPs. Comparing the first-
principles band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d,» and P-p, orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principles results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T' = 1K,
which acts on the Hamiltonian as

T 'H(-X)T = H(k). (2.4)

Hence, Hamiltonian (2.2) belongs to symmetry class Al,
since T? = +1. According to the classification of Ref. 3
Fermi rings in this symmetry class are unstable in the ab-
sence of lattice symmetries. However, as we will discuss
below, reflection symmetry or a combination of inversion
with time-reversal symmetry can produce a topological
protection of the Dirac ring.

The two layers of the crystal structure of CasgPs, in-
dicated in green and brown in Fig. 1(a), are reflection
planes. For brevity, we only discuss the lower reflec-
tion plane [colored in green in Fig. 1(a)], but the fol-
lowing analysis also holds, mutatis mutandis, for the up-
per plane. The invariance of the tight-binding Hamilto-
nian (2.2) under reflection about the lower plane implies
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FIG. 2. Band structure of the tight-binding model. Pan-

els (a) and (b) show the energy bands of Hamiltonian (2.2)
along high-symmetry lines within the mirror planes k£, = 0
and k. = w/c, respectively [cf. Fig. 1(d)] . The reflection
eigenvalues of the bands are indicated by color, with blue and
red corresponding to R = +1 and R = —1, respectively.

R ko) H (kyy by, —k.)R(k,) = H(ky, ky, k), (2.5a)
with the k,-dependent reflection operator
R(kz) =7, ® dJ%z(pz?po)c ® 13x3

=T ((1) e+i0kzc> ® L33, (2.5b)
where ¢ is the length of the lattice vector along the (001)
direction. Here, the two sets of Pauli matrices 7, and p,
describe the orbital (Ca-d,2, P-p,) and the layer (1, u)
degrees of freedom, respectively. The form of the reflec-
tion operator R(k,) follows from the observations that
(i) the P-p, orbitals are odd under reflection, while the
Ca-d,» orbitals are even; and (ii) the mirror symmetry
maps the orbitals in the upper layer to the next unit cell,
which gives rise to the phase factor e™#:¢. Finally, we
find that the tight-binding model is also inversion sym-
metric. That is, Hamiltonian (2.2) satisfies

I"'H(-k)I = H(k), (2.6)

with the spatial inversion operator I = 79 ® p; ® Lzxs.

B. Topological protection of the Fermi ring

Let us now discuss how reflection symmetry (2.5) leads
to the topological protection of the Dirac ring. First,
we observe that for k within the reflection plane k, =
0,7 the mirror operator R(k,) commutes with Hamilto-
nian (2.2), i.e., [R(k.), H(kg, ky,k.)] = 0 for k, = 0, .
Therefore, it is possible to block-diagonalize H (k) within
the mirror planes with respect to R. In this block-
diagonal basis each eigenstate of H(k) has either mir-
ror eigenvalue R = +1 or R = —1. As we can see
from Fig. 2(a), the two bands that cross at the Dirac
point have opposite mirror eigenvalues, which prevent
hybridization between them. In other words, any term
that couples the two bands breaks reflection symmetry.



The stability of the band crossing is guaranteed by a mir-
ror invariant of type MZ!'®. This mirror index is given by
the difference of occupied states with eigenvalue R = +1
on either side of the Dirac ring, i.e.,

Nirz = ndd (k| > ko) — ndd (k| < ko), (2.7)

where k| = (kg ky) is the in-plane momentum and

ngdd (kH) denotes the number of occupied states at (k;,0)
in the mirror eigenspace R = +1. For the discussed nodal
line semimetal we find that

ngce (k) = { (1)

For a topological nodal line semimetal the mirror in-
dex NY;, evaluates always to —1. For a non-topological
semimetal, however, this index is zero.

In passing, we note that Hamiltonian (2.2) is a mem-
ber of symmetry class Al with R, in the terminology
of Ref. 18, since T?> = +1 and R commutes with 7.
However, nodal lines with codimension p = 2 in class
Al with Ry are unstable, since for this class there does
not exist any zero-dimensional invariant defined at time-
reversal invariant momenta within the mirror plane. Nev-
ertheless, the Dirac band crossing is protected, since the
Hamiltonian can also be viewed as a member of class A
with R. The mirror invariant for the latter class [i.e.,
Eq. (2.8)], which is defined for any in-plane momentum
k||, can be non-zero even in the presence of time-reversal
symmetry. Besides reflection symmetry, the product of
inversion and time-reversal symmetry IT also protects
the Dirac line. This will be discussed at the end of
Sec. ITC and in Sec. III B1 in terms of a low-energy con-
tinuum model.

k|| < ko (inside the ring) (2.8)
|ky| > ko (outside the ring) ™

C. Surface states and Berry phase

In this section, we present the surface spectrum of
CasP, as obtained from the tight-binding model (2.2)
and show that, due to a non-zero Berry phase, there ap-
pear nearly flat ingap states at the surface. Figure 3(a)
displays the surface band structure for the (001) sur-
face in a three-dimensional slab geometry with 60 unit
cells. The surface momentum is varied along a high-
symmetry path, which is drawn in red in the surface
Brillouin zone of Fig. 1(d). Using an iterative Green’s
function method™ we compute the momentum resolved
surface density of states for a semi-infinite (001) slab,
which is shown in Fig. 3(b). As indicated by the green
area in Fig. 3(d) and by the green and yellow lines in
Figs. 3(a) and 3(b), respectively, the surface state is
nearly dispersionless, taking the shape of a drumhead
that is bounded by the projected Dirac ring. The dis-
persion minimum of this drumhead state gives rise to a
van Hove singularity at £ = —0.06 eV, which leads to
kink in the surface density of states. This is visible in
Fig. 3(c) as a jump in the surface density of states as the
Fermi energy is approached from below. The existence

of a drumhead surface state with a van Hove singularity
is not limited to CagPq, but is valid more generally, for
any nodal line semimetal with reflection symmetry or in-
version plus TRS. We note that nearly or completely flat
surface states have recently also been studied in photonic
crystals7 , in noncentrosymmetrlc superconductorb72 5,
in bernal graphite®, and in topological crystalline insu-
lator heterostructures*®.

