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When immersed in a see of electrons, local impurities give rise to density modulations known as
Friedel oscillations. In spite of the generality of this phenomenon, the exact shape of these modu-
lations is usually computed only for non-interacting electrons with a quadratic dispersion relation.
In actual materials, Friedel oscillations are a viable way to access the properties of electronic quasi-
particles, including their dispersion relation, lifetime, and pairing. In this work we analyze the
signatures of Friedel oscillations in STM and X-ray scattering experiments, focusing on the concrete
example of cuprates superconductors. We identify signatures of Friedel oscillations seeded by impu-
rities and vortexes, and explain experimental observations that have been previously attributed to
a competing charge order.
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I. INTRODUCTION

In the study of strongly correlated materials, one
of the common themes is the appearance of com-
peting and/or intertwined orders (See for example
Refs. [1–3] for an review). Recently this subject re-
ceived considerable attention due to the experimen-
tal observation of incommensurate charge modulations
that coexist with high-temperature superconductivity in
cuprates4–13. These modulations were originally ob-
served on the surface of BSCCO via scanning tunnel-
ing spectroscopy (STM)14–17, and recently found in the

bulk of YBCO and other materials by X-ray scatter-
ing experiments4–9. It is commonly believed that these
modulations are adiabatically connected to the long-
ranged charge order observed at large magnetic fields by
quantum oscillations18,19 and nuclear magnetic resonance
(NMR)20. In our earlier work21 we proposed an alterna-
tive interpretation: the modulations observed at small
magnetic fields can be understood as Friedel oscillations
due to the scattering of quasiparticles with a short life-
time, rather than as the evidence of a competing order.

Friedel oscillations are density modulations generated
by local impurities acting on mobile charges, such as
electrons in a metal. At the lowest order of perturba-
tion theory, these modulations are proportional to the
static density-density response function of the unper-
turbed (homogeneous) system. For free electrons in three
dimensions, this function can be analytically computed
and its Fourier transform is peaked at twice the Fermi
wavevector (see Ref. [22] for a review). As a consequence,
Friedel oscillations can be exploited to directly measure
the electron density23,24. In more complex materials the
shape of Friedel oscillations is determined by the band
structure of fermionic quasiparticles, their lifetime, and
the presence of a pairing gap. We suggest that the ob-
servation of Friedel oscillations is therefore a viable tool
for studying the properties of quasiparticles in strongly-
correlated materials.

In this paper we theoretically analyze signatures of
Friedel oscillations in X-ray and STM experiments, focus-
ing on the specific example of superconducting cuprates.
The band structure of these materials has been ex-
tensively studied by angle-resolved photoemission spec-
troscopy (ARPES). In the normal phase, these materials
have a single Fermi surface, whose phenomenological pa-
rameters are well known. This information allows us to
make quantitative predictions for the expected shape of
the Freidel oscillations. At low temperatures, the pres-
ence of a superconducting gap challenges the main as-
sumption of Friedel oscillations, namely the presence of
an underlying Fermi liquid. As we will see below, Friedel
oscillations can occur in a paired state as well, with some
important differences. In particular, in a superconductor,
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Friedel oscillations can be seeded by both local modula-
tions of the chemical potential (as in normal metal) and
local modulations of the pairing gap.

In the following we fist present the theoretical frame-
work used to analyze Friedel oscillations and then discuss
its implications for recent experiments in cuprates. The
appendices explain in detail several technical details of
the calculations and in particular: how to perform an
ensemble average over static impurities (Sec. A 1); how
to derive the formalism of resonant elastic scattering us-
ing Green’s functions (Sec. A 2) and how to relate it to
the Lindhard susceptibility (Sec. A 3); how to quantify
the effects of the spin-orbit coupling (Sec. A 4) and of
the light-field polarization (Sec. A 5).

II. THEORETICAL FRAMEWORK

A. Lindhard susceptibility

We open our theoretical description of Friedel oscil-
lations by considering (hard) X-ray scattering experi-
ments. This probe was used to detect Friedel oscilla-
tions in vanadium-doped blue bronze25, a charge density
wave (CDW) material. For this material, accurate X-ray
scattering experiments revealed two distinct incommen-
surate diffraction peaks. These peaks where respectively
identified with the CDW wave-vector, and with Friedel
oscillations at twice the Fermi wavevector. In a typi-
cal X-ray experiment the intensity of the scattered light
is proportional to the zero-frequency density-density re-
sponse function26

χ(q) =

∫ ∞
0

dt

∫
dx eiq·x〈

[
ρ(x, t), ρ(x, 0)

]
〉, (1)

where [·, ·] is the commutation relation and ρ(x, t) =
ψ†(x, t)ψ(x, t) is the charge density. For quasiparticles
with a dispersion relation εk and a finite lifetime Γ,
Eq. (1) becomes

χ(q) =
∑
k

nk − nk+q

εk − εk+q + 2iΓ
. (2)

where nk = [1+exp((εk−µ)/T )]−1 is the Fermi-Dirac dis-
tribution function, and T the temperature. By neglecting
interactions between quasiparticles, Eq. (2) disregards
possible collective modes such as spin waves and para-
magnons. In the case of free electrons (with εk = k2/2m
and Γ → 0+) and at T = 0, Eq. (2) can be evaluated
analytically22. In two dimensions χ(q) is momentum-
independent for q < 2kF , and decays algebraically for
q > 2kF , where kF is the Fermi momentum87. In actual
materials, the dispersion relation is more complex and an
exact analytical evaluation of Eq. (2) is generically not
possible. We therefore resort to a numerical evaluation
of this expression. As we will see in Sec. III A, this cal-
culation leads to sharp peaks in χ(q). When such peaks
are observed in experiments, they may be interpreted as
evidence of static charge density waves (CDW).
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FIG. 1: Schematic diagram of a typical REXS experiment, in
which X-ray photons scatter electrons from a core level to the
conductions band (a), and viceversa (b).

B. Local density of states

In contrast to hard X-ray measurements, STM and
REXS temporarily change the number of electrons in
the conduction band and couple to the density of states,
rather than to the density-density response function27.
Specifically, at zero temperature the STM differential
conductivity dI(r)/dV is proportional to the local den-
sity of states g(r, ω = V ), given by the imaginary part of
the retarded Green’s function:

g(r, ω) = Im[G(r, ω)] (3)

= Im

[∫ ∞
0

dt e−iω(t−t
′)〈[ψ†(r, t), ψ(r, t′)]〉

]
.

(4)

For disordered materials, g(r, ω) varies in space and is in
general unpredictable. It is therefore common to com-
pute the two-dimensional Fourier transform of the signal
at a fixed voltage24

g(q, ω) =

∫
ddr eiq·r g(r, ω) . (5)

As we will explain in detail below, the absolute value
of g(q, ω) depends on the types of scatterers present in
the material, but not on their position (assuming that
the sample is large enough to enable self-averaging of the
scatterers’ position).

Resonant elastic X-ray scattering (REXS) offers an
alternative way to measure the local density of states,
g(q, ω). As pointed out by Abbamonte et al.27, STM and
REXS describe analogous processes: in STM electrons
tunnel to the sample’s conduction band from an atomic-
size tip, while in REXS they are coherently pumped from
a local core level (see Fig. 1). Based on this analogy,
Abbamonted et al. modeled the intensity of the REXS
signal (at zero temperature) by

IREXS(q, ω) =

∣∣∣∣A∫ ∞
0

dω′GRc (ω − ω′)g(q, ω′)

∣∣∣∣2 (6)

Here GRc (ω) = [(ω + iΓc)]
−1 is the retarded Green’s

function of the core level and Γc is its lifetime. In Ap-
pendix A 2 we provide a derivation of Eq.(6) based on the
Keldysh Green’s function formalism, which allows to ex-
tend this expression to finite temperatures. Furthermore,
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in Appendix A 3 we show that in the limit of non reso-
nant scattering (Γc → ∞) from a Fermi sea, Eq. (6) re-
duces to the Lindhard susceptibility (2). Notably, Eq. (6)
neglects the effects of the core-hole potential on the evo-
lution of the conduction band. This effect is fundamen-
tal to understand resonant inelastic scattering (RIXS)28

processes, but can probably be neglected in the case of
REXS.