In contrast to crystalline topological insulators the sur-
face states of the semi-metal (2.2) are not directly related
to the mirror invariant (2.7), but are connected to a non-
zero Berry phase. To make this connection explicit, we
decompose the (001) slab considered in Fig. 3 into a fam-
ily of one-dimensional systems parametrized by the in-
plane momentum k| = (kz, k). For fixed k|, the Berry
phase is defined as

Pl =i 3 [ (w0000 w00k, (29)

E;<Ep

where the sum is over filled Bloch eigenstates |u;(k)) of
Hamiltonian (2.2). As was shown by King-Smith and
Vanderbilt”™”, the Berry phase P(k)) is related to the
charge gonq at the end of the one-dimensional system with
fixed in-plane momentum kj, i.e.,

i73(kH) mod e.

o (2.10)

Gend =

Hence, when P(k|) # 0 an ingap state appears at k| in
the surface Brillouin zone. For the tight-binding Hamil-
tonian (2.2) we find that there are two different sym-
metries which each quantize the Berry phase (2.9) to
0 or m, namely, the reflection symmetry (2.5) and the
product of time-reversal and inversion symmetry IT, see
Appendix B. In the inset of Fig. 3(c) we numerically
compute P(kj) using the tight-binding wave functions
of Hamiltonian (2.2). We obtain that the Berry phase
equals 7 for k| inside the projected Dirac ring, while it
is zero for k|| outside the ring. This indicates that sur-
face states occur within the projected Dirac ring, which
is in agreement with the surface spectrum of Figs. 3(a)
and 3(b). The Berry phase is defined modulo 27, since
large gauge transformations of the wave functions change
it by 27. As a result, P protects only single, but not mul-
tiple, surface states at a given k.

Remarkably due to the I7T symmetry, the Berry
phase P along any closed loop in the three-dimensional
Brillouin zone is quantized (see Appendix B). This al-
lows us to interprete the Berry phase as a topological
invariant which guarantees the stability of the Dirac line
in the presence of the I'T" symmetry. That is, for a loop
interlinking with the Dirac ring, we find that P = +n
which shows that the Dirac band crossing is protected
by the product of inversion with time-reversal symmetry.
The Berry phase represents a Zs-type invariant, since it
is defined only up to multiples of 2. In contrast, the mir-
ror number (2.7) is a Z-type invariant, which can take on
any integer number. Therefore, only the mirror invari-
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FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of CaszP2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry
with 60 unit cells. The surface state is highlighted in green.
(b) Momentum-resolved surface density of states of Hamil-
tonian (2.2) for the (001) surface. White and dark red cor-
respond to high and low density, respectively. (c) Energy-
resolved surface density of states. The dispersion minimum
of the drumhead state gives rise to a van Hove singularity,
ie., a king at £ = —0.06 eV. The inset shows the vari-
ation of the Berry phase (2.9) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy effective
model (3.1) for the (001) face as a function of surface mo-
menta k, and k,. The bulk states at k. = 0 with reflection
eigenvalues R = +1 and R = —1 are colored in blue and red,
respectively. The drumhead surface state is indicated by the
green area.

ant Nz can give rise to the stability of multiple Dirac
lines at the same location in the Brillouin zone.

D. Relation between Berry phase
and mirror invariant

The analysis of the previous section suggests that the
topological stability of the Dirac ring is closely related
to the appearance of surface states. In order to put this
connection on a firmer footing, we present here a relation
between the mirror invariant and the Berry phase P (k| ).
Namely, we find that

(—1)meed (ki) Hndel (k) i0R — (iP(ep) (9 11a)

for all in-plane momenta k)| = (k,, k), where

OR=1i

E]‘ <Ew

/ ", (R (k) [0, R0E)) 1 (1)) .

(2.11b)

denotes the change in phase of the reflection operator
R(k,) along the reflection direction k.. The invariants
ndd (k) and nf;7 (k) correspond to the number of oc-
cupied states at (kj,0) and (kj, ), respectively, with
mirror eigenvalue R = +1. Formula (2.11), whose proof
is derived in Appendix B, is one of the main results of
this paper. For concreteness we have assumed in (2.11)
that reflection symmetry R(k.) maps z to —z. But re-
lationn (2.11) is valid more generally, i.e., for any reflec-
tion symmetric semi-metal, in particular also for line-
node materials with strong spin-orbit coupling, such as
PbTaSe,52:%3.

We observe that in general the reflection operator only
depends on the momentum along the reflection direc-
tion [i.e., on k, in the case of Eq. (2.5)], but is inde-
pendent of the in-plane momenta k. Hence, we infer
from Eq. (2.11) that when the mirror invariant nf;0 (k)
[or n3;7 (k)] changes by one as the in-plane momentum
k|| is moved across the topological Dirac line, the Berry
phase increases by , since R does not depend on k||. As
a consequence, a drumhead surface state appears either
inside or outside the projected Dirac ring. This proofs
the direct connection between the stability of the Dirac
ring and the existence of drumhead surface states. For
the tight-binding model of CazPs, Eq. (2.2), we find that
the phase change OR of the reflection operator (2.5) eval-
uates to 37 independent of k. Figure 2(b) shows that
the number of occupied states with momentum (kj, )
and mirror eigenvalue R = +1 is nj;7 (kj) = 3 for all k.
Using relation (2.11) together with Eq. (2.8), it follows
that the Berry phase P equals 7 inside and 0 outside the
Dirac ring, which agrees with the explicit calculation of
P, see inset of Fig. 3(c).

In closing this section, we note that for certain highly
symmetric lattice models®>7® the reflection operator R
is completely momentum independent, in which case for-
mula (2.11) simplifies to

[nded (k) + ndoT (k)] 7 = P(ky) (mod 2m), (2.12)

for all k™. Hence, in this case the Berry phase, and
therefore the location of the surface states, is fully deter-
mined by the mirror invariant (2.8). This is useful, since
the mirror number (2.8) is easier to compute than the
Berry phase, for which one needs to determine the mo-
mentum dependence of the tight-binding wave functions.

E. Symmetry-breaking perturbations

We have seen that the stability of the Dirac ring of
CazP, is protected by SU(2) spin-rotation symmetry, re-
flection symmetry, and the product of inversion and time-
reversal symmetry I'7T. In this section, we study how the
breaking of these symmetries modifies the bulk and sur-
face spectrum of CazPs.
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FIG. 4. Arc surface state and spin Chern number.

(a) ky dependence of the spin Chern number (2.14) of Hamil-
tonian (2.2) in the presence of the mirror and time-reversal
symmetry breaking perturbation (2.13). (b) Surface and bulk
spectra of the low-energy model (3.1) perturbed by the mass
term (3.2) with d = 0.9 eVA and 6y = —=/4, which breaks
reflection and time-reversal symmetry. The bulk states and
the arc state at the (001) surface are indicated in gray and
green, respectively.

1. Reflection and time-reversal symmetry breaking

First, we consider a reflection and time-reversal break-
ing perturbation with the following nonzero matrix ele-
ments

(Y| H|hp) = +0.2sin(k - 1o) (2.13a)

and
(V| H|2) = —0.2sin(k - 1),

where ro = (0.5,0.5,0) is a vector within the reflection
plane along the diagonal direction. This term is odd in
momentum k and couples the d,» orbitals at the Cal
and Ca4 sites with the p, orbitals at the P3 and P6
sites [cf. Figs. 1(a) and 1(b)]. It follows from Egs. (2.5)
and (2.6) that perturbation (2.13) breaks reflection and
time-reversal symmetry, but respects inversion symme-
try. Therefore, Eq. (2.13) gaps out the Dirac ring except
for two points along the diagonal direction (1, —1, 0),
where it vanishes [see Fig. 4(b)]. These two gap closing
points are Dirac nodes (or Weyl nodes, if one disregards
the spin degree of freedom), whose stability is guaranteed
by the spin Chern number®°

1 . )
— () _ ()
Culky) = 5= > /T 2 [8;%142 B, AL ]dkmdkz(z.lzl)
Ej<EF

(2.13b)

where AL]) = (uj|Ok,|uj) is the Berry connection. We
find that Cs(k,) evaluates to +1 for k;k. planes inbe-
tween the two Dirac points, while it is zero otherwise
[Fig. 4(a)]. By the bulk-boundary correspondence, the
nonzero spin Chern number (2.14) implies the appear-
ance of an arc state in the surface Brillouin zone connect-
ing the projections of the two Dirac nodes [green area in
Fig. 4(b)]. As perturbation (2.13) is turned to zero, the
arc state transforms into the drumhead surface state of
Fig. 3.

2. Spin-rotation symmetry breaking

Second, we study the effects of SU(2) spin-rotation
symmetry breaking induced, for example, by spin-orbit
coupling. For CasPs the spin-orbit interactions are negli-
gible due to the small atomic number of Ca and P. How-
ever, there are a number of topological semi-metals with
heavy elements, such as PbTaSe; and T1TaSes, for which
spin-orbit coupling is strong. Spin-orbit interactions can
modify the energy spectrum of nodal line semi-metals
in two different ways: either they open up a full gap in
the spectrum, or they split the Dirac ring into two Weyl
rings. Here, we study the latter possibility. In order to
do so, we need to explicitly include the spin degree of
freedom in Hamiltonian (2.3), i.e., we consider
H(k) = H(k) ® 09 + Hg(k), (2.15)
where oo operates in spin space and Hyp, represents a
spin-rotation symmetry breaking term, which we specify
below. Time-reversal symmetry acts on H according to
Eq. (2.4), but with the modified time-reversal operator
T=T® i0y. Similarly, the reflection operator and the
spatial inversion operator are changed to R=R®o, and
I = I ® oy, respectively. To split the four-fold degener-
ate Dirac ring of Eq. (2.15) into two two-fold degenerate
Weyl rings, it is necessary to also break time-reversal or
inversion symmetry, besides spin-rotation symmetry.

a. Time-reversal breaking perturbation The stag-
gered Zeeman field

Hap(K) = h. 7. @ po ® I3x3 ® 0 (2.16)
breaks both time-reversal and spin-rotation symmetry,
but satisfies inversion and reflection symmetry. It de-
scribes an external staggered magnetic field with opposite
signs on the Ca and P sites. According to the terminol-
ogy of Ref.18, Hamitlonain (2.15) perturbed by Eq. (2.16)
is a member of class A with R, which exhibits an in-
teger number of equivalence classes distinguished by a
mirror invariant. In Figs. 5(a) and 5(c) we present the
bulk energy bands of Hamiltonian (2.15) with an applied
staggered Zeeman field of strength h, = 0.1 eV. The bulk
spectrum displays two Weyl rings, whose stability is guar-
anteed by the mirror number (2.7). Figures 5(b) and 5(d)
show the surface energy spectrum at the (001) face. We
find that there are two drumhead surface states which
are bounded by the projections of the two Weyl rings.
In accordance with the discussion of Secs. IIC and 11D
[cf. Eq. (2.11)] the single surface state that appears be-
tween the projections of the outer and inner Weyl rings
is protected by the Berry phase (2.9), which takes on the
nonzero quantized value P = +7w. The two surface states
that exist inside the projection of the inner Weyl ring, on
the other hand, are topologically unstable.

b. Inversion breaking perturbation To break inver-
sion and spin-rotation symmetry we consider a perturba-
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FIG. 5. Bulk bands and drumhead surface states of a
spinful time-reversal breaking line-node semi-metal. Panels
(a) and (b) show the bulk bands and the surface density of
states of Hamiltonian (2.15) in the presence of the staggered
Zeeman term (2.16) with h, = 0.1 eV. The momentum in
panel (a) is varied within the mirror plane k., = 0 along high-
symmetry lines of the Brillouin zone. (c¢) Energy isosurfaces
of Hamiltonian (2.15) with h, = 0.1 eV at Er £5 meV and
k. = 0. (d) Surface and bulk spectra of the low-energy ef-
fective model (3.3) perturbed by the time-reversal breaking
term (3.4) with yjhig = 0.07 eV. The drumhead states at
the (001) surface are colored in green. The reflection eigen-
values of the bulk bands at k, = 0 in panels (a), (c¢), and (d)
are indicated by color, with blue and red corresponding to
R =41 and R = —1, respectively.

tion with the following nonzero matrix elements

(Vo | H9,) = +0.60 sgn(o)ei =) [1 4 o]
(2.17a)
and

(o | H |t = —0.3isgn(o) e’ (12757 Ru0) [1 4 gilee: ]
(2.17b)
where |12 ) denotes the Bloch spinor with orbital index
«a and spin index ¢ = *+. The vectors s, are the posi-
tion vectors of the atoms in the unit cell and are given in
Table I of Appendix A. Perturbation (2.17) couples the
orbitals at the Cal and P1 sites with the orbitals at the
Cab6 and PG sites, respectively. Using Egs. (2.4), (2.5),
and (2.6) one can check that the term (2.17) satisfies re-
flection and time-reversal symmetry, but breaks inversion
symmetry. Since 7?2 = —1 and {7, R} = 0, Hamilto-
nian (2.15) perturbed by Eq. (2.17) is a member of class
ATl with R_ of Ref.'®, for which a mirror invariant can be
defined. The bulk bands at k, = 0 of Hamiltonian (2.15)
in the presence of the inversion-breaking term (2.17) are
presented in Figs. 6(a) and 6(b). We observe that the
Dirac ring is split into two Weyl rings, which intersect
on the (v/3,—1,0) axis. As in the previous cases, the
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FIG. 6. Bulk bands and drumhead surface states of a spinful
inversion breaking line-node semi-metal. Panels (a) and (b)
display the bulk bands and the surface density of states of
tight-binding model (2.15) in the presence of the inversion
breaking term (2.17). The momentum in panel (a) is varied
within the mirror plane k. = 0 along high-symmetry lines.
(c) Energy isosurfaces of Hamiltonian (2.15) perturbed by
Eq. (2.17) at Er £ 5 meV and k; = 0. (d) Surface and bulk
spectra of the low-energy effective model (3.3) perturbed by
the inversion breaking term (3.6) with § = 0.025 eVA. The
drumhead states at the (001) surface are indicated in green.
The mirror eigenvalues of the bulk bands at k, = 0 in panels
(a), (c), and (d) are represented by color, with blue and red
corresponding to R = +1 and R = —1, respectively.