The prefactor A in Eq. (6) describes the transition am-
plitude for the excitation of a single core hole. As shown
in Appendix A 4, this quantity does not depend on the
details of the core orbital and, in particular, is unaffected
by the spin-orbit coupling. In the absence of magnetic
impurities, the dipole approximation results into

A ∝ 〈d| (η̂i · r) (η̂∗o · r) |d〉; , (7)

where |d〉 denotes the orbital wavefunction of the elec-
trons forming the conduction band, r is displacement vec-
tor in this state, and η̂i/o is the polarization of the incom-
ing/outgoing photon. Eq. (7) is used in Appendix A 5 to
compare the theoretical predictions of the present single-
band model with the experimental results of Ref. [29].

C. Wannier functions and Bragg peaks

We now consider the effects of non trivial Wan-
nier functions on the Fourier-transformed local den-
sity of states g(q, ω). To achieve this goal, we first
express Eq. (5) in terms of the Fourier-transformed
fermionic operators ψk(t) =

∫
ddr eik·rψ(r, t) and

their retarded Greens function G(k,k + q, t) =∫∞
0

dt e−iωt〈[ψ(k, t), ψ†(k + q, t)]〉 as

g(q, ω) = Im
∑
k

G(k,k + q, ω) , (8)

To derive Eq. (8) we assumed the system to be sym-
metric under r → −r. This symmetry allowed us to
invert the order of the

∫
ddk and Im operators (see SI-2

of Ref. [30]). This assumption is valid for example in the
presence of a single scatterer at the origin of the axis.
In the presence of several scatterers at random locations
the present analysis applies to the absolute value of the
measured quantity (see Appendix A 1).

For a single-band model, the operator ψ(r, t) is related
to the annihilation of an electron (quasiparticle) on a
single site, ci, through the Wannier function W (r− ri),

ψ(r, t) =
∑
i

W (r− ri)ci . (9)

Combining Eqs. (8) and (9) we arrive to the
expression30–33

g(q, ω) = Im
∑
k

W ∗kGlattice(k,k + q, ω) Wk+q , (10)

where W (k) =
∫
ddreik·rW (r), Glattice(k,k + q, t) =∫∞

0
dt e−iωt〈[c(k, t), c†(k + qt)]〉, and ck =

∑
i e
ik·xici.
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FIG. 2: Schematic representation of the diagrams considered
in the present analysis. Our approach is based on the first-
order perturbation theory in the strength of the disorder and
does not include the effects of interactions among quasipar-
ticles. The function g(q, ω) is the Fourier-transformed local
density of states.

Note that by definition, Glattice(k,k + q, ω) is a peri-
odic function of k and q with a period given by the
Bravais lattice vectors, G. In the absence of impuri-
ties Glattice(k,k + q, ω) = G(k, ω)

∑
G δ(q −G), where

G(k, ω) = G(k,k, ω). This expression gives rise to well-
defined Bragg peaks in g(q, ω), whose intensity is deter-
mined by the width of the Wannier function.

Cuprates posses a non-trivial Wannier function with d-
wave symmetry34. As explained in Ref. [35], this shape
affects the phase and intensity of the Fourier-transformed
STM signal at large wavevector (beyond the central Bril-
louin zone), leading to subtle correlations that were in-
terpreted as evidence of a competing order with d-form
factor10–13. In this paper we focus on the central Bril-
louin zone, where the precise shape of the Wannier func-
tion is not very important. For convenience, we then ap-
proximate W (k) as a Gaussian wavefunction with width
σk = 1.8(2π/a), where a is the lattice constant.

D. Scattering from local impurities

In actual materials, as a consequence of disorder, the
Fourier-transformed density of states g(q, ω) is non zero
even for wave-vectors that do not correspond to a lattice
vector. Performing a first-order perturbation theory in
the scattering potential (Born approximation) one finds36

G(k,k + q, ω) = G(k, ω)
∑
G

δ(q−G)

+G(k, ω)T (k,q)G(k + q, ω) , (11)

where G(k, ω) = G(k,k, ω), and T (k,q) describes the
scattering of quasiparticles from momentum k to mo-
mentum k + q.

One of the main goals of this paper is to consider the
effects of different types of impurities, defined through
their scattering matrices T . We consider here only per-
turbations that are static and quadratic in the quasi-
particles’ creation and anihilation operators. Any such
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perturbation can be described by the Hamiltonian

Hpert = Vi,jc
†
i cj =

∑
k,q

T (k,q)c†kck+q (12)

where T (k,q) =
∑
i,j Vi,j(e

iq·xjeik·(xi−xj) +

eiq·xieik·(xj−xi)).
If the scatterer acts on a single site (or on the bonds

linked to a single site), the scattering amplitude is given
by the sum of two terms, which depend respectively on
the momentum of the incoming and outgoing quasiparti-
cles only: T (k,q) = Tk + Tk+q . Combining this expres-
sion with Eq. (8) we find

g(q, ω) =
∑
k

Im [W ∗kG(k, ω)Wk+q]
∑
G

δ(q−G)

+
∑
k

Im
[
W ∗kG(k, ω)(Tk + Tk+q)G(k + q, ω)Wk+q

]
.

(13)

Eq. (13) is at the basis of the present analysis: the first
line corresponds to the density of states in an ideal lattice,
while the second line describes the effects of the impu-
rities (see also Fig. 2). In what follows we will mainly
consider this latter contribution.

E. Impurities in a paired state

The above-mentioned formalism can be easily extended
to include the effects of a spectral gap. For concreteness,
we describe underdoped cuprates in terms of a single
spectral gap, the paring gap ∆. Following Ref. [30], we
propose that the second energy scale observed in many
experiments corresponds to the quasiparticle’s lifetime Γ,
rather than to a distinct (competing) gap. This would ex-
plain the uncertainty in determining the precise value of
the gap in underdoped samples, varying roughly between
∆−Γ and ∆+Γ, depending on the type of experiment37.
The relatively-large value of Γ38 in underdoped cuparates
might be related to enhanced phase fluctuations, which
lead to a loss of global phase coherence at the critical
temperature Tc (see for example Refs. [39–47]). Notably,
the density of states is a gauge-invariant object and, as
such, depends only on the amplitude of ∆ but not on
its phase. For simplicity, we assume the pairing gap to
have a pure d-wave form, ∆k = ∆0/2(cos kx − cos ky),
although this assumption has little effect on the final re-
sult. Conforming to the Born approximation, we assume
∆0 to be homogeneous over the sample and independent
on the impurities.

In the presence of a pairing gap, quasiparticles are con-
veniently represented as 2 × 2 matrices in Nambu space
(whose two entries are respectively particles and holes).
In this notation the retarded Green’s function of a quasi-
particle with momentum k and energy ω is given by

G−1(k, ω) =

(
ω − εk + µ+ iΓ ∆k

∆−k ω + ε−k − µ+ iΓ

)
.

(14)

The dispersion relation εk, the pairing gap ∆0, and
the quasiparticles lifetime Γ relevant to superconducting
cuprates are provided in Sec. III and in Table I.