Weyl nodal lines are protected by the nonzero mirror
number (2.7). Figures 6(b) and 6(d) show the surface
spectrum at the (001) surface, which exhibits two drum-
head surface states. As before, we find that only the
single surface state which occurs between the projections
of the inner and outer rings is protected by the Berry
phase (2.9).

III. LOW-ENERGY CONTINUUM THEORY OF
NODAL LINE SEMI-METALS

In this section we present a low-energy effective the-
ory for a general topological nodal line semi-metal with
time-reversal, reflection, and inversion symmetry. The
form of this low-energy description is universal, since it
is entirely dictated by symmetry. We start by discussing
Dirac rings, which arise in semimetals with conserved
SU(2) spin-rotation symmetry. Spin rotation breaking
semi-metals with Weyl nodal lines will be discussed in
Sec. TII B 2.

Consider the following low-energy Hamiltonian with
spin-rotation symmetry

Her (k) = vy (ki — k)72 + vakory + f(K)70, (3.1)



which describes a Dirac ring within the k£, = 0 plane,
located at kﬁ =k} + k7 = k§. In Eq. (3.1) we suppress
the spin degree of freedom, since any spin-dependent
terms are forbidden by symmetry. The Pauli matrices
7; operate in orbital space and the function f(k) is re-
stricted by symmetry to be even in k. We assume that
flk) = Vo(kﬁ — k2) + V, neglecting any terms of higher
order in k. To make a connection with the previous sec-
tion, we fit the parameters vo, v, v, ko, and Vy to
the low-energy band structure of the DFT calculations
of Sec. ITA [see Fig. 1(c)]. We find that the momentum
parameter ko equals kg = 0.206 A~!, the chemical po-
tential is Vo = 0.095 eV, and the velocities are given by
v = —0.993 eVA?, 1y = 4.34 eVA?, and v, = 2.50 eVA.
Employing Egs. (2.4), (2.5), and (2.6), one can show that
the low-energy Hamiltonian H.g satisfies time-reversal,
reflection, and inversion symmetry, with the symmetry
operators Teg = 70K, Reg = 7», and I.g = T, respec-
tively. Before we discuss in the next section the topolog-
ical stability of the Dirac line (3.1), let us remark that
H.g(k) can be converted in a straightforward manner to
a lattice model, see Appendix C. In Figs. 3(d), 4(b), 5(d),
and 6(d) we use the lattice version of Eq. (3.1) to plot
the surface states. Observe that there are some minor
differences in the shape of the surface states between the
thigh-binding model (2.2) and the effective theory (3.1)
[compare Fig. 3(b) with Fig. 3(d)]. We attribute this dif-
ference to the omission of longer range hopping terms in
Eq. (3.1).

A. Topological protection of the Fermi ring

As mentioned in Sec. IIB, Dirac nodal lines are pro-
tected by either reflection symmetry R or the product of
inversion with time-reversal symmetry I7T. Let us now
discuss this in terms of the low-energy theory (3.1).

a. 7 classification due to reflection symmetry Con-
sidering only reflection symmetry and disregarding the
spin degree of freedom, Hamiltonian (3.1) belongs to class
A with R. Since the codimension of the Dirac ring is
p = 2, it is classified by an MZ invariant (see Table II of
Ref.'®), i.e., by the mirror number (2.7), which measures
the difference of occupied states with mirror eigenvalue
Reg = +1 on either side of the Dirac ring. The two
bands that cross at the nodal line have opposite reflec-
tion eigenvalues, which prohibits hybridization between
them. Indeed, we find that the hybridization term 7,
breaks reflection symmetry Reg. We note that the mirror
invariant (2.7) is of Z type and can therefore protect mul-
tiple Dirac crossings in the Brillouin zone. To verify this
for the low-energy model (3.1), we enlarge the matrix di-
mension of Hamiltonian H.g by considering Heg ® 15, %5,
which respects reflection symmetry with the enlarged re-
flection operator R.; = Reg®1,,x,. Hybridization terms
for the enlarged Hamiltonian are of the form 7, ® A, with
A an arbitrary n x n Hermitian matrix. However, since
(Rlg) (12 @ A)RLg = —7, ® A, all of these terms break

reflection symmetry Rg.

b. Zs classification due to IT symmetry Besides re-
flection, also the product of inversion with time-reversal
symmetry Il.gTog prohibits hybridization between the
two bands, since the hybridization term 7, is not invari-
ant under I.gTeg = 7.K. But in the presence of l.gTes,
Dirac nodal lines are classified as Z, instead of MZ. To
see this, consider two copies of Hamiltonian H.g, i.e.,
Heg ® pg, which satisfies IT symmetry with the doubled
operator Io.gTog ® po. Here, p, denotes an additional set
of Pauli matrices. The Dirac rings of this doubled Hamil-
tonian are topologically unstable, since the symmetry-
preserving term 7, ® p, gaps out the nodal lines. As
discussed at the end of Sec. IIC, the product of inver-
sion with time-reversal symmetry I'7" quantizes the Berry
phase P to 0 or 71981, Hence, P can be interpreted as
a 7o topological invariant that guarantees the stability
of the nodal ring. In contrast to the mirror invariant,
the integration path that enters in the definition of this
Zy number [cf. Eq. (2.9)], is not confined to the mirror
plane. For any integration path that interlinks with the
nodal line, P = +7 signals the stability of the Dirac ring.

In closing we note that, while the low-energy the-
ory (3.1) accurately captures the topological stability of
the nodal ring of a given semi-metal, it does not neces-
sarily correctly reproduce the location of the drumhead
surface state. That is, in order to determine whether
the drumhead surface state is located inside or outside
the projected Dirac ring, it is necessary to compute the
Berry phase of all the occupied states. This information
is not contained in the low-energy model (3.1), cf. Ap-
pendix C.

B. Symmetry-breaking perturbations

In analogy to the discussion of Sec. IT E, we now study
how different symmetry breaking perturbations trans-
form the Dirac ring (3.1) into Dirac points or Weyl rings.

1. Reflection and time-reversal symmetry breaking

The Dirac line node of Heg can be deformed into two
Dirac points by the perturbation

d Sin(QH — eo)k“Tm, (3.2)

which breaks reflection and time-reversal symmetry, but
respects inversion symmetry. Here, 6 = tan~!(ky /kz)

and kH =

lute value of the in-plane momentum k|, respectively.
The term (3.2) gaps the Dirac ring except at k =
+ko(cosbp,sinbp,0). These two gap closing points are
Dirac nodes with opposite chiralities, which are pro-
tected by the spin Chern number (2.14). Due to the
bulk-boundary correspondence an arc state appears at
the surface, connecting the projected Dirac points in the

\/k2 + k2 denote polar angle and abso-



surface Brillouin zone. This is illustrated in Fig. 4(b),
where we set 6y = —n/4 and d = 0.9 eVA, which mim-
ics the effects of perturbation (2.13) for the tight-binding
Hamiltonian (2.2).

From the arc surface state of the above Dirac semi-
metal one can infer the existence of the drumhead sur-
face state of Hg, since the two transform into each other
by letting d tend to zero in Eq. (3.2). Moreover, the
one-dimensional set of Dirac nodes, induced by Eq.(3.2)
and parametrize by g, can be interpreted as the Dirac
ring of Heg. That is, as we let 6y in Eq. (3.2) run
from 0 to m a nodal ring is created. For each fixed 6y
there is an arc surface state connecting the two points
k| = £ko(cosby,sinfp) in the surface Brillouin zone.
Hence, a drumhead surface state is generated when 6,
is varied from 0 to 7. From this argument one infers that
drumhead states also appear at surfaces for which the
Berry phase (2.9) is not quantized (cf. Sec. IIC), since
the appearance of arc states does not depend on any crys-
tal symmetries.

2. Spin-rotation symmetry breaking

In the absence of SU(2) spin-rotation symmetry, the
Dirac ring of Heg is topologically unstable. To discuss
this, we consider as in Sec. IIE2 a spinful version of
Hamiltonian (3.1)

H, (k) = Heff(k) ® oo + H:z{g(k)7 (33)
where the Pauli matrices o, describe the spin degree
of freedom and Hesg denotes a spin-rotation symmetry
breaking term. H.g is invariant under the same Sym-
metries as the spinful tight-binding Hamiltonian (2.15).
That is, it satisfies time-reversal, reflection, and inversion
symmetry with the operators T' = 1o ®ioy K, R = 7, ®0,
and [ = 7, ® 00, respectively. We find that, the Dirac
nodal lines of Heg can be gapped out by the spin-rotation
symmetry breaking mass terms 7, ® o, and 7, ®0o,, which
preserve reflection symmetry R as well as 17 symmetry.
These perturbations turn Hamiltonian (3.3) into a trivial
insulator. However, there exist also other spin-rotation
symmetry breaking terms that deform the Dirac ring into
two Weyl rings. These perturbation terms break either
time-reversal symmetry or inversion symmetry.

a. Time-reversal breaking perturbation First, we
add a spin-rotation and time-reversal breaking term to
the Hamiltonian H.g, which takes the form of a stag-
gered Zeeman field

HiR(k) = vyyhigr. @ 0. (3.4)
This perturbation respects reflection and inversion sym-
metry. It splits the Dirac ring into two Weyl rings
that are located within the mirror plane k, = 0 at
k= k3 £ hZg. The stability of these Weyl nodal lines
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is guaranteed by the mirror invariant (2.7), which evalu-
ates to

—_

‘0 Ry < kg — hig
ndd(ky) =19 0, k3 —hZg <k < /kZ+hZz (3.5)
s VK R <k

In Fig. 5(d) we plot the surface spectrum of Heg in the
presence of the staggered Zeeman term with v his =
0.07 eV. There appear two drumhead surface states which
are bounded by the two projected Weyl rings.

b. Inversion breaking perturbation Alternatively,
the Dirac ring can be split into Wely rings by an inversion
breaking perturbation. To show this, we consider

—_

H3h(k) = 6(ky + V3ky)T. ® 0., (3.6)

which respects reflection and time-reversal symmetry. In
the presence of this term Hamiltonian (3.3) exhibits two
Weyl rings within the mirror plane k, = 0 with in-
plane momenta given by the equation (k, +8/2)%+ (k, +
V36/2)% = k% + 62. These two Weyl rings intersect on
the (v/3,—1,0) axis, where the gap term (3.6) vanishes
[cf. Fig. 6(c)]. We find again that these Weyl rings are
protected by the mirror number (2.7), with
L, ket 824 (ky £ 202 > K24+ 6% &

(ke F 2)2 + (ky F Y202 < K +82 (3.7)
0, otherwise

ntd(ky) =

Fig. 6(d) shows the surface spectrum of H.g¢ perturbed
by Eq. (3.6). As for the tight-binding model with the
inversion-breaking term (2.17), there appear two drum-
head surface states. We note that PbTaSe;%2%3 and
T1TaSe;%* are examples of inversion breaking semimetals
with Weyl nodal lines. The low-energy physics of these
materials can be described by the effective theory (3.3)
perturbed by a term of the form (3.6).

IV. SUMMARY AND DISCUSSION

In this paper we have studied the topological stabil-
ity of Dirac and Weyl line nodes of three-dimensional
semi-metals in the presence of reflection symmetry, time-
reversal symmetry, inversion symmetry, and SU(2) spin-
rotation symmetry. We have shown that when spin-
rotation symmetry is preserved, the Dirac line is pro-
tected by either reflection symmetry or the product of
inversion with time-reversal symmetry I7T. In the former
case, the nodal lines are classified by an M7 invariant'®,
which takes the form of a mirror number, see Eq. (2.7).
In the latter case the stability of the Dirac line is guar-
anteed by a quantized nonzero Berry phase, which leads
to a Zg classification, see Eq. (2.9). Even though the
mirror invariant (2.7) does not directly give rise to topo-
logical surface states, Dirac line semi-metals generically
exhibit drumhead surface states which are due to the
Berry phase (2.9). By deriving a relation between the



mirror number (2.7) and the Berry phase (2.9), we have
established a direct connection between the existence of
drumhead surface states and the topological stability of
Dirac nodal lines in the bulk, see Eq. (2.11). Moreover,
this relation shows hat the Berry phase can be simply
obtained by computing the reflection parity eigenvalues,
in a similar way as in inversion symmetric topological
insulators®?.

As a representative example of a line node semi-metal,
we have considered CaszP,%®. Among the recently dis-
covered nodal line semi-metal compounds®? 57, CazPy is
the only one whose Dirac ring is at the Fermi energy and
which can be grown in single crystal form®6. Hence, this
material is ideal for experimental studies of the drumhead
surface states and the unconventional transport proper-
ties of nodal line semi-metals. From ab-initio DFT cal-
culations we have derived a tight-binding and low-energy
continuum description of CagPs. By computing the mir-
ror number and the quantized Berry phase (Fig. 3), we
have shown that the Dirac band crossing of CaszPs is
protected by reflection or IT symmetry. Furthermore, we
have computed the surface spectrum of CazP5 and shown
that its drumhead surface state is weakly dispersing with
an effective mass m* ~ 4m, [Fig. (3)(b) and (3)(d)]. The
weak dispersion of the surface state gives rise to a large
density of states thereby enhancing interaction effects.
Therefore, even small interactions may lead to unusual
symmetry-broken states at the surface of CagPs, such
as surface superconductivity*”*® or surface magnetism*?.
Our low-energy descriptions, Egs. (2.2) and (3.1), will
serve as an important basis for future studies of the
unconventional properties of nodal line systems, for ex-
ample their unconventional transport phenomena. We
note that the continuum Hamiltonian (3.1) captures the
low-energy physics of any Dirac (or Weyl) nodal-line
semimetal, while the tight-binding Hamiltonian (2.2) de-
scribes, besides CagPs, also the nodal line of the struc-
turally identical semimetal ZrsSis.