Static and quadratic perturbations can be divided
into two main categories, CDW and PW, depending on
whether they conserve the total number of quasiparticles

(∼ c†i cj , see Eq. (12))), or not (∼ cicj + c†i c
†
j), often re-

ferred to respectively as diagonal and off-diagonal. In this
paper we restrict our analysis to three specific types of
impurities: two of them have a simple physical interpre-
tation and correspond to local modulations of the chemi-
cal potential (sCDW) and of the pairing gap (dPW). The
third type (dCDW) corresponds to a local modulation of
the intra-unit-cell nematic order48 and has d-wave sym-
metry. These three types of impurities correspond to the

real-space Hamiltonians HsCDW = c†0,0c0,0, HdCDW =

(c†0,0c1,0+c†0,0c−1,0)−(c†0,0c0,1+c†0,0c0,−1)+H.c., HdPW =

(c†0,0c
†
1,0 + c†0,0c

†
−1,0) − (c†0,0c

†
0,1 + c†0,0c

†
0,−1) + H.c.. The

associated scattering matrices to be used in Eq. (13) are

T sCDWk =

(
1 0
0 −1

)
,

T dCDWk =

(
dk 0
0 −dk

)
,

T dPWk =

(
0 dk
dk 0

)
(15)

where dk = cos kx−cos ky. The Fourier transformed den-
sity of states g(q, ω) is obtained by numerically integrat-
ing Eq. (13), with G(k, ω) and Tk respectively defined
by Eqs. (14) and (15). As we will see, a comparison be-
tween the resulting plots and the experimental findings
suggests a coexistence of sCDW and dPW, but rules out
the presence of dCDW local modulations.

III. EXPERIMENTS ON CUPRATES

A. X-ray: effects of the band structure

As mentioned in Sec. II A, X-ray experiments cou-
ple to the density-density response function and can be
used to directly measure Friedel oscillations. To em-
ploy the Lindhard formula (2) it is necessary to know
the dispersion relation εk, the chemical potential µ, and
the quasiparticles’ lifetime Γ. In the case of super-
conducting cuprates, these parameters can be directly
read from accurate angle-resolved photoemission spec-
troscopy (ARPES) experiments. Following the common
approach, we assume electrons to move within isolated
CuO planes and map the conduction band in terms of
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the two-dimensional dispersion relation

εk =
t0
2

(cos kx + cos ky) + t1 cos kx cos ky

+
t2
2

(cos kx + cos ky) +
t3
2

(cos 2kx cos ky + cos kx cos 2ky)

+ t4 cos 2kx cos 2ky +
t5
2

(cos 2kx cos kx + cos 2ky cos ky) .

(16)

In this work we specifically refer to three dis-
tinct compounds: Bi2Sr2xLaxCuO6+δ (Bi2201),
Bi2Sr2CaCu2O8+δ (Bi2212), YBa2Cu3O7−x (Y123),
whose band structure were experimentally deter-
mined by Norman et al.49, Schabel et al.50, Pasani &
Atkinson51, King et al.52. The relevant parameters
t0 − t6 are reproduced in Table I. Note that Y123
material has inequivalent bonding (B) and antibonding
(A) bands: Table I refers only to the former one.

The chemical potential µ is uniquely determined by the
charge doping through the Luttinger count. Following
the common convention, we denote by p the density of
additional holes with respect to half filling:

p = 2x− 1 , where x =

∑
k nk∑
k

, (17)

and k runs over the Brillouin zone. In the case of Y123,
we identify the nominal doping with the algebraic average
of the doping in the bonding and antiboding bands, p =
(pA + pB)/2. The resulting Fermi surfaces are plotted in
Fig. 3(a). As shown in the inset, the Fermi surfaces are
not circular, and display a significant amount of nesting
at the antinodes88.

Using the phenomenological parameters listed in Ta-
ble I, we can directly evaluate the Lindhard suscepti-
bility (2). Fig. 3(b) presents χ(q) along the direction
(q, 0), for the three different materials. In all three cases,
we observe a pronounced peak at a wave-vector rang-
ing between 0.2 and 0.3. The exact position of the peak
depends on the choice of the chemical potential, and is
roughly equal to the distance between two adjacent antin-
odes. The width of the peak is of order 0.03− 0.1, lead-
ing to a correlation length of about 10− 30 unit cells, or
40−120A. Its value is mainly determined by the amount
of nesting at the antinodes89: Among the three materials
considered here, the sharpest peak is predicted in Y123,
where the amount of nesting is maximal. In contrast, the
Fermi surfaces of Bi2212 and Bi2201 involve a lower level
of nesting, resulting in broader peaks. This could explain
why, so far, (non-resonant) hard X-ray experiments have
revealed Friedel oscillations in Y123 only5.

The specific choice of the band structure determines
the details of the predicted signal. In the case of Y123,
Fig. 3(b) compares the signal resulting from the band
structure of Pasani and Atkinson51 (continuous blue
curve) and of Shabel et al.50 (dashed blue curve). As
shown in the inset of Fig. 3(a), the latter band structure
predicts a larger amount of nesting, in agreement with

Bi2212 Bi2201 Y123(B)

Band Structure [49] [52] [51] [50]

µ 0.0234 -0.148 -0.03 -0.1256

t0 -0.5951 -0.5280 - 0.42 -1.1259

t1 0.1636 0.2438 0.1163 0.5540

t2 -0.0519 -0.0429 - 0.0983 -0.1774

t3 -0.1117 -0.0281 -0.353 -0.0701

t4 0.0510 -0.0140 0 0.1286

t5 0 0 0 -0.1

Doping, p 0.04 0.11 pB=-0.04

(pA+pB)/2=0.12

Lifetime, Γ 0.004 0.020 0.002 0.001

Gap, ∆0 0.040 0.080 0.030 0.030

TABLE I: Phenomenological band structures used in this pa-
per. The parameters t0 − t5 correspond to hopping terms in
a tight-binding model and are defined in Eq. 16. With re-
spect to the originally published band structures, the chemi-
cal potential has been shifted to achieve the required doping
p (through the Luttinger count). Additionally, the parame-
ter t5 has been added to the band structure of Y123(B) in
order to cure a spurious back-banding of the band structure
(See SI-7 of Ref. [30]). Γ is the quasiparticle lifetime, used in
Eqs. (2) and (14), and ∆0 the zero-temperature pairing gap
used in (14). Their value can be read from the voltage de-
pendence of the Fourier-transformed STM signal6,10,29,30,38,
or from ARPES experiments53,54.

the experiment by Okawa et al.55. When used to predict
the intensity of the REXS signal, the band structure by
Ref. [51] predicts a peak at wavevector q = 0.28 with
width δq ≈ 0.05, while the band structure by Ref. [50]
predicts a peak at q = 0.3 with δq ≈ 0.03. For compari-
son, the experiment of Chang et al.5 shows a peak with
maximal intensity at q = 0.31 and width δq ≈ 0.03, and
is found to be in quantitative agreement with the present
calculations.

For completeness we mention that the peak observed
in X-ray scattering experiments could be additionally en-
hanced by effected that are not included in the present
analysis. In particular, the Linhard formula (2) disre-
gards the effects of the electron-phonon coupling. This
coupling was instead found to be relatively strong in
Y123 at this wavevector, leading to a significant phonon
softening56. Electron-phonon coupling will generically
lead to a sharpening of the X-ray response function, as
well as to a renormalization of the position of maximal
intensity. It seems plausible that the combination of the
band structure of Ref. [51] with electron-phonon coupling
could deliver a quantitative agreement with the experi-
ments as good as the one obtained from the band struc-
ture of Ref. [50]. As a side remark, we also note that the
two predicted Lindhard response for Y123 differ by an
overall multiplicative factor (see continuous and dashed
blue curves in Fig. 3(b)). This difference can be traced
back to the different bandwidth predicted by the two
models (∼ 0.3eV in Ref. [51] and ∼ 1eV in Ref. [50)].
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FIG. 3: (a) Fermi surfaces resulting from the band structures
listed in Table I. (b) Lindhard response, Eq.(2), along the
line q = (2π/a)× (q, 0) for the same materials.