In CasP, spin-rotation symmetry is conserved to a
very good approximation, since spin orbit coupling for
the light elements Ca and P is very small. However,
there are nodal line semi-metals with heavy atoms, such
as PbTaSe; and T1TaSe,, in which spin-rotation symme-
try is broken, due to the non-negligible spin-orbit inter-
actions. In these systems the four-fold degenerate Dirac
rings are unstable. Two-fold degenerate Weyl rings, on
the other hand, can be protected against gap opening
by reflection symmetry, provided either time-reversal or
reflection symmetry is broken. We have shown that the
stability of these Weyl rings is guaranteed by the mir-
ror invariant (2.7). Similar to the Dirac nodal line semi-
metals, Weyl ring semi-metals support drumhead surface
states (Figs. 5 and 6). The region in the surface Brillouin
zone where these drumhead states appear are bounded
by the projected Weyl rings.

Determining the stability of the drumhead surface
states against disorder, which breaks the crystalline sym-
metries that protect the surface states, needs a care-
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ful analysis of different types of scattering processes, in-
volving both states near the bulk line nodes and surface
states. For the case of crystalline topological insulators it
has been shown that the surface states are robust against
disorder when the disorder respects the crystal symme-
tries on average®3. In appendix D, we study this question
in terms of a one-dimensional reflection symmetric toy
model with a quantized Berry phase. In order to infer
how impurity scattering affects the topological proper-
ties, we determine the charge that is accumulated at the
two ends of this one-dimensional system®!. We find that
even in the presence of disorder that respects reflection
symmetry on average, the end charges remain to a good
approximation quantized to +e/2. Due to Eq. (2.10),
which relates the end charges to the Berry phase, this in-
dicates that the bulk topological properties remain unaf-
fected by this type of disorder. This finding suggest that
the drumhead surface states of nodal line semi-metals are
not destroyed by impurities, as long as the disorder re-
spects reflection symmetry on average and its strength is
smaller than the energy gap between the conduction and
valence bands.

In conclusion, Dirac ring and Weyl ring semi-metals
are a new type of topological material which is charac-
terized by a non-zero mirror invariant and a quantized
Berry phase. The nontrivial band topology of these sys-
tems manifests itself at the surface in terms of a protected
drumhead surface state. The dispersion minimum of this
drumhead state gives rise to a van Hove singularity in the
surface density of states, which can serve as an experi-
mental fingerprint of topological nodal line semimetals.
There are many interesting avenues for future research on
line node semi-metals. For example, the drumhead states
may give rise to unusual correlation physics at the sur-
face. Another promising direction for future work is the
study of novel topological response phenomena in these
systems.

Note added. — Upon completion of this work, we be-
came aware of a study by Yamakage et al.®*, which dis-
cusses the topology of line node semi-metals in terms of
a k-independent reflection operator, using a k-dependent
gauge transformation.
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TABLE 1. Position vectors s, of each orbital. All vectors
are given in the crystal coordinate system, which is indicated
by the red/green arrows in Fig. 7. The lattice vectors are a
= [7.150, -4.218, 0.000], b = [0.000, 8.256, 0.000], and ¢ =
[0.000, 0.000, 6.836] in the unit of A.

«a Orbital Sa

1 Cal (0.2029, 0.0, 0.25)

2 Ca2 (-0.2029 , -0.2029 , 0.25 )
3 Ca3 (0.0,0.2029,0.25)

4 Ca4 (-0.2029 , 0.0, -0.25)
5 Cab (0.2029 , 0.2029 , -0.25 )
6 Cab (0.0,-0.2029 , -0.25)
7 P1 (0.6215,0.0,0.25)

8 P2 (-0.6215 , -0.6215 , 0.25 )
9 P3 (0.0, 0.6215 , 0.25 )
10 P4 (-0.6215, 0.0, -0.25)
11 P5 (0.6215 , 0.6215 , -0.25 )
12 P6 (0.0,-0.6215 ,-0.25)

Appendix A: Details of the tight-binding model

In this Appendix we give a detailed description of the
tight-binding Hamiltonian of Sec.II.

1. Matrix elements

The matrix elements given below closely follows
Eq. 2.2. The position vectors s,, of each orbital are listed
in Table 1. We illustrate each hopping terms in Fig. 7.

a. Ca-Ca matriz elements

In the H¢, block, we can further divide orbitals in each
atomic species into those belong to the lower layer and
the upper layer,

1l lu
Hea = (HCa HCa) , (A1)

HE, T HEG

where sub-blocks Héla, du, and Hé“a are 3 X 3 matrices.

The Hamiltonian matrix HY, and HE* have 3 inde-
pendent intra-layer hopping terms, the nearest-neighbor,
second nearest-neighbor, and third nearest neighbor hop-
pings, tds, tdy, and tds as shown in Fig. 7.

c,ll c,ll c,ll

o (T R g

JR— c7 c7 c7
e = 0 e |

c, c, c,

h31 h32 h33

(A2)

12

(b)

FIG. 7. (a) Definitions of hopping integrals between two Ca
orbitals. (b) Definitions of hopping integrals between two P
orbitals and one Ca and one P orbital. Orbitals in the first
Brillouin zone are labeled. Dark blue and red color represent
orbitals in the lower plane while light blue and pink orbitals
lies in the upper plane.

where
RSy = €512 (tdy + tdychy + tdscly) (A3)
RSt = eesia (tdy + tdgcty + tdscly) (A4)
hgyt = es2:3 (tdy + tdychy + tdscdy) (A5)

and holt = hlt = n§d' = pug. We define phase factors
Cpp for hopping integral td; with matrix indices o and S8

¢y = ¢Ruo 4 gikRao (A6)
04113 — etk-Rioo + etk Ro—10 (A7)
Ay =R R0 | ik Roo1o (A8)
C‘;’Q — etk-Rowo + etk Ro-10 (Ag)
0?3 — eik'R“O + eik'R—l—lo (AIO)
033 — eik.R,wo + eikao (All)

where Ry, is the lattice vector connecting the unit cell in
the (4, j, k) direction and s; ., = s, — ;. HEY is defined
similarly.

Hgﬁl contains 2 independent inter-plane hopping inte-

grals td; and tds.

tdseik~sl,4 tdleiks]j tdleik‘slvﬁ
Héua =Cq td1€ik's2*4 tdgeik'sr‘”s tdleikSQ*G
tdleik-53,4 tdl@ik.sgﬁ tdgéik's&ﬁ

(A12)

where ¢ is (1 4 etk-Roo),

b. P-P matriz elements

We apply similar division of layer indices for Hp ma-

trix.
Hp = < iy Hll’u) .

A13

The Hamiltonian matrix Hé,l and Hg" have 2 indepen-
dent hopping integrals tp; and tps; coupling orbitals in
the same layer.



p,ll p,ll p,ll
h’ll h12 h13

1 1l 1
HY = hgill h’2”2” hg’%l : (A14)

iy hgy b

where
hp;” _ ik's7 g 1 Al

1 =€ (tps + tprags) (A15)
Wl = es7o (tps + tpraly) (A16)
hgé” = e™S89 (tps 1 tprads) (A17)

and hEt = pBft = Bt = 4. al,z are phase factors from
hopping tp; with matrix index « and g,

a%z = ¢ Rioo 4 gik-Rito (A18)
aig = &R0 4 gik'Ro-10 (A19)
aég = 'K Ro1-10 4 otkRo—10 (A20)

Hg" can be defined similarly.
H% contains 3 independent inter-plane hopping inte-
grals tpo, tps, and tpy.

p,lu p,lu p,lu
h hiy" hij

O 1 ) I
s
where
BP0 (o Ran0 | gk Raon ) (A99)
hhy" = tpaetssn (e Roimio g gikRoioin) (A93)
Ryt = tppetsoz (e Row g Row) - (A94)
and
hEYY = ST sy + tpaaty) (A25)
hEle = etkestaz (ipaco + tpyatsy) (A26)
o = €551 (tpscy + tpaag,) (A27)
Wbl = etkessaz(tpacy + tpyass) (A28)
ot = €010 (tpscq + tpaady) (A29)
byt = eS8 (tpacy + tpyady). (A30)

The corresponding phase factors are,

co = 1 + e Roon (A31)
aly = ¢ Ro-10 | gilRo-11 (A32)
aly = ¢Rio | pikRin (A33)
a3, = e Ro-10 4 pikRo-n (A34)
asy = R0 4 kR (A35)
a3, = e Ruo 4 pikRuin (A36)
a§2 = ¢k R-100 4 otkR101 (A37)

13

c. Ca-P matrix elements

Finally, the inter-orbital hopping matrix V describes
the hybridization between Ca and P orbitals. We again
divide V into four 3 x 3 matrices according to their layer

indices,
Vll Vlu
V= (Vul Y uu

. The V¥ and V** blocks only have diagonal elements,
which can be written down with the hopping integrals
tdpa,

(A38)

esir 0 0
VI = by tdpy 0 ekss (A39)
0 0  eiksso
and
eik-S4710 0 0
VU = by tdp, 0 ekssn 0 , (A40)
0 0 etk-s6.12
where the phase factor by = (ekRoor _ gik-Roo—1) e

note that the minus sign in V%" is due to the opposite
orientation of p, orbitals in the different layer. Also due
to the opposite inversion symmetry eigenvalue of the p,
and the d,» orbital, hopping integrals vanish if both of
them lie in the same plane. Hence, only hopping integrals
from different unit cell contributes to diagonal elements.

Inter-layer coupling tdpl, tdp2, and tdp3 contributes
to V' and V¥ matrices,

Vit = Vé% vir vir | (A41)
Vit Vi Vi
where
Vll;L _ _tdpleik.sl,m(eik.ﬁm _ eik~R100) (A42)
Vs = —tdp et 2 (e R ik Ro1-10) (A43)
Vis = —tdpy e’z (e Ron — gheRow) - (A44)
and off-diagonal elements
VI3 = e™ S (tdpaby + tdpsbl,) (A45)
VI = e™S112 (tdpoby + tdpsbS,) (A46)
Vit = e™S210 (tdpoby + tdpsbs,) (A47)
Vi = €522 (4dpyby + tdpsbis) (A48)
Vi = %8300 (tdpyby + tdpsbl,) (A49)
Vs = Ss1 (tdpyby + tdpsbiy). (A50)
The phase factors are,
by = — (e Roor _ gikRooo) (A51)
b3, = — (e Ro-11 _ gilkRo-10) (A52)
by = —(e R — ik Ruo) (A53)
b3 = — (e o1 _ ik Ro-w0) (A54)
by = — (e R10n — ikeRoo0) (A55)
b3 = —(eBun _ eikRuno) (A56)
b3, = — (e R-101 _ gilkeRo100y (A57)



/,Bwhere bia 3 belongs to hopping tdp; between index o and

Similarly, we have

V l Vu V'l%l
Vel = Vﬂ; Vzuzl Vag | (A58)
Vil Vg Vi
where
‘/1ull — 7tdp1€ik.s4’7(€ik.R71071 o eik'R—loo) (A59)
‘/Q’lél — _tdpleik-S&g (e’ik~R11_1 _ eik'Rlllo) (AGO)
Vi = —tdpye’sor (e Ro-1-1 _ gileRo-10) - (A61)

and off-diagonal elements

Vil = S48 (tdpyby + tdpsbls)* (A62)
Vi = e S0 (tdpyby 4 tdpsbis)* (A63)
Vb = €557 (tdpyby + tdpsb3,)* (A64)
Vasl = %559 (tdpyby + tdpsbas)* (A65)
Vil = ST (tdpoby + tdpsbi, )* (A66)
Vsl = eS8 (tdpoby + tdpsbiy)*, (A67)

where * denotes the complex conjugate.

2. Tight-binding parameters

We list parameters of the tight-binding model in the
unit of eV below. The hopping integrals between two
Ca orbitals are t5; = —0.2031, tgo = —0.6388, ty3 =
—0.0786, ty4 = —0.216, and tg5 = 0.0516. Those be-
tween two P orbitals are t,; = —0.041, ¢, = —0.4077,
tps = —0.0479, t,4 = —0.1067, and tp5 = 0.0548. Fi-
nally, the hopping amplitudes between Ca and P orbitals
are tgpr = 0.1415, tgpe = 0.0379, tgp3 = 0.0443 and
tagpa = 0.0376. The chemical potentials are pg = 2.6808
and p, = —1.2186 for Ca and P respectively.

Appendix B: topological number and Berry phase

To show that the Berry phase in the k, direction is
quantized and is related to n},. in Eq. (2.11), we recall
some basic facts of inversion symmetry. We assume no
degeneracies so the inversion symmetry acts the wave-
functions |uy ;) in the unique expression (k = k)

k) = e~ Rylu,;) (B1)

The reflection operator obeys R_yRr = =£1 for
spinless/spin-1/2 systems respectively. For spin-1/2, we
redefine Ry — —iRy so that R_p Ry = 1. Also, Rsz =

14

1. Let us rewrite the Berry phase
(uk, 5| Ok |uk,;)dk

U oz

= —1 Z uk,j|8k|uk,j>dk

0 E;<Bp

+i Z (ur.j| REe'™* Ope™ "% Relux, ;)dk

0 E;<EBp
= Z .—ao —|—z Z uk,j|RLakRk|Uk,j>dk
B, <Ep 0 E;<Ep

(B2)

The reflection symmetry operator has a generic block-

diagonalized from?
Rk = Uiljleinlk D U,ijQGinzk D...D UiNjNei’ﬂNk(Big)

where U;,;, is a unitary matrix and we use the lattice
constant a = 1.