Current experiments involve an unknown normalization
factor and are therefore not sufficient to measure the ac-
tual value of χ(q) and distinguish between these two sce-
narios. Different experiments, and in particular resonant
inelastic scattering (RIXS), might be able to fill in this
information (see for example Ref. [57]).

We now consider the full Lindhard susceptibility as a
function of the two dimensional wavevector q = (2π/a)×
(qx, qy). Fig. 4 represents the results for Bi2212 (whose
band structure is known to the highest degree of preci-
sion) and displays three inequivalent local maxima. The
global maximum occurs around the wavector qπ,π =
(2π/a)× (±0.5,±0.5). This peak occurs in the other two
materials as well (not shown) and its position is found to
be independent on the doping level. Interestingly, qπ,π
corresponds to the wavevector of the anti-ferromagnetic
order observed in the parent compound. Because the

FIG. 4: Lindhard response, Eq.(2), as a function of q =
(2π/a) × (qx, qy) for Bi2212. The response of the other ma-
terials is qualitatively similar (although the peak position is
shifted away from q = 0.25).

Lindhard formula describes both spin and charge sus-
ceptibility, the predicted scattering enhancement around
qπ,π is a precursor of the long-ranged spin order achieved
in the absence of doping (Mott insulator).

A second broad peak appears at q = (2π/a) ×
(±0.25,±0.25). The exact position of this peak is
material-dependent and ranges between |qx| = |qy| = 0.2
and |qx| = |qy| = 0.3 depending on the details of the
band structure and the doping level, in analogy to the
qy = 0 cut shown in Fig. 3(b). Notably, this peak might
easily escape experimental probes: due to its broadness,
it seems to merge with the stronger peak at qπ,π, espe-
cially if only the cut along the line qx = qy is available.
We will come back to this point in Sec. III C. Finally,
the third local maximum occurs at q = (±0.25,±0.1):
the wavevector q = (2π/a) × (±0.25, 0) is predicted to
be a saddle point sitting between these local maxima.
We note that a similar behavior was observed in a recent
experiments by Thampy et al.58, who found sharp peaks
at q = (2π/a) × (0.25,±0.015), separated by a saddle
point at q = (2π/a)× (0.25, 0)90.

(a) Γ=1meV
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FIG. 5: STM spectra g(q, ω) along the line q = (qx, 0)×2π for
Bi2212 (see Table I) and T = T dPW . A long quasiparticle’s
lifetime ((a) Γ = 1meV) leads to dispersive peaks, while a
short lifetime ((b) Γ = 20meV) leads to non-dispersive peaks.
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g(q,25meV)

(a) sCDW

g(q,25meV)

(b) dCDW
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(c) dPW
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(d) sCDW+dPW

0 0.17 0.33 0 0.13 0.25 0 0.31 0.63 0 0.5 1

FIG. 6: (a-d) Numerical evaluation of Fourier-transformed STM spectra, Eq. (13), for different types of impurities: local
modulation of the chemical potential (sCDW), local modulations of the intra-unit-cell nematic order (dCDW), local modulations
of the pairing gap (dPW). Model details: see column Bi2201 of Table I. The black circles denote the Bragg peaks at q = (±2π, 0)
and (0,±2π) . (e) Experimental measurement reproduced from Ref. [29].
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FIG. 7: (a-d) Numerical evaluation of the REXS signal, Eq. (6), for different types of impurities (see caption of Fig. 6). In
order to easy the comparison with the experimental plot, the theoretical predictions in the (q, q) direction (orange diamonds)
have been reduced by a factor of 0.25 with respect to the (q, 0) direction (green squares). Model details: see column Bi2201
of Table I and Γc = 300meV. (e) Experimental measurement reproduced from Ref. [29]. The experimentally-observed peak at
q ≈ 0.25 in the (q, 0) direction (and its absence in the (q, q) direction) is correctly reproduced by our simple model of Friedel
oscillations.

B. STM: dispersive vs non-dispersive peaks

We now proceed to discuss STM experiments, by first
offering a brief summary of the main results of Ref. [30].
Specifically, in that paper we related the emergence of
non-dispersive peaks in underdoped cuprates to their rel-
atively large inverse quasiparticle lifetime Γ. In materi-
als where Γ is small (such as overdoped cuprates), the
STM probe excites quasiparticles with an energy that
precisely corresponds to the tip-sample voltage. In this
case, energy and momentum conservation leads to the
well-known “octet model”59. This model predicts the
emergence of seven inequivalent dispersive peaks, which
can be found by connecting points on the Fermi surface
where the pairing gap is equivalent to the tip-sample volt-
age. As shown for example by Nowadnick et al.36, these
peaks are indeed reproduced by Eq. (13) in the limit of
Γ → 0. In contrast, for a finite Γ, the argument leading
to the octet model does not apply because the quasipar-

ticles’ energy is not conserved. In this case, a numerical
evaluation of Eq. (13) is necessary. As shown in Ref. [30]
these calculations lead to non-dispersive peaks around
the wavevectors connecting the antinodes. These scat-
tering wavevectors are enhanced at all voltages for two
reasons: (i) Any scattering is enhanced at the antinodes
due to the Fermi surface nesting (in analogy to the analy-
sis of Sec. III A); (ii) The modulations of the pairing gap,
T dPWk in Eq. (15), are proportional to the pairing gap ∆k

and are therefore enhanced at the antinodes, where the
latter is maximal.

The effect of Γ on the calculated STM maps is high-
lighted in Fig. 5, where Γ varies from 1meV (subplot
(a)) to 20meV (subplot (b)), while all other parameters
are kept fixed. The former plot displays dispersive peaks,
while the latter mainly non-dispersive ones. Importantly,
the temperature dependence of Γ can explain the transi-
tion between dispersive peaks (at low temperatures) and
non-dispersive peaks (at higher temperatures) reported
in Ref. [60].
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C. STM and X-ray: identifying the impurities

To further clarify the nature of the main source of
disorder (sCDW,dCDW, or dPW), we now consider the
STM and REXS experiments of Comin et al.6. Their
two-dimensional Fourier-transformed STM signal is re-
produced in Fig. 6(e). The intensity of the signal is max-
imal in a cross-shaped region, oriented in the (±q, 0) and
(0,±q) directions. Figs. 6(a-c) represent our theoretical
calculations for the three types of impurities defined in
Eq. (15). The correct shape of the signal is reproduced
only by local modulations of the pairing gap (dPW – sub-
plot (b)), suggesting that this is the dominant sources of
disorder. A similar conclusion was reached by the inde-
pendent analysis of Nunner et al.61. The experimental
REXS measurement of the same material is reproduced
in Fig. 7(e). It shows a pronounced peak in the (q, 0)
direction, and a monotonous behavior in the (q, q) direc-
tion. A comparison with the theoretical curves, Fig. 7(a-
c), reveals that this effect is reproduced only by local
modulations of the chemical potential (sCDW – subplot
(a)).

This analysis leads to an apparent inconsistency: STM
reveals local modulations of the d-wave pairing gap
(dPW), while REXS reveals local modulations of the
chemical potential (sCDW). The solution of this appar-
ent paradox is hidden in the intrinsic properties of the
two probes: STM measurements refer to low voltages and
probe the scattering of quasiparticles with small energy
E <∼ ∆0 ≈ 20meV. In contrast, REXS probes the scat-
tering of quasiparticles with energy E <∼ Γc ≈ 300meV.
Due to the coherence factors appearing in Eq. (13),
quasiparticles at different energies are mainly affected
by different sources of disorder: low-energy quasiparti-
cles are mainly affected by modulations of the pairing
gap, while high-energy quasiparticles are mainly affected
by modulations of the chemical potential (see also SI-3
of Ref. [30]). This effect becomes evident in the present
calculation: the intensity of the STM signal is signif-
icantly stronger for dPW (Fig. 6(c)) than for sCDW
(Fig. 6(a)), while the intensity of REXS is stronger for
sCDW (Fig. 1(a)) than for dPW (Fig. 1(c)). The ex-
perimental results are then best reproduced by a super-
position of both types of modulations (Figs. 6(d) and
7(d)). This result is in line with Jeljkovic et al.62, who
found a strong correlation between local perturbations
of the pairing gap and of the chemical potential (identi-
fied there as atypical oxygen vacancies). Notably, local
modulations of the intra unit-cell nematic order (dCDW)
are inconsistent with the q dependence of both STM and
REXS signals.

Let us now discuss a theoretical prediction made in
Ref. [30], which appears to be in contradiction by the
experiment of Cominet al.29. Specifically, Ref. [30] pre-
dicted the existence of a peak in the REXS signal at
wavevector (0.25, 0.25). In contrast, the experimental
measurements of Ref. [29] (orange curve in Fig. 1(e)) does
not show any significant peak at (0.25, 0.25). We believe

FIG. 8: Two dimensional plot of the predicted REXS sig-
nal. Pronounced peaks are observed at q = (2π/a)× (0.25, 0)
and q = (2π/a) × (0.5, 0.5). Model details: Bi2201 with
sCDW+dPW impurities.

that the absence of the peak at (0.25, 0.25) is due to its
blending with the larger and broader peak at (0.5, 0.5)
along the same direction.91 This phenomenon is clearly
demonstrated in Fig. 8, showing the predicted REXS in-
tensity as a function of the two-dimensional wavevector
q. Note the close analogy with the results of the Lind-
hard susceptibility shown in Fig. 4. We hope that future
experiments will be able to confirm the hereby prediction
of an increased scattering in the (q,q) direction.

D. X-ray: c-axis correlations

Until this point we considered two-dimensional models
only and analyzed correlations along the a and b principal
directions only. Recently, Gerber et al.64 found that the
c-axis correlations provide a clear distinction between the
short-ranged modulations observed at low magnetic fields
and the long-range modulations found at large magnetic
fields. Specifically, while the former is peaked around
kz = 0.5 × (2π/c) (or equivalently has a period of two
unit cells), the latter is peaked at integer wave-vectors.
As we will now explain, this observation is consistent
with Friedel oscillations seeded by an impurity sitting
at the interface between two unit cells. This situation is
naturally realized in Y123, where the CuO chains are the
main source of disorder and are equally spaces from the
two neighboring CuO planes (see Ref. [65] for a review).

If we neglect the tunnelling of electrons in the c direc-
tion (i.e. among planes belonging to distinct unit cells),
we obtain electronic bands that do not disperse in this
direction. If we additionally assume that the scatter-
ing matrix T and the Wannier function W are separable
functions of the spatial coordinates, the qz dependence
can be factored out from Eqs. (4), (13) and (6), leading
to IREXS(q) = |g(qz)|2IREXS(kx, ky, ω), where

gz(qz) =
∑
kz

W ∗kzT (kz, qz)Wkz+qz (18)
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FIG. 9: Crystal structure of two neighboring unit cells of
YBCO. A symmetric (anti-symmetric) defect located at a
CuO chain induces the same (opposite) charge displacement
on the CuO2 planes of the two unit cells. Upward (down-
ward) arrows indicate increased (decreased) charge density.
graphical representation from Ref. 63).
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FIG. 10: Intensity of X-ray scattering as a function of the
c-axis component of the wavevector qz for (a) symmetric and
(b) anti-symmetric impurities, Eqs. (23) and (23). The latter
curve is similar to the signal observed by Gerber et al.64 at
small magnetic fields and peaked around qz = ±1/2.

and IREXS(kx, ky, ω) has been computed in the previous
sections. Eq. (18) demonstrates that a non-trivial qz de-
pendence can be obtained due to the shapes of the impu-
rity and of the Wannier functions of the conduction-band
electrons. The same approach goes through for hard X-
ray diffraction, where one finds χ(q) = g(qz)χ(kx, ky, ω),
with χ(kx, ky, ω) given by Eq. (3) (see Eq. A13 in Ap-
pendix A 3).

For simplicity we now focus on an impurities that act

(locally) on two neighboring CuO planes only:

T±i = δi,0 ± δi,1 (19)

Here + (−) refers to a symmetric (antisymmetric) im-
purity, the index i runs over the CuO layers, and c is
the lattice vector in the z direction. A more accurate
description should take into account the distinction be-
tween bonding and anti-bonding bands, but we defer this
point to a future study. The effects of symmetric and
anti-symmetric impurities are schematically plotted in
Fig. 9. The Fourier-transformed scattering amplitudes
of symmetric and anti-symmetric impurities are then re-
spectively given by

T+(kz, qz) = 2 cos
(cqz

2

)
, (20)

T−(kz, qz) = 2 sin
(cqz

2

)
. (21)

Note that for symmetric impurities the intensity of T
is peaked at integer kz(c/2π) = 0,±1,±2, .., while for
antisymmetric impurities it is peaked at half integer
kz(c/2π) = ±0.5,±1.5, .... The intensities of the X-ray
signals at low and high magnetic fields are therefore re-
spectively consistent with anti-symmetric and symmet-
ric impurities. To reproduce the experimental observa-
tions, we need to introduce trial Wannier functions. For
simplicity we again refer to Gaussian function W (z) =

e−z
2/2c2 which allow an analytic evaluations of Eq. 18,

leading to

gz(qz) =
π

c2
e−c

2q2z/2 cos2
(cqz

2

)
(22)

and

gz(qz) =
π

c2
e−c

2q2z/2 sin2
(cqz

2

)
, (23)

respectively for symmetric and antisymmetric impurities.
These curves are plotted in Fig. 10: subplot (b) repro-
duces the position and width of the experimentally ob-
served signal64.

IV. SUMMARY AND OUTLOOK

In this paper we presented a theoretical modeling of
recent X-ray, REXS, and STM measurements of under-
doped cuprates, with specific attention to Ghiringhelli et
al.4, Chang et al.5, Comin et al.29. To interpret their ex-
perimental findings, these authors assumed the existence
of a competing order, distinct from superconductivity,
and associated with the spontaneous breaking of trans-
lational symmetry. The pseudogap energy scale could
then correspond to the excitation gap required to re-
store the translational invariance. The association be-
tween the charge ordering and the pseudogap phase is
however undermined by recent X-ray experiments reveal-
ing the same type of charge ordering in electron-doped
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cuprates66, where a pseudogap phase is not expected to
subsist. In addition, the experiment by Gerber et al.64

showed that the oscillations observed at small magnetic
fields have different c axis correlations than those ob-
served at large magnetic field64, indicating that these are
two distinct effects. Similarly, recent measurements of
the Hall conductivity67 showing that the long-range or-
dered modulations appear only for magnetic fields that
are larger than a critical value Hc ≈ 20T .