R,E@kRk = in15i1j1 D in25i2j2 D...D ZTLN(LN]N(BZL)
Hence, OR is just mm, where m is an integer
/ Z u;w|R 6kRk|ukj>dk = mem (B5)
0

E;<Ep

where m; is the number of the occupied states in Uj,j,
block. Consider left hand side of Eq. (2.11)

W 1
nged =i =3 Z (<u7r,j Relug ;) — <U0,j|Ro\Uo,j>)
E;<0
- Z o _ ew‘o (B6)
E <0
Since R,TCD = Ry, , where kg = —k, such as 0, 7 so %o =
41 and then
1 , 4
ndr —nit =2 Y (ad—af) (mod2) (B)
i Ej<Erp
Thus, (_1)”§cc il = g Xy<mp (0Fm%0) By using
Eq. (B2), (B7), we obtain the relation in Eq. (2.11) be-

tween the topological invariants and the Berry phase P is
either 0 or 7 (mod 27) since 2nm phase can be cancelled
by a large U(1) gauge transformation.

kkokokk

Similarly, IT symmetry, the composite symmetry of
time-reversal and inversion, also quantizes the Berry
phase when dk is integrated along any closed loop. Since
time-reversal and inversion operators both flip k, the
composite symmetry operators keep the same k. The
integration path can be arbitrarily chose to preserve IT
symmetry. Unlike the Berry phase under reflection sym-
metry, the integration path should be strictly in the k,
direction to preserve reflection symmetry.



IT symmetry operator is the combination of a unitary
matrix and complex conjugation TZ = U K; the unitary
matrix U might be k-dependent. To simplify the prob-
lem, we assume U is k-independent, which is the case of
CagPs tight-binding model. The relation of wavefunc-
tions under IT symmetry is given by

luge ;) = €PeUuge ) (B8)

We note that |uy j) and |uy,) in the same energy level
might be orthogonal or identical. Let us show the Berry
phase is quantized

,P:—Z'j{ Z <ukﬁj|8k\uk’j>dk

E;<Ep

T Z% Z <u1*<,lj |UTe_i6iakeiB£U|ul*<,lj>dk

E]' <FEp

=Y (BL-p) i f S (upy, |k, ) dk,

Ej <Eg Ej <Er
(B9)

where BﬂF represent the phases at the beginning and end
of the integration path respectively. The first summation
is 2n7. Since the jth and the /;th states share the same
energy and each state in the second summation should
be orthogonal, we safely change the index [; to j in the
summation. We use the identity

{uge j1Ohclusc ;) = (D, lune ) = — (e 3| Onclune, 54 B10)
The Berry phase is quantized
P= > (B -B)=nn

Ej<EF

(B11)

Appendix C: Toy model of topological nodal lines

The tight-binding model of CagPs provides the way to
investigate topological nodal lines in a realistic model.
However, to capture the physical features of the nodal
lines only the low energy theory is needed. We extend
the low energy theory to a simple lattice model in order to
provide an economic way to investigate topological nodal
lines. Although the space group of CasPs is P63/mem,
we consider square lattice and extend and transfer the
low energy equation (3.1) with spins to the lattice form

Vl

lattice _ I Vy .
Hspinful(k) - pg(kH)TZUO + ? Sm C]{JZTyO'O
/

V,
+ (a—gg(kﬂ) + Vo) 1000 + Heos k. (C1)

where g(k|) = 1+ cos aky — cos ak, — cos aky, the lattice
constants a = 8.26 A and ¢ = 6.84 A, v = 2vjako 4

sin akg ’
21/0 ako
sin akq

vy = . Furthermore, we define

Hcoskz = (1 — COSs Ckz)(ZTTZUO =+ Z()Too'o) (02)
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FIG. 8. The numerical result for the 1d inversion-symmetric
topological insulator with 200 sites. We consider the half-
filling scenario and compute the absolute value of charge ac-
cumulated on the first 10 sites under gaussian disorder as
fixed disorder average m and disorder random deviation A
3000 times. (a) As A = 0.02, the end charge is not quantized
when the average disorder is not zero. In the special condition
that the average disorder vanishes so inversion symmetry on
average is preserved, the end charge on average is £e/2. (b)
The standard deviation of the disorder grows as the deviation
of the end disorder grows.

in the simplest form so that the Berry phase inside the
nodal ring is nonzero when the spin degree of freedom is
neglected. By fitting the energy spectrum from the DFT
calculation as k, = 0, w, we have Z, = 0.287 eV and
Zy = —0.156 eV.

Appendix D: Quantized end charge under disorders

To understand the robustness of the topology under
disorder we consider the toy model of a 1d inversion-
symmetric topological insulator. We note that in a 1d
system inversion symmetry is equivalent to reflection
symmetry; reflection symmetric nodal lines with fixed
ks, ky is equivalent to the 1d inversion symmetric topo-
logical insulator; the Berry phase, which is the integra-
tion along the 1d BZ, is quantized. The toy model in
momentum space can be simply written as

H(p) = (u+ cosp)o, +sinpo, + dcospl, (D1)

which preserves inversion symmetry by satisfying
Eq. (2.6) with inversion symmetry operator I = o,. Bro-
ken chiral symmetry caused by 0 cos pl destroys the def-
inition of winding number so the Berry phase is the only
valid topological invariant. Furthermore, by Eq. (2.4)
time-reversal symmetry is preserved with time-reversal
operator T' = K. IT symmetry also guarantees the quan-
tized Berry phase. By choosing ¢ = 0.5 and § = 0.1,
the Berry phase P = 7 leads to the presence of charge
+e/2 at each end, which is one of the topological fea-
tures of this inversion symmetric insulator. The sign of
the charge depends on the occupation of the end mode.



Hence, we can numerically compute the charge on one of
the ends. If the charge is no longer +e/2 under disorder,
the topology is destroyed by disorders.

We add inversion symmetry breaking disorder rjc;r-azcj
to the Hamiltonian in real space

0z + 01 40y

; p
H= Z [§c;a$cj + c;r-ﬂ 5 ¢j +h.c.](D2)
J

where r; is a random number from —A +m to A + m.
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When m = 0, the average < r; >= 0 indicates the aver-
age disorder preserves inversion symmetry. As shown in
Eq. (8) (a) when m = 0, the charge on one end is +e/2 on
average. When inversion symmetry is broken on average,
the charge is no longer quantized and then the topologi-
cal phase is destroyed. Fig. 8 (b) the standard deviation
of the disorder is proportional to the deviation of the end
disorder. Thus, the quantized end charges survive when
disorder on average is zero and the fluctuation is small
enough.
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