Following Ref. [30] we propose here that the modula-
tions observed at small magnetic fields are simply due
to Friedel oscillations around local sources of disorder.
Because our interpretation is based on the Born approx-
imation (first-order perturbation theory in the impurity
strength) and we consider each scatterer independently,
we expect the correlation length of the modulations to
be independent on the concentration of impurities. This
prediction has been now confirmed by two experimen-
tal observations: (i) Achkar et al.68 modified the amount
of disorder in Y123 through a thermal quench and ob-
served that the correlation length of the observed oscil-
lations was unchanged. (ii) The analysis of materials
with similar band structure and different amount of in-
trinsic disorder (such as Bi22016, Bi22017, Bi22128, and
Hg12019) revealed an approximately constant correlation
length. These findings are not consistent with theories
of competing orders, in which the predicted correlation
length should be directly related to the amount of exter-
nal disorder69.

By considering the scattering of short-lived quasipar-
tice from local impurities, we can quantitatively repro-
duce all the experimental findings: Our model correctly
predicts the wavevector and correlation length of the spa-
tial modulations that were observed in X-ray (Figs. 3(b)
and 4), STM (Fig. 5), and REXS (Fig. 7) experiments.
The wavevector is similar (but not identical) to the dis-
tance between adjacent antinodes, where the Fermi sur-
face is often quite nested. Our approach reproduces ex-
perimental observations that were interpreted as evidence
for the d-wave symmetry of the oscillations (Figs. 7 - see
also Ref. [35] for an in-depth analysis of the phase corre-
lations observed by Fujita et al.10). Finally, it naturally
accounts for the non-trivial c-axis correlations observed
in X-ray experiments (Fig. 10).

To reproduce the experimental results, we introduced
different models of local impurities and found that the
most dominant type corresponds to local modulations of
the chemical potential and of the pairing gap. In STM
maps, the former contribution is generically dominant
along the (q,q) direction, while the latter is dominant
along the (0,q) direction (see Fig.6). The interplay be-
tween these two sources of disorder connects to the earlier
analysis of STM data in the presence of a magnetic field
performed by Hanaguri et al.70 and He et al.71. These
authors found that the ratio between the (q,q) and (0,q)
components generically increases with magnetic field92.

This effect can be understood by noting that in type-
II superconductors external magnetic fields generate iso-

T

p

H

SC

PG

CDW

T

H
SC

PG

CDW

FIG. 11: Proposed phase diagram of BSCCO and YBCO
compounds, following Ref. [72]: the long-range-ordered CDW
phase observed at high magnetic field is distinct from the
pseudogap (PG) phase, characterized by an incoherent pair-
ing gap of preformed pairs. The inset refers to doping levels
p ≈ 0.1, where a direct transition between the superconduct-
ing (SC) and CDW phases is observed72.

lated vortexes, in whose core the pairing gap is locally
suppressed20,74,75. Vortexes are then similar to other
types of local impurities, and generate Friedel oscillations
around their center. This effect was for example directly
observed by Simonucci et al.76, who found Friedel os-
cillations around magnetic vortexes in the self-consistent
solution of the BCS equations in the presence of a vortex.

When the density of vortexes reaches a critical value,
they can depin from local defects and give rise to a long-
range-ordered phase. Following the proposal of Wu et
al.20,75, we believe this effect to be responsible for the
formation of a long-range-ordered phase at large mag-
netic fields that was observed by quantum oscillations18,
NMR20,75, and sound velocity77 experiments. Indeed,
the measured critical field ∼ 20T corresponds to an av-
erage distance between vortices of d =

√
φ0/B ∼ 100A,

which is comparable with the correlation length of Friedel
oscillations. The CDW phase observed in cuprates would
then be analogous to the field-induced spin density waves
(FISDW) observed for example in Bechgaard salts (see
Ref.[78] for a review). Because the correlation length
of Friedel osciilations depends on the amount of nesting
at the antinodes, it is natural to expect the magnetic
phase to be enhanced around p = 0.1, where the antin-
odes are maximally nested. The resulting phase diagram
is plotted in Fig. 11, and highlights our claim that the
long-range ordered CDW phase is distinct from the pseu-
dogap (PG) phase observed at zero magnetic field.

We now discuss how to utilize STM maps to further
compare the effects of magnetic fields, temperature, and
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(a) small H (c) small T (e) large p (g) dominant direction

(−1,1) 

(1,1) 

(b) large H (d) large T (f) small p (h) dominant direction

(0,1) 

(1,0) 

FIG. 12: Fourier-transformed STM measurements of different materials: (a-b) Ca2xNaxCuO2Cl2 (Tc=28K) at low and high
magnetic field. Reproduced from Ref.70; (c-d) Bi2212 (Tc = 37K) at low and high temperature. Reproduced from Ref. [73];
(e-f) Pb-Bi2201 at large and small hole doping. Reproduced from Ref. [71. (d) Deep in the superconducting phase the main
source of scattering is along the (1,1) and (1,-1) directions. (h) When approaching the pseudogap phase the scattering is mainly
along the (0,1) and (1,0) directions, signaling the presence of phase inhomogeneities.

doping. Fig. 12 shows that approaching the pseduo-
gap phase (by increasing the temperature, or decreasing
the doping) generically leads to an increase of scatter-
ing in the (0, q) direction, which is associated with local
modulations of the pairing gap. This observation is in
agreement with recent muon spin rotation79 (µSR) and
NMR72 experiments, which detected enhanced static in-
homogeneities in the pseudogap phase. A similar conclu-
sion was reached in Ref. [80], where the effects of disor-
der were found to be similar to the effects of temperature
and magnetic fields (see also Ref. [81], where a pseudo-
gap phase was found in disordered thin films). Inhomo-
geneities of the pairing gap are naturally accompanied by
a reduction of the long-range coherence: the transition
to the pseudogap phase may be due to a loss of coherence
of the pairing gap42, rather than to its disappearance.

From the prospective of fermionic quasiparticles, the
transition to the pseudogap phase is generically asso-
ciated with an increase of the inverse lifetime Γ. The
role of this quantity on ARPES measurement is well
known and offers a simple explanation for the “Fermi
arcs” observed in underdoped cuprates30,82,83. STM30,38

and transport84 measurements show that the inverse
quasiparticle lifetime Γ is strongly enhanced in under-
doped cuprates and probably diverges at the transition
to the Mott insulator. This observation suggests a pos-

sible relation between Γ and the critical temperature of
cuprates30. Measuring the temperature dependence of Γ
would allow to distinguish between the effect of disorder
(elastic scattering, which exists down to zero tempera-
ture) from the effects of interactions (inelastic scatter-
ing, which is supposed to diasppear at zero temperature).
Surprisingly, although the inverse quasiparticle lifetime
Γ is commonly used in fitting virtually any experimental
spectroscopic data, a systematic study of this quantity
as a function of doping, temperature, and magnetic field
has not been performed yet. We hope that the present
work will motivate a new analysis of existing data along
these lines.
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Appendix A: Technical details

1. Average over impurities

In this section we consider the effects of several identi-
cal impurities, located at random positions. We find that
the absolute value of g(q, ω) is independent on their posi-
tion and therefore is an intrinsic property of the system.
In the text, Eq. (8), we assumed g(r, ω) to be symmet-
ric under r → −r. This approximation is valid in the
presence of a single impurity located at the origin of the
axis93. To extend this treatment to systems with sev-
eral impurities, we first notice that within the present
framework (first order perturbation theory in the impu-
rity strength), g(q 6= G, ω) is given by a sum of terms,
each referring to the scattering of quasiparticles from a
single impurity: g(q, ω) =

∑
i gi(q, ω), where i runs over

all the impurities. To compute gi(q, ω) we first consider
a coordinate system whose origin is located at the center
of the ith impurity, where Eq. (13) applies. We then shift
back gi(q, ω) to the common lab frame by the multipli-
cation with eiq·ri , and sum all the terms. In the case of
N identical impurities we obtain

g(q, ω) =

N∑
i=1

eiq·rig0(q, ω) . (A1)

Here g0(q, ω) is the scattering amplitude from an iso-
lated impurity located at the axis origin, computed from
Eq. (13). In Eq. (A1) the phase of g(q, ω) is deter-
mined by the random positions ri and is therefore not
predictable. In contrast, its absolute value averages to

〈|g(q, ω)|〉 = Ng0(q, ω) . (A2)

Here we used the observation that by definition, g0(q, ω)
is a real function.

2. Green’s function approach to REXS

In this section we derive Eq. (6) within the Keldysh
path-integral formalism. This approach allows us to ex-
tend the results of Abbamonte et al.27 to finite temper-
atures. In REXS experiments X-rays are scattered upon
the material to be examined at a frequency that allows
the creation of a core hole, i.e. the excitation of an inner
orbital of the atom to the conduction band (see Fig. 1).
The action of the incoming field can be described as
Vin = Eine

iωtδ(t)d†c+H.c., where Ein > 0 describes the
amplitude of the incoming x-rays, ω its frequency, d and

c are fermionic operators describing electrons (quasipar-
ticles) respectively in the conduction band (in cuprates
formed by d orbitals) and in the core level. Shortly after,
an electron from the conduction band fills in the core level
and emits an X-ray photon, which is observed by the ex-
perimental setup. This decay process can be described by

the operator Vout(t) = a†oute
−iωtc†d, where a†out creates

an outgoing photon and λ is the light-matter coupling.
In perturbation theory, the outgoing field is given by

Eout(t) = 〈aout〉 ≈ 〈c†de−iωt +H.c.〉 (A3)

where we assumed the initial state to be empty of outgo-
ing photons. Applying perturbation theory (and neglect-
ing oscillating terms), we obtain the Kubo formula

Eout(t) = iEinΘ(t)〈[d†(0)c(0), c†(t)d(t)]〉 (A4)

where Θ(t) is the Heaviside theta function and [..., ...]
is the commutation relation. In Keldysh notation, Eq.
(A4) becomes the sum of eight terms with an odd number

of “classical” fields c, d and of “quantum” fields ĉ, d̂. Four
of these terms contain three quantum fields and their
expectation values are identically equal to zero. We are
then left only with terms containing three classical fields
and one quantum field:

Eout(t) =
i

2
EinΘ(t)

〈
d̂∗(0)c(0)c∗(t)d(t)

+ d∗(0)ĉ(0)c∗(t)d(t) + d∗(0)c(0)ĉ∗(t)d(t)

+ d∗(0)c(0)c∗(t)d̂(t)
〉

(A5)

For t > 0 only the first two terms are non zero (and for
t < 0 the last two are non zero). Eq. (A5) can be fur-
ther simplified by introducing the retarded and Keldysh

Green’s functions GRd = 〈d∗d̂〉 and GKd = 〈d∗d〉:

Eout = iEin
[
GKd (t)GRc (t) +GKc (t)GRd (t)

]
(A6)

Each of the two terms of Eq. (A6) corresponds to the
product of two Greens functions, evaluated at the same
time, or equivalently their convolution in the frequency
domain:

Eout(ω) =
i

2
Ein

∫ ∞
−∞

dω′
[
GKd (ω − ω′)GRc (ω′)

+GKc (ω′)GRd (ω − ω′)
]
. (A7)

At thermal equilibrium the Keldysh components sat-
isfy the fluctuation-dissipation theorem GKd (ω) =
2Im[GRd ] tanh(ω/2T ) ≈ 2Im[GRd ]sign(ω) and GKc =
2Im[GRc ] tanh((ω−Eh)/2T ) ≈ −2Im[GRc ]. In the limit of
T → 0 we find

Eout(ω) = iEin

∫ ∞
−∞

dω′
[
Im[GRc ](ω − ω′)GRd (ω′)

+ sign(ω′)Im[GRd ](ω′)GRc (ω − ω′)
]
. (A8)
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The real component of Eout (the component that is in
phase with Ein) has a particularly simple form

Re[Eout](ω) = 2Ein

∫ ∞
0

dω′Im[GRc ](ω − ω′)Im[GRd (ω′)]

(A9)
Applying Karmers-Kronig relation we then obtain

Eout(ω) = 2Ein

∫ ∞
0

dω′GRc (ω − ω′)Im[GRd (ω′)] (A10)

For a featureless core level with response function
GRc (q, ω) = [(ω + iΓc)]

−1, we recover exactly the same
expression as in Ref. [27] and Eq. (6) with A = 2Ein.

3. From REXS to Lindhard

In the main text we provided an expression for the in-
tensity of the REXS signal at zero temperature, Eq. (6).
Here we show that, in the case of non-resonant scat-
tering from a Fermi gas this expression simply reduces
to the Lindhard susceptibility (2). The present deriva-
tion is a corollary of a more generic relation between the
non-resonant limit of resonant inelastic scattering (RIXS)
and density-density response functions (see Ref. [85] for
a review), and is brought here for completeness. Non-
resonant scattering can be described as a REXS process
in the limit of Γc → ∞. In a Fermi gas with a local
impurity, G0(k, ω) = 1/(ω − εk + i0+), W (k) = 1, and
T (k, k + q) = 1. Under these conditions Eq. (6) and (8)
give IREXS → IXray = |(AC(q)/Γc|2 with

C(q) =

∫ ∞
0

dω′
∑
k

Im

[
1

ω′ − εk + i0+
1

ω′ − εk+q + i0+

]
= π

∫ ∞
0

dω′
∑
k

δ(ω′ − εk+q)

ω′ − εk
+
δ(ω′ − εk)

ω′ − εk+q

= π

∫ ∞
0

dω′
∑
k

δ(ω′ − εk+q)

εk+q − εk
+
δ(ω′ − εk)

εk − εk+q

= π
∑
k

nk
εk+q − εk

+
nk+q

εk − εk+q
. (A11)

Here in the transition from the first to the second line we
used 1/(x + i0+) = 1/x − iπδ(x), and in the transition
from the third to forth

∫∞
0
δ(ω − εk) = nk, where nk is

the Fermi-Dirac distribution at T = 0. We obtain

IXray =

∣∣∣∣∣ AΓc ∑
k

nk − nk+q

εk − εk+q

∣∣∣∣∣
2

=

∣∣∣∣ AΓcχ(q)

∣∣∣∣2 . (A12)

The present derivation can be extended to the case of
non-trivial Wannier functions, and scattering amplitudes
of the form T (k,k + q) = Tq leading to

IXray =

∣∣∣∣∣ AΓc ∑
k

WkTqW
∗
k+q

nk − nk+q

εk − εk+q

∣∣∣∣∣
2

(A13)

4. Spin-orbit effects in REXS

In this section we study the dependence of REXS scat-
tering on the polarization of the incoming (i) and outgo-
ing (o) photons. As an important result, we will show
that in the absence of magnetic impurities, the intensity
of the REXS signal is not affected by spin-orbit effects.
For an isolated atom, the REXS intensity I is given by
the product of dipole matrix elements for the absorption
and the emission:

I(η̂i, η̂o) ∝ (η̂∗o · 〈ψi|r|ψn〉) (η̂i · 〈ψn|r|ψi〉) , (A14)

where ψi is the initial (and final) core electron state and
ψn is a valence 3dx2−y2 orbital with spin σ at the same
site. In typical experiments one selects a resonance so
that only 2p core levels with total angular momentum
j = 3/2 are excited to the valence band. Thus the to-
tal polarization-dependent intensity is the sum over spin-
orbit eigenstates mj = −3/2,−1/2, 1/2, 3/2:

I(η̂i, η̂o) ∝
∑
mj

(
η̂∗o · 〈2p3/2mj

|r|3dx2−y2 , σ〉
)

×
(
η̂i · 〈3dx2−y2 , σ|r|2p3/2mj

〉
)
, (A15)

To compute the dipole matrix elements, we introduce a
unit operator in the basis of separate spin and orbital
angular-momentum eigenstates |m`,ms〉

I ∝
∑

mj ,m`,ms,m′
`,m

′
s

(
η̂∗o · 〈2p3/2mj

|m`,ms〉〈m`,ms|r|3dx2−y2 , σ〉
)

×
(
η̂i · 〈3dx2−y2 , σ|r|m′`,m′s〉〈m′`,m′s|2p3/2mj

〉
)

(A16)

=
∑

mj ,m`,m′
`

(
η̂∗o · 〈2p3/2mj

|m`, σ〉〈m`|r|3dx2−y2〉
)

×
(
η̂i · 〈3dx2−y2 |r|m′`〉〈m′`, σ|2p3/2mj

〉
)

(A17)

The Clebsch-Gordan matrix elements vanish unless mj =
m` + σ = m′` + σ, and hence we require m′` = m`. We
then have the further simplification:

I ∝
∑
mj ,m`

∣∣∣〈2p3/2mj
|m`, σ〉

∣∣∣2 (η̂∗o · 〈m`|r|3dx2−y2〉
)

×
(
η̂i · 〈3dx2−y2 |r|m`〉

)
(A18)

If the Hamiltonian is spin-independent, i.e. if there is no
spin-density wave, the amplitude is independent of the
spin σ of the photoelectron in the intermediate state and
thus the two spins contribute equally to the coherent sum
over histories, and we have

I ∝
∑
m`

∑
mj ,σ

∣∣∣〈2p3/2mj
|m`, σ〉

∣∣∣2
(η̂∗o · 〈m`|r|3dx2−y2〉

)
×
(
η̂i · 〈3dx2−y2 |r|m`〉

)
(A19)
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Now
∑
mj ,σ

∣∣∣〈2p3/2mj |m`, σ〉
∣∣∣2 is the probability that a core

electron with orbital angular momentum m` and un-
known spin is in a total spin-j = 3/2 state. By spherical
symmetry this is obviously independent of m`, since m`

is coordinate-dependent but j is not. Since this is an
m`-independent quantity, we obtain

I ∝
∑
m`

(
η̂∗o · 〈m`|r|3dx2−y2〉

) (
η̂i · 〈3dx2−y2 |r|m`〉

)
(A20)

=〈3dx2−y2 | (η̂i · r) (η̂∗o · r) |3dx2−y2〉 (A21)

We now have a tensorial matrix element that is not mod-
ulated by the spin-orbit effect except for the aforemen-
tioned constant prefactor that represents the contribu-
tion to resonant scattering only from j = 3/2 core states.

5. Polarization dependence of REXS

In this section we study the dependence of the REXS
signal on the wavevector of the incoming photon k. This
dependence was experimentally measured by Comin et
al.29, and used to identify the dominant type of charge
modulations. According to the present single-band ap-
proach, the predicted k dependence is instead identical
for all types of modulations: Our model corresponds to
the s-wave case considered by Comin et al. . This model
is found to be in good agreement with the experimental
measurements (see Fig. 14).

Our starting point is Eq. (7). Because the outgoing
beam is not filtered according to its polarized, the mea-
sured signal is proportional to the sum of the intensities
of the two outgoing polarizations:

IREXS ∝
∑

o=σ′,π′

∣∣∣η̂o ·M · η̂i ∣∣∣2 (A22)

where the tensor M is defined by Mα,β = 〈d|rαrβ |d〉,
i = σ, π is the incoming polarization, and o = σ′, π′ is
the outgoing polarization. We denote by F the diago-
nal matrix corresponding to M in the principal axis of

𝝈′ 

𝒌 

𝝈 𝝅 

𝒌′ 

𝝅′ 
o 

x y 
x 

𝜃 

q 

𝛼 

z 

x 

𝜃 

sample 

FIG. 13: Experimental setup of Ref. [29].
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z
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z
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FIG. 14: Polarization dependence – comparison between the-
ory and experiment. The continuous curves correspond to
Eq. (A23) and Eq. (A24), obtained from Eq. (A22) in the
case of Fz = 0. The dotted curves correspond to Eq. (A22)
in the case of Fz = 0.15. The dashed curves are reproduced
from Fig. S5 of Ref.[29] and include the corrections due to
self-absorption. The errorbars indicate the experimental mea-
surement of the Y675 sample reported in Ref. [29].

the lattice. Its three non-zero entries are Fx = 〈d|x2|d〉,
Fy = 〈d|y2|d〉, and Fz = 〈d|z2|d〉. The ratio between
these quantities was measured in Ref. [29] and found
to be Fz/Fx ≈ Fz/Fy ≈ 0.15. The smallness of Fz
indicates that the conduction band has a small exten-
sion in the z direction, in agreement with the theoretical
calculations34, which predict a dominant x2− y2 charac-
ter. In the experiment, the direction and the polariza-
tion of the incoming photons are kept fixed, while the
wavevector k is modified by rotating the sample around
the vector q (Fig. 13): the dipole matrix M is then given
by M = RT (α) F R(α), where the matrix R represents a
rotation of α degrees around the q axis. This expression
corresponds to the predictions of Ref. [29] for an s-wave
modulation.

Without loss of generality we choose to work in Carte-
sian coordinates in which the incoming photon moves in
the direction k = (0, 0, 1) with polarizations σ = (0, 1, 0)
and π = (1, 0, 0). As shown in Fig. 13, the polariza-
tion of the outgoing photon are σ′ = (0,−1, 0) and
π′ = (cos 2θ, 0, sin 2θ), and q ≡ k′ − k ∼ (cos θ, 0, sin θ).
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For Fx = Fy = 1, Fz = 0 we then find :

Iσ(α) =
(

4 cos3
α

2
sin

α

2
cos2 θ sin θ

)2
+
(
cos2 α+ sin2 α sin2 θ

)2
(A23)

Iπ(α) =
(

4 cos
α

2
sin3 α

2
cos2 θ sin θ

)2
+
(
cos4 θ − sin2 θ(sin2 α+ cos2 α sin2 θ)2

)2
(A24)

For Fz 6= 0 one obtains more complex expressions, nu-
merically depicted in Fig. 14. If we normalize Iσ and
Iπ by their maximal value (dotted curves of Fig. 14),
we find that minIε/maxIε ≈ 0.75 for both ε = π, σ.
The experimental measurements (symbols) instead show
minIε/maxIε ≈ 0.6. As explained by Comin et al.29,
this discrepancy can be attributed to the self-absorption
effects86. The corrected signal (dashed curves) gives a
good agreement between the predicted and measured

minIε/maxIε ratios.

Comin et al. additionally notice a significant asym-
metry of the experimental data with respect to α →
180◦ − α. According to a specific statistical model, they
attribute this discrepancy to a dominant d-wave charac-
ter of the charge modulation. Their classification implies
the realization of a multi-band model with inequivalent
Ox and Oy orbitals, in contrast to the present analysis
based on a single-band model. Interestingly, the statisti-
cal significance of their approach was not clearly estab-
lished in the case of BSCCO. In addition, Fig. 14 shows
that the symmetry with respect to α → 180◦ − α is sig-
nificantly modified by the corrections for self-absorption.
We conjecture that the discrepancy between the present
theoretical approach and the experimental measurements
might be attributed to high-order corrections in the self-
absorption, rather than to the symmetry of the charge
modulations.
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